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Disordered Supersolids in the 
Extended Bose-Hubbard Model
Fei Lin1, T. A. Maier   2 & V. W. Scarola   1

The extended Bose-Hubbard model captures the essential properties of a wide variety of physical 
systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and 
certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase 
where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid 
part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add 
disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the 
supersolid phase tends to be suppressed by disorder. But we also find a narrow parameter window in 
which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids 
survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.

A superfluid and a solid can, in principle, coexist in the same place at the same time. This unique state of matter, a 
supersolid, has attracted numerous research efforts since it was proposed more than 45 years ago in the context of 
superfluid 4He1,2. 4He experiments suggesting possible observation of a supersolid have remained controversial3,4.

Lattice models of supersolids (the extended Bose-Hubbard model5 in particular) were used to study the crit-
ical properties of the supersolid phase of 4He6,7. But subsequent work showed that these lattice models capture 
the essential properties of many other physical systems, including ultracold atoms and molecules in optical lat-
tices8–13, Josephson junction arrays14,15, and narrow-band superconductors16. The latter connection can be made 
rigorous via a direct mapping between local Cooper pairs and bosons. The supersolid of bosons in this case maps 
to coexisting superconducting and charge density wave order which has been of interest in a variety of com-
pounds, e.g., BaBiO3 doped with K or Pb17.

Experiments with ultracold atoms offer an excellent opportunity to observe supersolids. These systems are 
clean and parameters can be tuned to maximize the strength of a supersolid if one is predicted to exist. Different 
routes to observing a lattice supersolid have been explored8–13. The key to supersolidity is coexisting order which 
is, in turn, derived from coexisting diagonal and off-diagonal long-range order in the density matrix. Along these 
lines measurements in three dimensions (3D) consistent with coexisting order have been made with ultracold 
atoms in cavities mediating long-range interactions18–20 and synthetic spin-orbit interactions21 therefore offering 
new evidence for supersolids in a controlled and pristine environment.

Work on lattice models suggests that supersolids should be rather delicate and therefore difficult to observe 
when quantum fluctuations are more pronounced (particularly in lower dimensions). In two dimensions (2D) 
it is now known that the lattice supersolid competes with phase separation. A mean-field argument22 shows that 
the formation of domain walls favors phase separation because (for low coordination number) the domain wall 
intrinsic to the phase separated state gains in kinetic energy. But on lattices with higher coordination number, e.g., 
the triangular lattice, quantum Monte Carlo (QMC) calculations show23 that phase separation is suppressed and 
the lattice supersolid state gains in energy.

Furthermore, QMC results show that lattice supersolids in 2D are also highly susceptible to disorder. Results 
on the square lattice24 show that spatial disorder destroys the solid itself leaving no chance for the supersolid. 
This sensitivity stems from an Imry-Ma-type mechanism24,25 implying that the solid is unstable in the presence of 
arbitrarily weak disorder in less than three dimensions (3D).

In 3D we expect a solid to be robust against disorder because the Imry-Ma mechanism is avoided26. 
Furthermore, high coordination numbers have been shown to suppress phase separation on the simple cubic 
lattice. QMC results27,28 (in the absence of disorder) report a strong supersolid and no phase separation. 3D lattice 
models therefore seem to be the best arena to study supersolid behavior.

Study of the extended Bose Hubbard model in 3D has become more pressing because of recent work13 that 
has successfully demonstrated placement of bosonic chromium atoms in a cubic optical lattice. The atoms have a 
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magnetic dipole moment. When polarized these moments induce long range interactions. A theory-experiment 
comparison13 shows that the extended Bose-Hubbard model quantitatively captures the physics of this system 
thus paving the way for the possibility of a direct observation of a lattice supersolid as predicted by an extended 
Bose-Hubbard model.

We use QMC to study the stability of the lattice supersolid in the simple cubic lattice. We study the phase 
diagram of the extended Bose-Hubbard model. Our primary results are summarized in Fig. 1 where the phase 
diagram sketches critical temperature versus lattice hopping energy. We include disorder in our study to examine 
the stability of the supersolid. We find that disorder lowers the critical temperature but the supersolid still survives 
moderately strong disorder.

We also find that disorder enhances the supersolid critical temperature26 within a narrow parameter window. 
For low hopping the critical temperature of the solid component of the supersolid remains robust against disorder 
while the superfluid critical temperature is actually enhanced. We use systematic finite-size scaling to show that 
increasing disorder increases the critical temperature of the supersolid. Our results therefore indicate that super-
solids in the extended Bose-Hubbard model are stable (and even enhanced) in the simple cubic lattice for a mod-
erate amount of disorder. Our result is consistent with the disorder effect in dirty superconductors, where one 
finds that Anderson’s Theorem29 is generally observed in weakly interacting regimes, while, for strong interaction, 
the disorder enhances the superconducting transition temperature due to broadening of the conduction band30.

Results
Model.  We study a tight-binding model of repulsive soft-core bosons hopping in a simple cubic lattice of side 
lengths L with on-site disorder:
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where †a a( )i i  is the boson annihilation (creation) operator at site i, =n a ai i i
†  is the particle number operator, t is 

the hopping integral, U is the on-site repulsion, and V is the nearest-neighbor repulsion. Here μi = μ−εi, where μ 
is the average chemical potential of the system, and the uniformly distributed random number εi ∈ [−Δ, Δ] is the 
on-site disorder potential. We use periodic boundary conditions. In contrast to the hard-core boson model, here 
multiple bosons can occupy the same lattice site in our soft-core boson model, allowing an increase of on-site 
interaction energy. In the limit of U → ∞, the soft-core boson model reduces to the hard-core boson model. 
Hereafter we will use U as the energy unit and set the Boltzmann constant kB = 1.

For V = 0 and Δ = 0 the model reduces to the well known Bose-Hubbard model31. At zero temperature there 
exist two competing phases, an incompressible Mott insulator at low hopping and a superfluid (SF) at large hop-
ping that spontaneously breaks the continuous U(1) gauge symmetry of the model (the phase invariance of the 
bosonic operators). At fixed μ these phases are separated by a quantum critical point at a critical t.

Including a nearest-neighbor repulsion, V > 0, leads to additional phases. For large V the bosons tend to sit at 
every other site to form a charge density wave, a solid (S), which spontaneously breaks the 2 sublattice symme-
try. When the hopping and interaction terms are comparable a supersolid forms which derives from dual sponta-
neous symmetry breaking of both the U(1) gauge symmetry and the 2 sublattice symmetry throughout the 
entire sample. The result is simultaneous superfluid and solid order, a supersolid (SS). To study a regime consist-
ent with spatially decaying interactions and a strong supersolid we choose zV = U = 122,27,28,32, where z = 6 is the 
lattice coordination number.

Mean-field analyses of the disorder-free extended Bose-Hubbard model11,14,26 show that the supersolid sits 
between the solid and the superfluid in the phase diagram. Figure 2 shows the zero temperature mean field 
phase diagram in the dilute (low μ) regime with Δ = 0. In the following, we select a specific average chemical 
potential, μ = 0.7, unless otherwise stated. The horizontal line indicates that increasing t while keeping μ = 0.7 
allows us to transverse three of the phases discussed so far, i.e., S → SS → SF. This choice also keeps the density 

Figure 1.  Schematic finite temperature phase diagram. Schematic of the phase diagram we find for the 
extended Bose-Hubbard Model on the simple cubic lattice and at fixed chemical potential with and without 
disorder. The left panel shows the absence of order at high temperature (normal phase) while the low 
temperature phases include the solid, supersolid, and superfluid. The circle highlights a quantum critical point 
between the incompressible solid and the compressible supersolid. In the presence of disorder the supersolid 
dome shrinks. The theorem of inclusions33,34 implies that a Griffiths regime must separate the solid from 
the supersolid phase when disorder is present. We tentatively assign the intermediate Griffiths regime to a 
disordered solid phase. In drawing the finite temperature solid phase boundary we note that compressibility is 
exactly zero only at T = 0 and decays exponentially to zero at finite temperatures.
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at or below one. By adding disorder to phases lying along the horizontal line, we can obtain other intriguing 
phases, such as, the Bose glass (BG)31. We also identify a compressible regime which maintains the character of 
a solid (long range order in the density). We call this regime a disordered solid (DS) phase and assume it plays 
the role of the Griffiths phase which must33,34 lie between the incompressible solid and compressible supersolid 
phases. This assignment follows from a low t mapping to disordered phases of the Spin-1 Blume-Capel model 
(See Supplemental Material).

To focus primarily on the interplay of the supersolid with disorder we focus our study on weak disorder. We 
exclude higher disorder here because proper order parameters for finite size scaling analyses to determine the 
BG and DS phase boundaries at finite temperatures are unknown. Since there has been some recent progress in 
constructively identifying the BG phase using local condensate fraction35 at finite temperatures we think future 
studies of strong disorder phases should be able map out the phase boundaries.

Definition of Order Parameters.  Each of the states discussed as low temperature phases of Eq. (1) cor-
respond to unique combinations of order parameters. At high temperatures the normal phase (N) is defined by 
the absence of order (either local or non-local). Whereas low temperature regimes tend to show order in either 
the diagonal or off-diagonal parts of the single-particle density matrix (or both as in the supersolid phase). This 
section lists the phases we find and the corresponding order parameters.

Solid order is defined by long-range oscillations in the density-density correlation function (diagonal 
long-range order in the density matrix) or, equivalently, peaks in the static structure factor at wavevector, Q:
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that indicate a spontaneous breaking of the sublattice symmetry. Ns = L3 is the number of sites. For the large 
values of V considered here an oscillation of the density between sublattices is favored, i.e., Q = (π, π, π) on the 
simple cubic lattice.

The solid phase we discuss here is incompressible. The compressibility defines how easily the particle number 
fluctuates in the system, and is given by:
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Where T is the temperature and the average particle density is given by:
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The last equality in Eq. (2) shows that the compressibility is intrinsically non-local because it relates to density 
fluctuations across the entire system, N

2
⟨ ⟩.

The superfluid density describes the system’s response to external perturbations, such as translation or rota-
tion. It is characterized by off-diagonal long-range order in the density matrix even in the presence of interac-
tions. In the path-integral QMC formalism the superfluid density is given by36:

Figure 2.  Schematic zero-temperature phase diagram. Schematic of the conventional zero temperature mean 
field phase diagram of Eq. (1) at density below one with no disorder. By fixing the chemical potential to be 
μ/U = 0.7 and increasing the hopping from zero we traverse the phase diagram through the solid, supersolid, 
and superfluid phases, respectively11,14.
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where the squared winding number is = + +W W W Wx y z
2 2 2 2 and Wi is the winding number in the i th direction 

with i = x, y, or z. We find that the above order parameters adequately characterize the low-temperature phases of 
Eq. (1) at weak disorder.

Figure 3 summarizes the order parameters and the phases we discuss. As we vary T, t, and Δ, we find the fol-
lowing phases: normal, solid, superfluid, and supersolid. We also find evidence for a disordered solid in finite-size 
simulations. The absence of order at high T signals the normal phase. The system forms a ρ = 1/2 solid when it 
has long-range diagonal order, Sπ > 0, while maintaining incompressibility, κ = 0. Superfluid order is described 
by ρs > 0 and κ > 0. To obtain supersolid order, the system needs to have coexisting solid and superfluid orders, 
i.e., Sπ > 0, ρs > 0, and κ > 0. The disordered solid arises in the presence of disorder. Defects lead to domains with 
gapless edges that leave the system compressible, i.e., Sπ > 0 but with κ > 0. The Bose-glass phase occurs for large 
disorder strengths. It has only local superfluid order (no off-diagonal long-range order). It is compressible but 
exists only at low T.

Quantum Monte Carlo Evaluation of Order Parameters.  This section summarizes QMC calculations 
of order parameters as a function of parameters in Eq. (1). Parameter sweeps are used to qualitatively identify 
regions of the phase diagram with (and without) disorder. These parameter sweeps are then used to find phase 
boundaries using finite-size scaling.

To qualitatively locate phases on the T vs. t phase diagram of Eq. (1) we scan t as well as disorder Δ. We choose 
four disorder strengths: Δ = 0.0, 0.1, 0.3, and 0.5. To obtain temperature dependence we also sample the following 
set of temperatures: T = 0.025, 0.05, 0.1, 0.125, 167, 0.2, 0.25, and 0.5. We first do these simulations at L = 10 for 
our qualitative estimate. Figure 4 plots the order parameters of the model as a function of temperature for several 
different t. The top panels plot the superfluid density. We can compare all four top panels to see that for large t the 
disorder does not suppress the superfluid density much. We can understand this effect using the mapping to the 
attractive Fermi-Hubbard model (See Supplementary Material) where the superfluid corresponds to an s-wave 
superconductor. The robustness of the superfluid found here then follows from the Anderson’s theorem29 for the 
robustness of s-wave superconductivity to disorder.

The middle panels in Fig. 4 plot the compressibility. Here we see that the finite size of the system keeps κ > 0 
for all but the lowest t and t with Δ = 0. Using finite-size scaling we find that the solid phase is incompressible in 
the thermodynamic limit.

The bottom panels in Fig. 4 plot the structure factor. Here we see that at large t and/or T, the structure factor 
vanishes. This indicates that we have either the superfluid or normal phase. But for low t and low T the structure 
factor increases to reveal a supersolid and, for very low t, a pure solid. As disorder is increased to Δ = 0.1 the pure 
solid gives way to what appears to be a compressible phase. Here the distinct T dependence of the compressibility 
indicates a distinction from the pure solid. We tentatively assign this regime to be the disordered solid phase.

At Δ = 0.1, we find that the supersolid phase at t = 0.03 is destroyed. The system has ρs = 0, κ > 0 and Sπ > 0, 
satisfying the definition of the disordered solid phase. By increasing t to t = 0.04, we recover the supersolid phase, 
which persists until t = 0.06. For larger t the system enters the superfluid phase. Δ = 0.3 shows a similar set of 
transitions. However, the critical temperature for Bose-glass to normal phase transition is undetermined in our 
study, since we have not found a suitable scaling relation to describe the transition.

For Δ = 0.5 and small t (t = 0.02), we have κ > 0, ρs = 0, and Sπ ~ 0, which is the Bose-glass phase at low T. Our 
result is consistent with the existence of Bose-glass phase predicted by theorem of inclusions37. As we increase the 
hopping to t = 0.03, the system turns into the superfluid at low temperatures. The superfluid phase persists as we 
further increase t values.

Note that the above rough determination of phase boundaries for L = 10 will change with system size. The 
critical points deduced from Fig. 4 are only approximate. Precise determination of critical points can be achieved 
through finite-size scalings to be discussed below. However, from the numerical simulations at L = 10, we already 

Figure 3.  Schematics of Order Parameters. Schematics of low temperature phases of Eq. (1) and related order 
parameters. A solid (blurred) sphere represents a localized (delocalized) particle. Delocalized particles represent 
non-zero superfluid density. The black square in the DS schematic shows the short-range checker-board 
pattern; such a pattern disappears outside the box, but the box is repeated throughout the sample. The normal 
and Bose-glass phases are not shown but have Sπ = 0, ρs = 0, κ > 0 (no long-range order), and occur at high and 
low temperatures, respectively.
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see the rich phase diagram contained in the disordered extended Bose-Hubbard model. Numerical simulations 
at L = 10 also serve as a rough guide to phase transitions, which will suggest parameters for a precise finite-sizing 
scaling analysis.

Finite-Size Scaling.  To map out the finite temperature phase boundaries, we used QMC data to carry out 
finite-size scaling analyses for the order parameters. We found two distinct universality classes governing tran-
sitions: Ising and 3D XY. The Ising universality class applies to the long-range charge order/disorder transition 
while the 3D XY universality class applies to superfluid/non-superfluid transitions. In this section we discuss the 
methods we used to identify the transition points using finite-size scaling relations.

Since the long-range charge order to disorder transition belongs to the Ising universality class, the structure 
factor obeys the following scaling relation38:

S L S a L t( ), (3)/
1

1/ ~
=π

β ν
π

ν−

where = −~t T T T( )/c c is the reduced temperature that measures the dimensionless distance from T to the critical 
temperature Tc, β = 0.3265(3), v = 0.6301(4), a1 is a non-universal metric factor, and S is a scaling function. From 
Eq. (3) we see that if we plot β ν

πL S/  vs. T for different lattice sizes, different curves will intersect at =T Tc. Two 
example scaling figures are shown in the upper two panels of Fig. 5 for ∆ = .0 1.

On the other hand, the superfluid to non-superfluid transition belongs to the 3D XY universality class, and the 
superfluid density scaling satisfies the following scaling relation39:

~ρ ρ= ν− −


L a L t( ), (4)s
d

s
( 2)

2
1/

where ρ
s  is a scaling function, d 3=  is system dimension, and a2 is a non-universal metric factor.

In 3D, we can plot L sρ  vs. T for different lattice sizes. Different curves again intersect at =T Tc for the transi-
tion. The lower two panels of Fig. 5 show example finite-size scaling analyses of sρ  for disorder strength 0 1∆ = . . 
We have checked that the = −L 6 10 data are sufficient to give accurate critical points by including larger system 
sizes ( ≤L 20) for select parameters.

We also perform scaling analysis to locate the quantum critical point tc for superfluid density as we vary t. The 
superfluid density satisfies the following scaling relation38,40:

ρ δ= α ν −L f aL L T( , / ), (5)s
z1/

Figure 4.  Order parameters versus temperature. Order parameters ρs, κ, and Sπ computed as functions of 
temperature T and hopping t for various disorder strengths using quantum Monte Carlo on Eq. (1) for L = 10. 
Here and in the following the error bars are smaller than the symbol size unless depicted otherwise and the lines 
are guides to the eye. We set μ = 0.7 and V = 1/z here. Parameters t and Δ are shown in the figure.
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where α = − −d z2 , δ = −t tc measures the distance to the critical point, z is the dynamical exponent, which 
is predicted to be z = d41, a is a non-universal metric number, and the function f is universal. For our cubic lattice, 
we have α = −4. Figure 6 shows results from QMC simulations, where we keep = .−L T/ 0 031253 . Hence, for 

=L 4,6, and 8, simulations are carried out at = .−T 2,6 75,161 , respectively, for various t values around the critical 
point. Using these scaling relations we are able to locate phase transition lines to construct a phase diagram for the 
supersolid. Note that it is also possible to determine the critical temperatures using data collapse technique42 with 
the above scaling relations. However, one would need to perform more QMC simulations with a much finer tem-
perature grid for various lattice sizes.

Phase Diagrams.  This section culminates the results and methods presented in previous sections to con-
struct QMC phase diagrams of Eq. (1). Finite-size scaling of the superfluid stiffness and the structure factor are 
used to find finite temperature critical points for the solid, supersolid, and superfluid phases. Finite-size scaling is 
also used to get the quantum critical points as a function of t. We find that disorder tends to suppress the super-
solid critical temperature over much (but not all) of the phase diagram. Our central finding is that the supersolid 
is present at intermediate hopping even in the presence of disorder.

The 0∆ =  panel in Fig. 7 plots the phase diagram of Eq. (1) in the absence of disorder as determined by QMC. 
Here squares and circles plot the critical temperature determined by finite-size scaling of the structure factor and 
the stiffness, respectively. We see that the solid and superfluid dominate at small and large hopping, respectively. 
The supersolid is found at intermediate hoppings.

The vertical dashed lines in Fig. 7 indicate an expected phase boundary. Our conclusions here are based on 
finite-size data without extrapolation. For example, for increasing system size drives the critical temperature to 
zero for > .∼t 0 0525. Here we were not able to resolve the critical temperature uniquely given our method because 
the phase boundary is nearly vertical here.

The remaining panels in Fig. 7 plot the same as the top panel but in the presence of disorder. We find that 
increasing spatial disorder tends to lower the maximum critical temperature of the solid phase. Here the Tc of the 
solid order tends to be more sensitive to disorder than the superfluid. It is therefore the lowering of Tc of the solid 
that suppresses the supersolid behavior.

Griffiths effects should be particularly important in the thermodynamic limit near phase boundaries separat-
ing incompressible and compressible phases33,34. The solid and supersolid are incompressible and compressible, 
respectively. Our phase diagrams omit the quantum Griffiths phase which, according to the theorem of inclu-
sions33, must separate these two phases. We tentatively assign the intermediate quantum Griffiths regime to be a 
disordered solid (in analogy to the Bose-Glass in the ordinary Bose-Hubbard model33,34) based on our prelimi-
nary finite-size results (Fig. 4). We have not been able to use finite-size scaling to identify the Tc for the disordered 

Figure 5.  Finite-size scaling for thermal phase transitions. Example rescaled order parameters plotted as 
a function of temperature computed using quantum Monte Carlo on Eq. (1). The crossings of the rescaled 
structure factor and superfluid density allow determination of the critical temperatures for order parameters Sπ 
and ρs, respectively. The error bars are estimates in the uncertainty of the crossing points. Here we set μ = 0.7 
and V = 1/z. Parameters t, Δ, and L are shown in the figure.
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Figure 6.  Finite-size scaling for quantum phase transitions. Finite-size scaling of the stiffness as a function of 
the hopping for three different system sizes, L = 4, 6, and 8, for μ = 0.7 and V = 1/z. The top, middle, and bottom 
panels correspond to disorders Δ = 0, 0.1, and 0.3, respectively, where we obtain critical points, tc = 0.025(1), 
0.0245(5), and 0.021(1) from the crossing of all three curves. The error bars are estimates in the uncertainty of 
the crossing points.

Figure 7.  QMC phase diagrams. Critical temperatures of the extended Bose Hubbard model, Eq. (1), computed 
using quantum Monte Carlo for different disorder strengths. Squares result from the Sπ scaling analysis [Eq. 
(3)] and circles are from the ρs scaling analysis [Eq. (4)]. The dashed lines indicate expected phase boundaries 
inferred from finite-size estimates that could not be obtained by our method in the thermodynamic limit.
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solid. We therefore label the solid phase in the presence of disorder in Fig. 7 as S/DS to allow for the disordered 
solid phase between the solid and supersolid phases.

Disorder Enhanced Supersolids.  The addition of disorder can, counterintuitively, enhance supersolidity 
in a narrow parameter window of the phase diagram. We first consider the impact of disorder on the solid com-
ponent of the supersolid. For large hopping, t 0 035> .∼ , the disorder suppresses the Tc of the solid because the 
disorder destroys translational invariance required by the solid. But for low t, the solid is more robust and weak 
disorder does not significantly impact Tc of the solid. There is therefore a narrow regime (we find it to be near 
t 0 03≈ . ) where the Tc of the solid component of the supersolid is not significantly impacted by disorder.

The superfluid component of the supersolid, on the other hand, can be increased by disorder. Previous work 
looking at the ordinary Bose-Hubbard model ( =V 0) found that the Tc of the superfluid can be increased by 
disorder26,34,40,43. The mechanism required disorder to create pathways for the superfluid to percolate across the 
entire sample. The pathways enlarged the phase space for superfluidity, and therefore Tc.

The combined effects of a stable solid with enhanced superfluidity leads to an enhanced Tc for the supersolid 
with disorder. To see this in QMC we use finite-size scaling to show that disorder can increase the critical temper-
ature of the supersolid phase in the thermodynamic limit in a narrow parameter window. We extract critical 
temperatures for the supersolid for various disorder strengths ( 0, 0 1, 0 2,∆ =  .  .  and 0 3. ). Finite-size scaling is 
performed for lattice sizes L 6, 8, 10=   . Figure 8 shows an enhancement of the critical temperature for the super-
solid phase from .~T 0 02c  to T 0 06c ~ .  as we increase the disorder strength from ∆ = .0 0 to ∆ = .0 3 at 
t 0 033= . . An approximate 3-fold increase of the supersolid critical temperature is achieved by increasing disor-
der in a narrow window of t. Figure 8 is consistent with previous results26 but carries the calculation into the 
thermodynamic limit with an explicit calculation of Tc. Tc drops quickly for larger disorder strengths.

The disorder enhanced supersolid can also be understood in a mean-field percolation picture26. Consider the 
pure solid phase near the solid-supersolid phase boundary in the absence of disorder. The gap in the solid phase 
prevents density fluctuations and therefore suppresses inter-site tunneling needed for concomitant superfluidity. 
The addition of site disorder allows tunneling between sites with sufficiently strong disorder. If the collection of 
bonds allowing tunneling percolates across the sample, then a superfluid forms. In this way the superfluid has 
been found to be triggered by the addition of disorder in Bose-Hubbard models33,34,43–45. But here the background 
solid remains intact leading to a supersolid that has been triggered by the addition of disorder.

Discussion
We have used quantum Monte Carlo to study the extended Bose-Hubbard model with disorder on the simple 
cubic lattice. We have computed the finite temperature phase diagram at fixed chemical potential. We find that 
disorder lowers the maximum critical temperature of the supersolid. But our results show that disorder and 
thermal fluctuations still allow the supersolid phase, in contrast to lower dimensions where disorder suppresses 
the supersolid25. We have also found that in a narrow parameter regime, the critical temperature of the super-
solid is actually enhanced by disorder where the disorder opens percolating pathways to strengthen superfluidity. 
Overall, our results show that in 3D the supersolid is more robust than in lower dimensions22.

Methods
We solve Eq. (1) using a numerically exact QMC method: the Stochastic Series Expansion representation with 
directed loop updates46,47. Various physical quantities, either diagonal or off-diagonal, can be calculated according 
to the path integral formulation of the QMC simulations. Our results are converged with respect to truncation 
of the boson number, the number of QMC steps, and the number of disorder profiles. Our estimates of order 
parameters are therefore exact to within Monte Carlo error. We have also checked that our implementation of the 
Stochastic Series Expansion algorithm produces the same results as the ALPS implementation48.

Figure 8.  Supersolid critical temperature versus disorder. Circles plot the critical temperature of the supersolid 
phase as a function of disorder strength computed using quantum Monte Carlo on Eq. (1) along with finite-size 
scaling. These results show that disorder can, for certain hopping strengths, enhance the critical temperature for 
the supersolid phase. For disorder strengths above Δ = 0.3, the critical temperature quickly drops to zero.
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Disorder averaging is a key part of the numerical procedure. We perform several runs over distinct disorder 
profiles to ensure proper averaging. To ensure convergent disorder averages, we typically run 1000 QMC simu-
lations with different disorder realizations for each set of parameters. We then plot histograms for the resulting 
measurement of various physical quantities.

We find three types of distributions in our disorder averaging. The most common distribution is a single 
Gaussian peak without any “fat” tails in the distribution curve. This type of distribution signifies a unique phase 
for the parameter set. A Gaussian distribution offers fast convergence with respect to the number of disorder 
realizations.

We also find double-peaked Gaussian distributions at low T  and large systems, L 10≥ . Our QMC simulations 
usually end up in one of the two phases depending on the initial configuration. In this case, numerical data are 
sorted according to the two phases and separate averages need to be done, one for each phase. We choose the 
phase with the lowest free energy. It is worth noting that two-peak distribution does not necessarily imply the 
coexistence of two phases. Instead we believe that the two-peak structure is due to trapping in a free energy local 
minimum (the small peak in the distribution, usually less than 5% of the disorder samples). Updates are then 
unable to find a path to the free energy global minimum (the large peak in the distribution). We have checked our 
calculations against ALPS code48, and found that ALPS exhibits the same trapping.

The third type of distribution is a single Gaussian peak but with a “fat” tail40. This happens in the Bose-glass 
phase, where our order parameters do not assume a definite value. In this case physical quantities will have a slow 
convergence rate with respect to disorder configurations40.

The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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