
Edge Transport in 2D Cold Atom Optical Lattices

V. W. Scarola and S. Das Sarma
Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 4 January 2007; published 24 May 2007)

We theoretically study the observable response of edge currents in two-dimensional cold atom optical
lattices. As an example, we use Gutzwiller mean-field theory to relate persistent edge currents surrounding
a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We
briefly discuss an application, the detection of the Chern number using edge currents of a topologically
ordered optical lattice insulator.
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The response theory of transport is a remarkably precise
framework used to analyze the observable effects of ap-
plied potentials in a broad class of solid state systems. It is
natural to ask how experiments on neutral cold atoms
confined to optical lattices [1], predicted to hold a variety
of novel phases of matter [2] similar to those found in the
solid state, can make contact with an equivalent quantita-
tive framework. Recent experimental work on cold atom
optical lattices demonstrates essential ingredients in estab-
lishing quantitative response: applied potentials and detec-
tion of conserved quantities. A primary tool for detection
relies on time of flight (TOF) imaging which provided the
first evidence for Bose-Einstein condensation [3] and re-
vealed phases of optical lattice realizations of Bose-
Hubbard (BH) models [4–8].

By combining TOF with externally applied potentials
recent work has demonstrated transport in one dimensional
optical lattices [9,10]. In a closed two-dimensional system
the notion of ‘‘transport’’ is less direct. A recent experi-
ment has applied rotation to weak lattices [11] confining
bosons. While far from the single band BH limit, this
experiment reveals vortex pinning arising from the weak
lattice. Recent work [12,13] also suggests that uniform
effective magnetic fields (equivalent to rotation) may be
applied to optical lattices already in the BH limit. Either
implementation, rotation or an effective magnetic field,
can be used as an applied potential valuable in establish-
ing persistent currents, and therefore transport, in two-
dimensional lattices.

Concurrent with experimental progress, a variety of cold
atom phases have been proposed in two-dimensional opti-
cal lattices [2]. Some of the proposed lattice models have
rich phase diagrams with particularly intriguing or even
unknown ground states, including: extended BH models
[2,14,15], higher band spin models [16], fractional quan-
tum Hall models [13], and the Kitaev spin model [17–19].
We ask how insulating phases arising in two-dimensional
lattice models can be studied using a combination of ex-
ternally applied potentials and TOF.

Below we argue that trapping leads to edge states which
serve as a probe of bulk insulating states. As a concrete and

relevant example we study the slowly rotating BH model in
detail. Other studies have considered vortex configurations
in the superfluid phase of the rotating uniform BH model
[20,21]. Here we study edge effects in the Mott insulating
phase of the slowly rotating trapped BH model. We pro-
pose that diamagnetic response of edge states can indeed
be observed thereby offering a quantitative response probe
of a variety of bulk two-dimensional insulators. We briefly
discuss implications for another insulator where edge
states can be used to detect the Chern number [17,22,23]
of a topologically ordered insulator, the non-Abelian
ground state of the Kitaev model.

We first note that response to externally applied fields
can be obtained at a quantitative level by analyzing TOF
measurements. TOF can be related to the momentum
density, �k, of particles with lattice momentum k origi-
nally trapped in an optical lattice. Observation of �k (with
sufficient accuracy) can be combined with input parame-
ters to restore quantities of the form: J �

P
kW k�k,

where W k is any function of k which can be accurately
determined from input experimental parameters. By defin-
ing W k �Mk�@Ek=@k�� we obtain two examples: the
free-particle number and energy currents in the direction �
with the choices Mk � 1 and Mk � Ek, respectively.
Here, Ek is the single particle energy determined by optical
lattice parameters. As we will show, diamagnetic current
flowing along sufficiently narrow edges of optical lattice
insulators can be written in the form J allowing restoration
of the edge current.

To study the observable response of insulating states in
trapped optical lattices we consider the two-dimensional
BH model on a square lattice in the presence of rotation (or,
equivalently, an effective magnetic field [12,13]) as a first
step in establishing quantitative response in systems near-
est ongoing experiments. Using the Peierls substitution
[24] the BH model in the rotating frame is:
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where ayi and ni are the boson creation and number opera-
tors at the site i, respectively. The parameters include the
hopping, t, the onsite interaction energy, U, and the chemi-
cal potential, �. The last term is due to the trapping
potential which adds a site dependent chemical potential
at the square lattice coordinate in the xy plane, ri � �ix; iy�,
parameterized by a modified trapping parameter ~� � ��
m��a�2=2, in units of the lattice spacing, a (half the
wavelength of the lasers defining the optical lattice). The
trapping parameter is modified by a term due to rotation,
with angular frequency, �, of particles of mass m. In what
follows we find that, for Rb87 atoms with �=U � 0:4,
U=ER 	 0:1, and �=U � 1:2
 10�3 the modification is
negligible for the rotation frequencies studied here giving
~� � �. ER � h2=�8ma2� is the recoil energy. The rotation
also modifies the hopping term to give a phase: Ai;j �

��2
@�=2ER�

Rj
i �ẑ
 r� � ds, which can be thought of as an

integral over a vector potential due to an effective magnetic
field, B
ẑ, acting on an effective charge q
 such that
q
B
 � 2m�. In the rotating frame the neutral bosons
experience an effective magnetic field which induces a
persistent current opposing the applied effective field.

In the linear response regime, @�=ER � 1, we can
define [25] a number current in the direction � in response
to the static applied potential, A: Ji;� � it@�1�ayi ai� �
H:c:� � @

�1Ai;i�Ki;i� where the first term is the paramag-
netic number current and the second term is the diamag-
netic number current which contains the kinetic term:
Ki;i� � t�ayi ai� � H:c:�. The total diamagnetic number
current is an observable response to our externally applied
field giving: JD� � �@�1P

lKi;i�Ai;i� . In general JD can-
not be written in the form J and it is therefore not clear
how we can relate such a quantity to TOF measurements.
In what follows we will show that when the diamagnetic
current is confined to the edge of the system (and therefore
A varies sufficiently slowly) we can write an approxima-
tion to JD which in turn can be related to TOF. Consider
the following approximation: �JD� � �@�1Aie;ie�

P
iKi;i� ,

where: Aie;ie�
� ��2

@�=2ER��ẑ
 rie� � �̂. Here rie indi-
cates the average position of the edge superfluid order
parameter,  i � ha

y
i i, giving r̂ � rie � �

P
ij ij

2r̂ �
ri�=�

P
ij ij

2�. By Fourier transforming and taking the ex-
pectation value with respect to the ground state we find:
h �JD� i � �2tAie;ie�

�@Z��1P
k;��k cos�k � ��, where Z is the

number of nearest neighbors with lattice vectors �. We now
have a quantity written in terms of the lattice momentum
distribution: �k �

P
i;j exp��ik � �ri � rj��ha

y
i aji, which,

we assert, yields an accurate measure of the diamagnetic
current provided the current flows along the edge.
Our assertion can be written: hJD� ie � h �J

D
� ie, where hie

indicates averaging in a ground state with only edge cur-
rent. As we will see this relation allows us to probe the
edge flow around bulk insulators in optical lattices but
does not necessarily hold for the rotation of a bulk super-
fluid in a trap. To continue with our example of the

rotating BH model we relate h �JD� i to an observable TOF
signal.

TOF signal can be directly related to the momentum
distribution even in a slowly rotating optical lattice. In the
following we assume that the particles do not interact after
release from the trap. We may then apply the free-particle
propagator Kp to a single particle Bloch state in the rotat-
ing frame, �k�r�, initially confined to the lattice. We
project it onto a imaged state �s with imaged coordinates
rs in the laboratory frame. For slow rotation we find:
�s�rs� �

R
Kp�r; rs��k�r�dr / �

0
k;Qj ~w�k� �t�ẑ
 k�j2,

where �t is the time taken to propagate from the lattice to
the imaging screen, �0 indicates equivalence up to a recip-
rocal lattice vector, and ~w is the Fourier transform of the
nonrotating Wannier function. Here the lattice wave vector
gets mapped to position on the screen in free-particle
propagation: Q�rs� � �mrs�=�@�t�. We have derived the
above expression to lowest order in �@�=ER�

2, consistent
with our linear response approximation. The imaged total
density is then: ns�rs� � �m=�@�t��2�Q�rs�j ~w�Q�rs� �
�t�ẑ
Q�rs��j2. We have found, as in the nonrotating
case [26,27], that up to an overall Gaussian-like function,
~w, the imaged density on the screen gives �k. We now
study the slowly rotating BH model under the assumption
that �k can be accurately extracted from measurements.

We calculate the ground state of the rotating BH model
using a modification of the Gutzwiller mean-field ansatz
[4,28]. We assume a product state in the Fock number basis
jNii, of the form: � �

Q
i
PNc
Ni�0 f

i
Ni
jNii, where the �Nc �

1�N complex variational parameters fiNi are chosen to
minimize the ground state energy of H on N lattice sites.
In what follows we choose N � 50
 50 where the con-
finement forces the atoms to occupy no more than � 45

45 sites. We also find that Nc � 5 gives suitable conver-
gence for the low chemical potentials studied here. We
minimize hHi using the conjugate gradient method. To
treat large systems we have developed a three step mini-
mization procedure with a computational cost that scales
linearly with N. Using our product ansatz we first find the
ground state assuming that each site is an independent
system with � � 0. In our second step we minimize the
energy of the whole system using step one as an initial
guess, while keeping � � 0. This step shows [29] excel-
lent agreement with Monte Carlo simulations [27]. In
the third step we take the variational parameters of the
nonrotating system and modify them to generate an initial
guess for the rotating system. We use: fiNi jinitial �

exp�i�iNiV��1� 	iNi�f
i
Ni
j��0, where the additional varia-

tional parameter, V, is an integer, 	 is a random complex
number, and �i is the angular coordinate of the site i. The
above ansatz introduces a vorticity, V, while finite 	
ensures that our minimization routine explores a variety
of minima. For small systems we obtain identical ground
states for all choices of 	 configurations. We conclude that
the j	j � 0 ground state represents a robust minimum. For
large systems we take 	 � 0 where convergence is linear
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in N. We find a variety of vortex lattice configurations and
mixtures of Mott and superfluid-vortex states depending on
parameters. In the following, however, we focus on slow
rotation.

We now examine the ground state properties of a rotat-
ing system with parameters tuned to give a Mott insulator
at the trap center with a superfluid strip (�7 sites wide) at
the edge. For slow rotation (frequencies below the Mott
gap) the Mott state rotates with the lattice giving zero
current in the rotating frame while the superfluid has non-
zero current. The main panel of Fig. 1 plots the expectation
value of the static kinetic energy per particle in the rotating
frame as a function of the rotation frequency. The total
static lattice kinetic energy measures the net change of the
ground state phase and therefore drops in steps as the
superfluid increases vorticity starting from V � 0. The
circulation of the edge superfluid jumps when the number
of effective flux quanta passing through the central Mott
insulator increases by an integer to give critical frequencies
�V such that: @�V=ER � 4V=��2jrie j

2�. The steps in
Fig. 1 are slightly parabolic because the hopping term in
H varies as �2: Re�t exp�iAi;j�� � t�1� A2

i;j=2� � � ��,
which changes the area of the Mott insulator with �.

The change in superfluid circulation can be seen in the
momentum distribution function and may therefore be
observable in TOF. The momentum distribution peaks

associated with the onset of superfluidity expand stepwise
into rings of radius kr � V=�jrie ja�. The insets of Fig. 1
show a gray scale plot of �k in the kxky plane for two
rotation frequencies. Here we see that a slight increase of
frequency causes a drastic change in the shape of the
momentum distribution function signaling a jump in cir-
culation of the edge superfluid. Observation of the number
of jumps (i.e. V), kr, and �V can be used to experimentally
overdetermine jrie j.

We now ask if the momentum distribution can yield
quantitative information related to the edge response. The
superfluid rotation in the rotating frame can be thought of
as a diamagnetic current. The top panel in Fig. 2 plots the
excess diamagnetic current, hJDi� � hJDi��0 as a func-
tion of rotational angular frequency deep in the superfluid
regime of the trapped BH model with t=U � 0:06. The
inset shows a gray-scale plot of the superfluid order pa-
rameter as a function of lattice position for @�=ER �
4:02
 10�3. From the plot we see that there is no Mott
insulator in the system but there is a vortex at the center.
The solid and dashed lines indicate expectation values of
JD and �JD, respectively. In defining the latter we rewrite
the parameter jrie j in terms of an observable, �V . The step
corresponds to the formation of a vortex. Here we see that
the approximation made in defining �JD does not hold for
bulk current, i.e. hJD� i � h �JD� i: The superfluid order pa-
rameter varies appreciably along the direction transverse
to the current and, as a result, the diamagnetic current
cannot be written in the form J . The bottom panel shows
the same but for a different hopping, t=U � 0:03, allowing
for a bulk Mott insulator surrounded by edge superfluid
(see inset). The dashed line reproduces the solid line
indicating that hJD� ie � h �J

D
� ie is in fact a good approxima-

tion for an edge superfluid. Here we find a small spatial
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FIG. 1. Total static kinetic energy of the rotating trapped Bose-
Hubbard model in the rotating frame plotted versus rotation
frequency for parameters (t=U � 0:03 and �=U � 0:4) giving
a bulk Mott insulator surrounded by edge superfluid. The steps
correspond to increasing vorticity V � 0� 3. The top panels
plot the momentum distribution in the kxky plane for @�=ER �
3:31
 10�3 (left) and 3:58
 10�3 (right).
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FIG. 2 (color online). Main panels: The diamagnetic current,
JD� , (solid line) and the edge approximation, �JD� , (dashed line)
plotted in the rotating frame versus rotation frequency. Insets:
The superfluid order parameter plotted in the xy plane. The top
panel is entirely in the superfluid phase (t=U � 0:06 and �=U �
0:4) while the bottom panel is the Mott phase with superfluid
edges (t=U � 0:03 and �=U � 0:4).
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variance in the superfluid order parameter along the
direction transverse to the current, i.e.,

P
ij ij

2�jrij �
jrie j�

2=
P
ij ij

2 � 1. We have demonstrated, by a realistic
simulation, that one can generate systems obeying this
small variance condition and that, as a result, the edge
diamagnetic current can be written in terms of an observ-
able, the momentum distribution. We propose that in gen-
eral hJD� i can be restored from observation of �k and k and
input parameters to yield a powerful tool for studying
insulating optical lattice phases with edge states. We now
discuss potential implications.

Certain insulators are characterized by a Chern number
which can be related to their one dimensional edge currents
[22,23]. As an example, we assume that the Kitaev model
[17–19] can be realized with two component bosons in a
honeycomb optical lattice. In Ref. [17] it was shown that
the non-Abelian state can be stabilized in a uniform exter-
nal magnetic field and that edge states exhibit a quantized
Righi-Leduc effect. This prediction asserts that the net
edge energy current displays a thermal version of the
quantum Hall effect where the transverse temperature dif-
ference, T, between the bulk and exterior of the sample
establishes a quantized energy current along the edge:
JE� � 
g��kBT�2=6h. Here g � 1 for bosons and g �
1=2 for fermions. In general we expect a clockwise and
counterclockwise energy current with an excess number of
modes 
 � 
�� � 
��.

We speculate that, in principle, TOF measurements of
the momentum distribution function can be used to identify
chiral edge currents of constituent bosons around two-
dimensional insulators. Flow along the edge of the honey-
comb lattice (� � and��) corresponds to concentric rings
in TOF. If B
 is chosen to lie at, for example, the V � 1!
2 crossing point the �� and �� modes will occupy differ-
ent momentum channels resulting in two concentric rings
of differing radii in the momentum distribution (Fig. 3).
This suggests that, in principle, TOF can be used to study
chiral edge current and possibly identify insulators with

nonzero Chern number. In practice, however, an observa-
tion of edge current in TOF pushes current experimental
capabilities even for the simplest case of a BH Mott
insulator.

Sufficiently accurate observations of wave vector and
momentum distribution can be used as a quantitative probe
but are difficult to achieve. Slow rotation induces only
small k	 kr modulation of the momentum distribution
peaks. Small features in the momentum distribution peaks
may not be resolvable experimentally because TOF mea-
surements are ultimately limited in k-space resolution [8].
Furthermore, ns can be adversely affected by interactions
during TOF. Most importantly, the number of particles in
edge states needs to be sufficiently large to overcome
background noise in detection.
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FIG. 3 (color online). Schematic of the expected primary
momentum distribution peaks as a function of wave vector
arising from clockwise and counterclockwise propagating edge
superfluids surrounding the Kitaev optical lattice. The diamag-
netic contribution to edge flow splits the peaks in an external
magnetic field in the Abelian (left) and non-Abelian (right)
states.
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