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The fractional quantum Hall effect (FQHE) observed at half filling of the second Landau level is believed to be
caused by a pairing of composite fermions captured by the Moore-Read Pfaffian wave function. The generating
Hamiltonian for the Moore-Read Pfaffian is a purely three-body model that breaks particle-hole symmetry and
lacks other properties, such as dominate two-body repulsive interactions, expected from a physical model of the
FQHE. We use exact diagonalization to study the low-energy states of a more physical two-body generator model
derived from the three-body model. We find that the two-body model exhibits the essential features expected from
the Moore-Read Pfaffian: pairing, non-Abelian anyon excitations, and a neutral fermion mode. The model also
satisfies constraints expected for a physical model of the FQHE at half-filling because it is short range, spatially
decaying, particle-hole symmetric, and supports a roton mode with a robust spectral gap in the thermodynamic
limit. Hence, this two-body model offers a bridge between artificial three-body generator models for paired states
and the physical Coulomb interaction and can be used to further explore properties of non-Abelian physics in
the FQHE.
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I. INTRODUCTION

Soon after the construction of the Laughlin wave functions
[1] for the FQHE [2] at electronic filling factors ν = 1/(2p +
1) (p an integer), a short-range generator Hamiltonian [3,4]
was found that produced the Laughlin wave functions as
unique gapped ground states. This model shared properties of
the Coulomb interaction: It is two-body, consists of interac-
tions decaying with distance, and is invariant under particle-
hole (PH) transformations. Moreover, the model was shown
to generate states that accurately described the experimentally
observed FQHE at filling factors ν = n0/(2pn0 ± 1) (for
integer n0) in the lowest Landau level (LLL). In fact, the
ground states of this generator model are virtually identical
to the composite fermion (CF) wave functions [5,6] (the CF
wave functions incorporate the Laughlin wave functions as a
subset). The CF wave functions are written as J 2pφ, where
the Jastrow factor J “binds” 2p vortices of the many-body
wave function to electrons described by φ. This strongly
interacting electron wave function J 2pφ is interpreted as a
wave function for CFs described only by φ. The choice φ →
φn0 describes CFs completely filling n0 CF LLs and yields
low-energy wave functions with the same quantum numbers
and physics of the low-energy states of the generator model,
the Coulomb interaction in the lowest LL, and importantly de-
scribes the FQHE at filling factor ν = n0/(2pn0 ± 1). These
wave functions (and generator model) also predict a gapless
PH-symmetric state at half-filling described as a CF-Fermi sea
(φ → φFS) [7–10] that accurately captures the physics of the
Coulomb interaction at half-filling of the LLL [6,11].

The unexpected discovery of the FQHE in the half-filled
second LL [12] (total filling factor 5/2) led to the construction
of the gapped Moore-Read Pfaffian state at half-filling [13].
This state can be interpreted as a paired state of CFs [14,15],
written via φ → φBCS where φBCS is a Bardeen-Cooper-
Schrieffer state of CFs (a Pfaffian in real space) pairing CFs
in the p-wave channel [13,16]. Wave functions of this type
are excellent candidates for the FQHE at filling factor 5/2
[9,17–28] and predict non-Abelian quasiparticles
[13,29–32], which, if identified experimentally, could
form building blocks in the construction of a topologically
protected quantum computer [33,34].

Interestingly, a purely repulsive three-body generator
Hamiltonian [35] (labeled H3) yields most of the physics
described by Moore and Read [13]. Specifically, H3 generates
the Moore-Read Pfaffian wave function as an exact ground
state and produces a degenerate manifold of non-Abelian
quasihole excitations [36]. But H3 does not obey all the
properties expected of a physical model of the FQHE at
half-filling. First, the model does not respect PH-symmetry.
This constraint might not be crucial since numerical work
indicates the ground state of the Coulomb interaction in the
half-filled second LL breaks PH-symmetry [37] with addi-
tional PH-symmetry breaking terms. Importantly, LL-mixing
effects in realistic models supply emergent PH-symmetry
breaking three-body terms [38–42]. Second, H3 is purely
three-body, challenging theory to bridge it to physical two-
body models since additional two-body terms added to H3

generally lift [18,23,37,43] expected degeneracies [36]. The
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construction of H3 is constrained by the Pfaffian form of φBCS

but other forms [16] could yield states and generator models
satisfying all physical requirements while potentially pre-
serving topological properties including non-Abelian anyon
excitations.

The authors of Ref. [44] discovered that H3 can be added to
its PH conjugate Hamiltonian H 3 (which generates the anti-
Pfaffian [45,46]) to yield a purely two-body model:

H2 = H3 + H 3. (1)

H2 has all of the properties desired of a physical model:
It is two-body, PH-symmetric, and spatially decays with
distance. Furthermore, the ground-state energy of H2, as a
function of particle number, displays a “wine bottle” potential
structure, interpreted originally as evidence for spontaneous
PH-symmetry breaking in the ground state. Subsequent work
showed the ground-state energies have a prominent even-odd
effect [47] indicative of pairing. These properties are consis-
tent with the model’s definition in terms of generators for the
Moore-Read Pfaffian/anti-Pfaffian. However, many important
aspects of H2 remain unexplored as a stand-alone generator
model for FQHE at half-filling of a single LL.

In this work we use numerical exact diagonalization to
show that H2 offers a more physical generator model for
the FQHE at half-filling that shares essential features of
the generator model of the Moore-Read Pfaffian including a
spectral gap at half-filling with a neutral roton mode [48,49].
When combined with the fact that H2 is short ranged, PH-
symmetric, and two-body, it becomes a useful generator
model for half-filled FQHE states that connects the phys-
ical Coulomb interaction with the non-physical three-body
generator model of the Moore-Read Pfaffian. We show that
the low-energy states of H2 are adiabatically connected to
the Moore-Read Pfaffian, possess the same topological en-
tanglement properties, and support (quasi)degenerate non-
Abelian quasiparticles. We find conflicting evidence for spon-
taneous PH-symmetry breaking in the ground state of H2.
More work is needed to unambiguously determine if the
ground state of H2 spontaneously break PH-symmetry at half
filling.

The paper is organized as follows. In Sec. II we define
the two-body model, H2, and show how it can be rewrit-
ten as a linear combination of three-body models. Section
III examines the low-energy excitations and shows that H2

supports a FQHE gap at half-filling in the thermodynamic
limit. The roton mode and neutral fermion mode, expected
from the Moore-Read Pfaffian, are shown to exist. Section
IV tracks the low-energy excitations while tuning between
H2 and H3. Here it is shown that all low-energy states are
adiabatically connected and the low-energy manifold of H2

possess (quasi)degenerate non-Abelian quasiholes consistent
with Moore-Read Pfaffian expectations. Section V studies
the PH-symmetry properties of the ground state of H2. It is
found that the ground states using the torus geometry do not
appear to spontaneously break PH-symmetry, but further work
is needed to conclusively establish this fact. Finally, Sec. VI
shows that the ground and low-energy states have entangle-
ment properties consistent with the Moore-Read Pfaffian. We
summarize our results in Sec. VII.

II. MODEL

The two-body model we consider is a short-range model of
N interacting spin-polarized fermions [50] confined to two-
dimensions and the LLL:

H2 =
N∑

i<j

[
P̂ij (1) + 1

3
P̂ij (3)

]

=
N∑

i<j<k

[P̂ijk (3) + P̂ ijk (3)], (2)

where P̂ij (m) denotes projection [3] onto two-body eigen-
states of relative angular momentum m. Similarly, P̂ijk (m)
denotes projection onto the three-body eigenstates of relative
angular momentum. Here and in what follows, the overline
denotes PH conjugation and we focus on half-filling. We work
in energy units of the interaction strength and all distances are
in units of the magnetic length.

The first line in Eq. (2) shows that H2 is a repulsive two-
body interaction that decays with interparticle separation. We
can see this by noting that interparticle separation increases
with m. More explicitly, the two-body projectors can be
written in real-space in the disk geometry [4] as

P̂ij (m) = ∇2mδ(rij ), (3)

where rij denotes the planar separation between particles
i and j . The m = 3 term in Eq. (2) enforces repulsion at
distances larger than the m = 1 term alone. At half-filling the
m = 1 term, by itself, is known to generate the CF Fermi sea
[6–8]. We show below the addition of the second m = 3
term leads to pairing. The prefactor of 1/3 on the m = 3
term derives automatically from a re-expression of the two-
body interaction as a sum of three-body interactions [44].
Appendix A discusses the Haldane pseudopotential expansion
of H2 for finite-sized spherical systems [3].

The second line in Eq. (2) shows the remarkable fact
that a repulsive two-body interaction can be rewritten as the
exact generator of CF paired states. H3 ≡ ∑

i<j<k P̂ijk (3)

and H 3 ≡ ∑
i<j<k P̂ ijk (3) are Hamiltonians that generate the

Moore-Read Pfaffian �Pf and its PH conjugate, the anti-
Pfaffian �aPf ≡ �Pf , respectively [more compactly written in
Eq. (1)]. The equality in Eqs. (1) and (2) hold up to single
particle terms that we have absorbed into a redefined chemical
potential.

An important feature of H2 is that it precisely connects
the CF-Fermi sea [specifically ground states of

∑
i<j P̂ij (1)]

with the Moore-Read Pfaffian. Over-screening of the inter-
CF interaction can lead to a Kohn-Luttinger-type [51,52]
instability in the CF-Fermi sea toward a CF paired state
thereby favoring wave functions with φBCS over φFS. The CF
wave functions themselves were shown to harbor their own
instability in the p-wave channel when studied in the second
LL [14]. In other words, H2 shows that by adding P̂ij (3) terms
to the model that generates the CF-Fermi sea, a paired state is
favored. At lowest-order, when electrons form CFs, the vortex
binding accommodates the energy cost of the P̂ij (1) term at
short range. The addition of P̂ij (3) terms can be interpreted
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FIG. 1. Energy spectrum of the two-body model, H2 (black
dashes), and three-body model that generates the Moore-Read Pfaf-
fian, H3 (red circles), for N = 14 and Q = 12.5 on the sphere.

as forcing an over-screening of the P̂ij (1) interaction terms
leading to a pairing instability of the CF Fermi sea.

III. LOW-ENERGY EXCITATIONS AND
THE ENERGY GAP

We begin our study of H2 by addressing the FQHE energy
gap using exact diagonalization in the spherical geometry
[3]. Half-filling occurs for N = (2Q + S)/2 where 2Q is
the total magnetic flux through the surface of a sphere of
radius R = √

Q and S is the so-called shift, an order-one
correction that vanishes in the thermodynamic limit [53]. The
ground state of H3 (H 3) is �Pf (�aPf ) at a shift of S = 3
(S = −1). A gap is necessary for the ground state of H2

at 2Q = 2N − S to represent a valid FQH state. Hence, we
calculate the low-energy spectrum of H2 (shown for N = 14
in Fig. 1 and in Ref. [44] for N = 8) and define the gap as
the difference between the energy of the first excited state
and the L = 0 ground state (if the ground state has L �= 0
then the gap is take to be zero). �2 is found to be a uniform
state with total angular momentum L = 0 separated from
excited states by a finite gap, ��2 . In fact, the structure of
the low-energy spectrum is notably similar to the low-energy
spectrum of the second LL Coulomb interaction and H3 [44].
We also calculate the thermodynamic limit of the energy gap
between the first excited state and the L = 0 ground state—
the so-called “roton” gap. From Fig. 2 we see the gap is
finite and nearly identical in the thermodynamic limit to the
Moore-Read Pfaffian gap, ��Pf [23].

The Moore-Read Pfaffian state additionally supports a so-
called neutral fermion mode [13,16,48,54], which we can
study in H2 as well. Following Ref. [48] we calculate the
neutral fermion mode by considering a system at odd N

and 2Q = 2N − 3. To define the neutral gap we construct a
“ground-state” energy at odd N by finding the linear interpo-
lation between the ground-state energy of the nearby even par-
ticle systems at N + 1 and N − 1 (again for 2Q = 2N − 3).
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FIG. 2. Energy gap between the lowest energy excited state and
the uniform ground state of H2 (denoted by ��2 ) and H3 (denoted
��Pf ), respectively, as a function of inverse particle number. Linear
extrapolations find the gaps in the thermodynamic limit to be ��2 =
0.267(24) and ��Pf = 0.277(47). The numbers in parenthesis are the
standard deviation in the linear extrapolation.

The neutral mode dispersion �NF(k) of H2 is shown in Fig. 3
and is remarkably similar, qualitatively and quantitatively, to
the neutral mode of H3.

IV. ADIABATIC CONTINUITY

To investigate whether �2 is indeed in the same uni-
versality class as the Moore-Read Pfaffian we consider the
adiabatic continuity (or lack thereof) between the ground and
low-energy states of H2 to those of H3. More concretely, we
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FIG. 3. The top panel shows the spectrum of H2 for N = 15 at
2Q = 27 and identifies the neutral fermion mode. The bottom panels
show the neutral fermion modes for systems up to N = 13 for H2

(left) and H3 (right). These figures can be compared to those for H3

and the second LL Coulomb Hamiltonian in Ref. [48]. The wave
vector is k = L/

√
Q.
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FIG. 4. Energy of H (α) relative to the ground state E0. The
middle panel shows the low-energy spectrum (lowest approximately
15 states) for H (α) as a function of α for N = 14 and Q = 12.5.
The left and right panels plot relative energy as a function of angular
momentum L for α = 0 and 1, respectively. The angular momentum
of each state is indicated by color. The gap stays open and relatively
constant indicating adiabatic continuity.

consider the Hamiltonian

H (α) = (1 − α)H3 + αH2 (4)

that interpolates between H3 and H2 for α ∈ [0, 1]. Clearly,
H (0) = H3 and H (1) = H2 where the ground states are �Pf

and �2, respectively. As we tune α from zero to unity we track
the ground state and energy gap. We denote the ground state(s)
of H (α) as �.

A. Adiabatic continuity in the ground state and neutral modes

We first consider the spherical geometry at 2Q = 2N − 3
and investigate the ground states of H (α). For the two systems
to be adiabatically connected we expect the spectrum to
maintain a uniform ground state with L = 0 in addition to a
finite gap � that smoothly interpolates between the two end
points without vanishing. Otherwise, we expect the gap to
close at some finite αc indicating a quantum phase transition
between �Pf and �2.

Figure 4 shows the low-energy spectrum for H (α) as a
function of α for N = 14. The low-energy states of H3 and
H2 are clearly adiabatically connected–the gap � between
the first excited state and the ground state remains open and
remarkably constant from α = 0 to α = 1. The absolute size
of � for H3 and H2 are within 5% of one another at the end
points. Furthermore, many of the higher-energy states (in the
continuum) are also adiabatically connected. Smaller systems
(N = 12, 10, and 8) show similar qualitative and quantitative
results.

Figure 4 represents adiabatic continuity between �2 and
�Pf for finite-sized systems (we have shown N = 14). How-
ever, to examine the effect of system size on the adiabatic
continuity we calculate the linear extrapolation of the energy
gap versus 1/N , i.e., we take the thermodynamic limit, for

0 0.2 0.4 0.6 0.8 1
α

0

0.1

0.2

0.3

0.4

G
ap

 [a
.u

.]

FIG. 5. The thermodynamic limit of the energy gap of H (α) is
shown versus α. Similar to the finite-size system results of Fig. 4
the gap remains finite and largely flat, adiabatically connecting �2

with �Pf . The error bars indicate the standard deviation in the linear
extrapolation.

several α between zero and one. Figure 5 shows the thermo-
dynamic limit of � remains finite for all α and essentially
reflects the finite-sized system results. The fact the system
remains gapped in this limit further supports the conclusion
that �2 and �Pf are in the same universality class.

We now use exact diagonalization on the torus to further
investigate the low-energy states of H (α). We work with
the rectangular unit cell with aspect ratio τ near unity and
present results for system sizes with ground states at the total
momenta consistent with pairing, i.e., the same ground-state
momenta found for the ground states of H3 (cf. Refs. [18,55]).
The upper two panels of Fig. 6 show the low-energy spectrum
of H (α) for N = 8 and N = 12 with τ = 0.95 (our results
are robust to changes in τ ). In this geometry the topological
order of the Moore-Read Pfaffian state is in evidence by the
existence of a three-fold ground-state degeneracy separated
from the higher-energy continuum by a gap. As α is tuned
from H3 to H2 we see that, while the three-fold ground-state
degeneracy is minimally broken due to “tunneling” between
topological sectors, the threefold quasidegeneracy remains
well-below the continuum states all the way to H2. These
results are qualitatively similar to those using the spherical
geometry (Fig. 4) and lend even more support for the adiabatic
continuity between �2 and �Pf . For N = 10 and N = 14,
we did not find a paired ground state on the torus for H2

with the rectangular unit cell. For these particle numbers the
ground state is not threefold degenerate and occurred at wave
vectors different from the paired states. This could be due to a
finite-size effect which favors non-uniform states on the torus
for the H2 model with the rectangular unit cell [9].

B. Adiabatic continuity in the quasihole sector: Non-Abelian
anyons in a particle-hole-symmetric model

The quasihole sector of H3 supports non-Abelian excita-
tions that can be utilized as building blocks for a topological
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FIG. 6. Relative energy of H (α) in the torus geometry for N = 8
(upper-left panel) and N = 12 (upper-right panel) for an aspect ratio
τ = 0.95 as a function of α. The threefold ground-state degeneracy
remains quasidegenerate, and well below the gap, as α is tuned from
H3 to H2. The bottom panels show the corresponding overlap 〈�|�〉,
indicating that �2 is PH-symmetric at α = 1 since 〈�2|�2〉 = 1, �Pf

breaks PH-symmetry since 〈�Pf |�Pf〉 �= 1, and �, the ground state
of H (α), remains largely PH-symmetric for finite α less than unity.

quantum computer [34]. To search for the same feature in
H2 we study the quasiholes in the spherical geometry where
2Q = 2N − 2 is a system with two non-Abelian quasihole
excitations. In this geometry, the non-Abelian nature of the
excitations manifests through the existence of a zero-energy
manifold of states [36]. For topological quantum computing
applications it is important that the non-Abelian excitations
be degenerate, or at least, the quasidegenerate states must
be significantly below the energy gap to generic excitations
such that at low temperatures and weak disorder there is an
exponentially suppressed probability of the system exciting
generic excitations.

In Fig. 7 for α = 0 the degenerate manifold of zero-energy
states of H3 is clearly visible. When α �= 0 the degeneracy of
the zero-energy manifold is broken by adding any amount of
H2. However, even as α → 1 the spread of the quasidegener-
ate manifold stays well below the gap to generic excitations.
Hence, even the exactly degenerate non-Abelian quasihole
states of H3 are adiabatically connected to the quasidegenerate
non-Abelian quasihole states of H2 for finite-sized systems
(N = 8, 10, 12 show similar behavior). Again, as we did
when studying the ground-state sector, we investigate the
thermodynamic limit of this apparent adiabatic continuity of
the two quasihole sector.

While it is true that the quasidegenerate manifold of quasi-
hole states remains below the continuum for all system sizes
investigated and adiabatic continuity appears manifest, we do
observe the degeneracy of the quasihole states of H3 to be bro-
ken upon the inclusion of the two-body term of H2. Also, the
spread in energy of the quasidegenerate states monotonically
increases with α. To investigate this in more detail we define
δ to be the average energy of the quasidegenerate quasihole
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FIG. 7. Energy of H (α) relative to the ground state (see Fig. 4)
for the system containing two quasihole excitations (N = 14 and
Q = 13) (the blue sections on the left and middle panels indicate
there are higher energy states in the continuum we did not calculate).
Nonzero α causes the zero-energy degenerate non-Abelian quasihole
manifold to be broken; however, the spread of states stays below the
continuum of generic excitations all the way to α = 1.

manifold of H (α) and � to be the gap between the lowest
energy state in the continuum and δ.

As we tune α close to H2 (Fig. 8), the thermodynamic limit
of δ (δtherm) saturates to a value well below the thermodynamic
limit of the neutral gap. But �therm (the thermodynamic limit
of �), by contrast, is reduced with increasing α. Moreover,
δtherm becomes larger than �therm for α � 0.6–0.8, indicating
for infinite system sizes the gap between the ground state
and low-lying excited states closes for two-body interactions.
Naively this would mean the low-energy states of H3 and
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FIG. 8. The thermodynamic limit of the quasihole average en-
ergy, δtherm (red), and the energy gap to the generic continuum of
states, �therm (green), as a function of α. At α ∼ 0.7 the spread of the
quasidegenerate quasiholes bleeds into the continuum and appears to
indicate the adiabatic continuity between the low-energy states in the
quasihole sector of H2 and H3 is lost.
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H2 for two quasiholes are not adiabatically connected. It
appears the loss of adiabatic continuity between H3 and H2

in the quasihole sector is at odds with the ground-state sector
which shows clear and robust adiabatic continuity. Or, per-
haps, purely two-body interactions cannot host non-Abelian
quasihole excitations. But, as we argue below, the transition
to δtherm/�therm > 1 is due to a finite-size effect limitation of
our exact calculations.

The breaking of the degeneracy of the non-Abelian quasi-
holes can be impacted by at least two causes. First, the low-
energy states are simply not adiabatically connected. How-
ever, Fig. 7, while showing a spreading of the quasidegenerate
states with α, clearly shows the same states staying below
the continuum. Appendix B also shows a detailed tracking
of individual states and, again, the states are adiabatically
connected and never mix or cross higher-energy generic states
in the continuum. The quasidegenerate states of H (α) also
maintain high overlaps with the exactly degenerate quasihole
states of H3 (see Appendix B).

The second possible cause of the broken degeneracy in
the quasihole manifold stems from a finite-size effect. The
quasiholes themselves are finite and can overlap in real space.
The addition of the two-body interaction term in H2 produces
an energy cost for this overlap in quasiholes, breaking the
degeneracy [34]. In that case, the quasidegenerate states with
the smallest total L would be the least affected because they
correspond to the states with the quasiholes the furthest away
from one another [6,56]. To test for this effect we compute
the energy gap (�1

therm) between the lowest energy in the
continuum and the energy of the quasihole state with the
smallest L (not necessarily the smallest energy), i.e., L = 0,
1, 0, and 1 for N = 8, 10, 12, and 14, respectively, in the
thermodynamic limit. Fig. 9 shows this gap is well-defined
(note the smaller error bars in the linear extrapolation) and
finite in the thermodynamic limit and the smallest L state of
the quasidegenerate quasihole states of H3 and H2 remain
adiabatically connected. Our results indicate the size and
physical overlap of quasiholes (for large L) likely is leading
to a finite-size effect that undermines adiabaticity in our finite-
size study of the quasihole gap.

To further elucidate the above, we study the gap between
the lowest energy state in the continuum and the lowest
energy state of the quasidegenerate manifold of quasihole
states (�2

therm [not shown]), i.e., L = 2, 3, 4, and 5 for N = 8,
10, 12, and 14, respectively. In contrast to �1

therm, �2
therm is not

well-behaved and eventually decreases and bleeds into δtherm.
The error of this extrapolation is also very large indicating
the extrapolation is not particularly linear. This behavior is
consistent with the explanation that the degeneracy is broken
due to interactions between the quasiholes in a finite-sized
system caused by the two-body interaction of H2.

The four-quasihole sector at 2Q = 2N − 1 does not show
reasonable adiabatic continuity as the degenerate manifold is
broken badly by H2 and bleeds into the continuum at finite
α � 0.5 [57]. From the above discussion of quasiparticle size
we conclude that the apparent lack of adiabatic continuity is
a reflection of quasihole interactions between closely spaced
quasiholes in our finite-sized system studies. We do find, how-
ever, that well-separated quasiholes retain adiabatic continuity
in the thermodynamic limit.
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FIG. 9. The thermodynamic limit of the gaps between the lowest
energy state in the continuum and the smallest angular momentum
states of the quasidegenerate manifold �1

therm, i.e., L = 0, 1, 0, and 1
for N = 8, 10, 12, and 14, respectively. This gap (black open circles)
is well behaved and linear in 1/N as indicated by the small error bars
in the extrapolation. Finite-size effects have been greatly reduced
in comparison to Fig. 8 and the spread in the (quasi)degenerate
quasihole energy remains below the gap to generic states in the
continuum.

V. PARTICLE-HOLE-SYMMETRY

Physical two-body interactions are PH symmetric and so
we expect ground states of two-body Hamiltonians at half-
filling to also be PH symmetric in the absence of spontaneous
PH symmetry breaking. In this section we show that, for
finite systems sizes on the torus, �2 remains robustly PH
symmetric even under PH-symmetry breaking perturbations.
Moreover, we argue that prior evidence for spontaneously
broken PH symmetry on the sphere [44] can be interpreted
as a expression of an even-odd effect. We conclude that our
numerical calculations do not show unambiguous evidence
that H2 spontaneously breaks PH symmetry.

We begin by noting that �2 is nearly identical to the
Moore-Read Pfaffian. (Note the PH conjugate of �2 compares
equally well to the anti-Pfaffian since H2 is PH symmetric.)
The numerical wave function overlaps for various system
sizes given in Table I quantify how “identical” �2 is compared
to �Pf . The overlap is above 0.96 for systems up to N = 16.
The proximity of these overlaps to unity compares to overlaps
found between CF wave functions for odd-denominator FQH
states of the form ν = n0/(2pn0 ± 1) and the pure Coulomb
ground state in the LLL [6].

TABLE I. Numerical wave function overlaps between �2 and
�Pf on the sphere. Note the overlaps between �2 at the Moore-Read
anti-Pfaffian shift 2Q = 2N + 1 and the Moore-Read anti-Pfaffian
state �aPf are identical to those listed below for N → N − 2.

N 8 10 12 14 16

〈�2|�Pf〉 0.9997 0.9951 0.9869 0.9724 0.96345
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In the past, it was found that PH symmetrization (on the
torus) was able to increase the overlap of �Pf with the ground
state of the Coulomb interaction for ν = 5/2 [9]. Thus, per-
haps �2 is identical (or very close) to the PH symmetrized
�Pf . After all, �2 is the ground state of H2 = H3 + H 3, with
each term producing �Pf and �aPf independently. For N = 12
on the torus the overlap between the PH symmetrized �Pf and
�2 is 0.849 while the overlaps between �2 and �Pf and �aPf

are both 0.694 (see Appendix C). So the PH symmetrized �Pf

is not identical to �2 and we conclude that simple operations
acting on �Pf (and/or �aPf ) do not generate �2 with high
accuracy.

We now consider the possibility of spontaneous PH sym-
metry breaking of �2 [44]. If �Pf explicitly breaks PH sym-
metry, and the overlap between �2 and �Pf is so close to unity,
then perhaps �2 spontaneously breaks PH symmetry. In fact,
it has been argued [45,46] that a ground-state adiabatically
connected to �Pf must break PH symmetry spontaneously.
Reference [44] worked exclusively in the spherical geometry
and checking whether 〈�|�〉 is unity, to determine PH sym-
metry, is not straightforward. Instead, the ground-state energy
of H2 was examined as a function of N (for various flux
2Q) in the vicinity of half-filling. The ground-state energy of
H2 was found to be lower for situations when 2Q = 2N −
3 or 2Q = 2N + 1 for N even exhibiting a “wine-bottle”
structure. This was interpreted as evidence for spontaneous
PH symmetry breaking.

However, it is possible the “wine-bottle” structure instead
points to an even-odd effect. In Ref. [47], the ground-state
energy per particle of H2 was calculated for 2Q = 2N − 3
from N = 4 to 18 and showed a distinct even-odd effect. The
even-odd effect is consistent with a paired ground state (recall,
it has high overlap with the paired Moore-Read Pfaffian state).
The even-odd effect in the finite-size calculations could have
been the underlying cause of the “wine-bottle”-shaped energy
profile. Thus, it is unclear if �2 actually spontaneously breaks
PH symmetry or is simply a paired state exhibiting an even-
odd effect (or both). As mentioned above, it is difficult in
the spherical geometry to check PH symmetry through the
calculation of 〈�|�〉 due to the spherical shift S. The shift,
in a sense, explicitly breaks PH symmetry in the basis states
themselves (except for the case S = 0 at 2Q = 2N − 1). As
a result of the shift, taking the PH conjugate of �2 or �Pf at
2Q = 2N − 3 changes N at constant flux or changes the flux
at constant N . This complicates the analysis [58]. In contrast,
it is straightforward to compute 〈�|�〉 on the torus since the
shift is zero and the PH conjugate of � has the same quantum
numbers as �. If � is PH-symmetric, then 〈�|�〉 = 1.

The lower two panels of Fig. 6 show 〈�|�〉 for H (α)
and N = 8 and N = 12. The data at H (0) = H3 show clearly
that �Pf breaks PH symmetry, as expected, and at H (1) =
H2, �2 is PH symmetric, as expected for the ground state of
a two-body Hamiltonian. Interestingly, for the larger system
size (N = 12) three additional states appear to be separating
from the continuum. Reference [46] pointed out that the
degeneracy in the thermodynamic limit of a PH symmetric
state in the Pfaffian universality class would theoretically
carry a sixfold degeneracy with the extra factor of two arising
from PH symmetry (we have already subsumed a factor of two
due to center-of-mass). Our calculation is seemingly the first

indication of this effect that is typically absent due to strong
finite-size effects. Importantly, �2 remains PH-symmetric
even with the explicit PH symmetry breaking term (1 − α)H3

added. We find that as α is reduced from unity, the addi-
tional term does not immediately break PH symmetry and the
ground state � of H (α) remains robustly PH symmetric for
finite values of α. If the ground state were to spontaneously
break PH-symmetry, we would expect 〈�|�〉 to behave qual-
itatively different as a function of α [37].

Before ending this section we briefly consider the ground-
state energy of H2 at the PH symmetric shift (S = −1) in
the spherical geometry (2Q = 2N − 1) and ask whether the
ground state might be related to the so-called PH-Pfaffian
state [59–63]. The PH-Pfaffian has been discussed in rela-
tion to recent puzzling experimental results regarding the
thermal Hall conductivity at ν = 5/2 [64]. Reference [65]
inadvertently computed the ground state of H2 in the spherical
geometry. Figure 3 and Appendix A of that work studied all
even N from N = 8 to 16. A uniform ground state with L = 0
was only found for N = 12 for H2—all other systems were
compressible. These results indicate the ground state of H2 is
not consistent with the PH-Pfaffian.

To summarize this section, the bottom panels in Fig. 6
suggest that H2 does not spontaneously break PH symmetry.
This surprising result leads us back to the “wine-bottle” result
of Ref. [44]. One interpretation of Ref. [44] is that the “wine-
bottle” merely reflects electron pairing without PH symmetry
breaking. Another possibility is that results presented in Fig. 6
are far from the thermodynamic limit and cannot capture
spontaneous PH symmetry breaking. We therefore conclude
the finite-size results have so far not settled the issue of
whether or not H2 spontaneously breaks PH symmetry.

VI. ENTANGLEMENT PROPERTIES

To further study the topological order of �2 we examine
its quantum entanglement properties. Here we definitively
show that �2 is in the same universality class as the Moore-
Read Pfaffian/anti-Pfaffian by investigating the topological
entanglement entropy and spectrum.

A. Topological entanglement entropy

The topological entanglement entropy of a wave function
� is found by dividing the system into two pieces (A and B)
and calculating the von Neumann entropy SA of the partial
density matrix of region A by tracing out all degrees of free-
dom in B of the total density matrix. This entropy measures
the degree to which the wave function’s degrees of freedom in
the two subsystems are entangled [66]. A state’s topological
order manifests as a reduction in SA [67,68] as

SA = aLS − γ� + O(1/LS ), (5)

where a is a nonuniversal constant, LS is the length of the
boundary between the two subsystems, and γ� > 0 is the
topological entanglement entropy.

We will utilize the spherical geometry for this calcula-
tion and consider an orbital partition: geometrically we are
partitioning the sphere along a lines of latitude. The aim
is to determine γ�2 for �2 compared with the topological
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TABLE II. Entanglement entropy SlA as a function of lA for �2

for N = 6, 8, 10, 12, and 14. These numbers should be compared to
those of the Moore-Read Pfaffian given in Ref. [69].

lA N = 6 8 10 12 14

1 0.67301 0.68291 0.68696 0.68901 0.69019
2 1.15777 1.23414 1.24039 1.24491 1.25173
3 1.49971 1.65389 1.68975 1.71084 1.72946
4 1.76712 2.03339 2.09498 2.13745 2.17107
5 1.88152 2.31556 2.43072 2.50253 2.55808
6 2.48129 2.68508 2.80127 2.88807
7 2.54204 2.86597 3.04219 3.16802
8 2.97194 3.22674 3.39942
9 3.00718 3.35726 3.58560
10 3.4354 3.72965
11 3.4609 3.83228
12 3.89415
13 3.91462

entanglement entropy of the Moore-Read Pfaffian, known ex-
actly to be γ�Pf = ln

√
8 [13,69]. For a topologically ordered

state, γ� = lnD where D =
√∑

d2
i is the total quantum

dimension and di are the quantum dimensions of the quasi-
particles excitations of the theory [34].

We follow Zozulya et al. [69] in our calculation of γ�2

and calculate SA for various lengths LS to find the “y in-
tercept” γ� . We focus on systems for which 2Q = 2N − 3
and partition along a z-component of angular momentum
lA. This orbital partition corresponds to partition at a LLL
single-particle state of the form ηlA (z) ∼ zlA exp (−|z|2/4) as
the spherical radius is taken to infinity. The radius of this state
is proportional to

√
lA so the boundary length LS ∝ √

lA. A
partition of the sphere along an orbital corresponding to lA
gives an expected entanglement entropy of the form SA =
a
√

lA − γ� + O(1/
√

lA). However, the fact that we must
calculate for a finite sphere and take the thermodynamic limit
makes this procedure more involved. In fact, the entanglement
entropy of SB = SA so, for a given N (and therefore Q), we
calculate SA for lA = 1, . . . , (2Q + 1)/2 (lA = (2Q + 1)/2
is the equator). Again, following Ref. [69] we label SA for
various partitions lA as SlA and Table II gives SlA (N ) as a
function of lA = 1, . . . , (2Q + 1)/2 and N = 6, 8, 10, 12, and
14 for �2. One can compare these values to those calculated
for the Moore-Read Pfaffian given in Ref. [69]. Indeed, the
entanglement entropy of �2 is nearly identical to �Pf .

To extrapolate to the thermodynamic limit we construct
a linear fit of SlA (N ) versus 1/N and the thermodynamic
limit (1/N → 0) is determined (see the left panel of Fig. 10).
Upper and lower bounds of this extrapolation are used to as-
sign an uncertainty of ±|SlA (0) − S1| where S1 = SlA (x1)(1 −
x1/(x1 − x0) + SlA (x0)(x1/(x1 − x0) where the two smallest
values of N are x0 and x1, respectively [69].

A least squares fit of SlA (0) as a function of
√

lA gives
γ�2 = 1.27. To determine the error bars we construct a straight
line through the value of SlA (0) for the largest (smallest)
value of lA plus (minus) |SlA (0) − S1| and vice versa. We then
determine the negative of the y intercept and an upper and
lower bound on γ�2 —these lines are the bounds of the shaded
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FIG. 10. Entanglement entropy SlA (N ) versus 1/N for various
lA for �2 at 2Q = 2N − 3 (left panel). The right panel shows the
thermodynamic limit SlA (∞) versus

√
lA to determine the topologi-

cal entanglement entropy γ�2 . The error bars are uncertainty of the
extrapolation (explained in the text) and the shaded region depicts
the upper and lower bounds of the extrapolation.

region in the right panel of Fig. 10 finally yielding γ�2 =
1.27+0.17

−0.53. This result contains γPf = ln
√

8 ≈ 1.04 within its
error bars. Of course, more work can reduce the error bars in
γ�2 as was done for γ�Pf in Ref. [69]. Nonetheless, our results
show that γ�2 is consistent with γ�Pf .

B. Topological entanglement spectrum

The entanglement entropy provides limited information
about the topological order of a wave function. Consequently,
Li and Haldane proposed investigating the entire spectrum of
eigenvalues {ξi} of the reduced density matrix [70].

Figure 11 shows the orbital entanglement spectrum of �2

and �Pf (with which to compare) for N = 14 particles—we
note that smaller system sizes show similar results. We report
the spectra while partitioning the sphere at the equator (in the
notation of Li and Haldane [70] this corresponds to P [0|0] for
N/2 even and P [1|1] for N/2 odd).

The low-lying states of the orbital entanglement spectrum
can be used as a “fingerprint” with which to identify topo-
logically ordered states as they are related to the underly-
ing conformal field theory (CFT) of the corresponding FQH
state [70–72]. The low-lying states of �2 very closely match
those of �Pf both quantitatively and qualitatively (counting
of levels). There is a clear “topological entanglement gap”
[70] separating the CFT-like low lying states from the higher
“energy” generic non-CFT-like levels.

While the low-lying levels of the entanglement spectrum
of �2 match very closely to those of the Moore-Read Pfaffian
(or anti-Pfaffian at the anti-Pfaffian shift), the spectrum of �2

has many generic non-CFT-like levels similar, qualitatively, to
the second LL Coulomb interaction [70,73,74]. From both the
entanglement entropy and spectrum it appears that �2 is in
the same universality class as the Moore-Read Pfaffian/anti-
Pfaffian.
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FIG. 11. Orbital entanglement spectrum for �2 and Moore-Read
Pfaffian for N = 14. The inset shows the ES of the “root” config-
uration [70] of both states. The inset shows a zoom in where the
states are barely distinguishable. The partition is along the spherical
equator, i.e., P [1|1] in the notation of Ref. [70].

VII. SUMMARY

We have studied a physically realistic model for the FQHE
in a half-filled LL to investigate to what extent PH symmetry
breaking and/or the existence of a generating Hamiltonian
with three-body terms, crucial to the realization of exotic
states that support non-Abelian anyonic excitations in the
universality class of the Moore-Read Pfaffian/anti-Pfaffian?

The model we studied, H2, is short-ranged and two-body
but nonetheless hosts non-Abelian quasihole excitations. We
find the two-body model has roton and neutral fermion modes
as well as quasiparticle pairing as indicated by an even-odd
effect and strong overlap with the Moore-Read Pfaffian/anti-
Pfaffian. Furthermore, we find, via entanglement measures,
the ground state �2 is in the universality class of the Moore-
Read Pfaffian/anti-Pfaffian.

Our most important finding is that the low-energy excita-
tions of the Moore-Read Pfaffian are adiabatically connected
to those of the physically realistic two-body model H2. These
excitations include non-Abelian anyons. Ideally, anyons re-
side in a topologically protected exactly degenerate manifold.
We find, however, a small splitting between these degenerate
states likely persists even in the thermodynamic limit, hence,
it is possible the splitting is caused by “tunneling” between
sectors defined by the PH symmetrization operator. While this
splitting remains below all energy gaps, further exploration of
the cause of this splitting will be useful in establishing the
robustness of topological protection in topological quantum
computing proposals.

H2 is a physically realistic model which therefore lends
itself to quantum state engineering. For example, efforts to
realize the LLL with ultracold atoms [75–78] are more likely
to be able to engineer H2 than H3. Further work to realize
H2 with ultracold fermions (or Bosonic counterpart models

with ultracold bosons) could lead to the exciting possibility of
non-Abelian anyons in a tunable environment.
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APPENDIX A: HALDANE PSEUDOPOTENTIAL
EXPANSION OF H2 ON THE SPHERE FOR FINITE

SYSTEM SIZES

Any two-body interaction Hamiltonian can be character-
ized in terms of Haldane pseudopotentials Vm. The only
nonzero Haldane pseudopotenials for H2 are V1 and V3 [44].
To see this we write H3 + H 3 and, after cancellation of the
three-body terms, construct the remaining finite-size two-
body terms on the sphere:

H2 = V
2Q

1

∑
i<j

P̂ij (1) + V
2Q

3

∑
i<j

P̂ij (3), (A1)

with all other V 2Q
m = 0 for all even m and for all odd m > 3

(here, m is the pair relative angular momentum in the planar
geometry after the appropriate stereographic mapping [79]).
Table III and Fig. 12 give the values of V1 and V3, and their
ratio V1/V3, for some relevant system sizes. Additionally, one
can extrapolate the finite-sized spherical pseudopotentials to
the thermodynamic limit yielding the pseudopotentials in the
planar geometry. The ratio V1/V3 equals three to high preci-
sion in the thermodynamic limit. We note that in Ref. [44] the
pseudopotential values in the thermodynamic limit were given
incorrectly, however, all ratios were correct and all results
therein remain unchanged.

TABLE III. In the thermodynamic limit V1 = 3.37496(9), V3 =
1.12368(15), and V1/V3 = 3.00074(8). To a high degree of accuracy,
one can calculate V

2Q
1 and V

2Q
3 at values of Q in between those given

in the table through interpolation—however, you could contact the
corresponding author who will be happy to give you values up to
around 2Q = 32.

2Q V
2Q

1 V
2Q

3 V
2Q

1 /V
2Q

3

9 2.976470 1.184615 2.512605
13 3.104367 1.161498 2.672727
17 3.170137 1.151297 2.753535
21 3.210124 1.145527 2.802312
25 3.237082 1.141844 2.834960
29 3.256420 1.139266 2.858349
31 3.264240 1.138269 2.867722
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FIG. 12. The finite-sized Haldane pseudopotentials V
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1 , V
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3 ,
and the ratio V
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3 of H2 are shown versus the inverse system

size (1/Q). The values of V1, V3, and V1/V3 in the thermodynamic
limit (1/Q → 0) are shown on the y axis and found via a fourth-
order polynomial extrapolation. The value V1/V3 → 3 is used in the
first line of Eq. (2).

Finally, the planar values V1 = 3.375 and V3 = 1.125 were
found in a very different calculation recently [80] as the
“leading-order” terms in a type of mean-field two-body ap-
proximation of a generic three-body interaction term.

APPENDIX B: TRACKING STATES

In Fig. 13 we track individual low-energy states of H (α)
more precisely. The figure shows the lowest 50 states as a
function of their “index” for N = 8, 10, 12, and 14 for α = 0,
0.5, and 1. The quasidegenerate states remain inside the gap
and adiabatic quasidegeneracy is maintained. More evidence
for adiabaticity can be found by calculating the wave function
overlap between the quasidegenerate states of H (α) and the
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FIG. 13. The lowest 50 states as of H (α) a function of “index”
for N = 8, 10, 12, and 14 for α = 0, 0.5, and 1.
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FIG. 14. The wave function overlap of the exactly degenerate
quasihole states, labeled by their angular momentum L, of H3 with
the quasidegenerate quasihole states of H (α) as a function of α

for N = 8, 10, 12, and 14. Additionally, the open symbols are the
overlaps between the Moore-Read Pfaffian and the ground state of
H (α) for the ground-state sector. All overlaps are trivially one for
α = 0 and remain large (typically above 0.9 for states with small
angular momentum L).

exactly degenerate states of H3. In Fig. 14 we see the overlaps
remain extremely high for each state in the quasidegeneracy.

APPENDIX C: COMBINING MOORE-READ PFAFFIAN
AND ANTI-PFAFFIAN STATES

We can combine the Moore-Read Pfaffian and anti-Pfaffian
states to attempt a variational ground state that captures the
properties of �2. We work on the torus to combine these
states in an explicit method that effectively PH symmetrizes
�Pf . We first note that 〈�Pf |�aPf〉 �= 0 on the torus. Therefore,
we use a variant of the Gram-Schmidt procedure (Löwdin
symmetric orthogonalization) to combine the states. The
transformation is

|� ′
Pf〉 = c+|�Pf〉 + c−|�aPf〉, (C1)

|� ′
aPf〉 = c−|�Pf〉 + c+|�aPf〉, (C2)

where

c± = 1

2

(
1√

1 ∓ 〈�Pf |�aPf〉
± 1√

1 ± 〈�Pf |�aPf〉
)

. (C3)

Now we see that each state is orthonormal, 〈� ′
Pf |� ′

aPf〉 = 0,
and the two states are PH conjugates of each other. Using
the above orthogonal states we can construct a PH symmetric
state:

|�〉 = |� ′
Pf〉 + |� ′

aPf〉√
2

. (C4)

For N = 12 (aspect ratio τ = 0.95) the original over-
laps are 〈�2|�Pf〉 = 0.693542 = 〈�2|�aPf〉 and 〈�Pf |�aPf〉 =
0.336155. Finally, we find that 〈�2|�〉 = 0.848514. Evi-
dently, �2 not identical to a linear combination of �Pf and
its PH conjugate.
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