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Solid-state quantum-computing proposals rely on adiabatic operations of the exchange gate among localized
spins in nanostructures. We study corrections to the Heisenberg interaction between lateral semiconductor
quantum dots in an external magnetic field. Using exact diagonalization we obtain the regime of validity of the
adiabatic approximation. We also find qualitative corrections to the Heisenberg model at high magnetic fields
and in looped arrays of spins. Looped geometries of localized spins generate flux-dependent multispin terms
which go beyond the basic Heisenberg model.
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I. INTRODUCTION

Scalable quantum-computation proposals, particularly in
solid-state architectures compatible with existing microelec-
tronic technology, are of great potential importance. The ex-
change gatef1g, based on the Heisenberg interaction between
localized spins, is a key concept underlying several proposed
quantum- computer architectures in semiconductor nano-
structures, where the spin of a localized electron serves as
the single qubit. f1–4g. In most spin-based quantum-
computer proposals single-qubit operations involve rotations
of individual spins by external magnetic field pulsessessen-
tially a modified electron spin resonance technique imple-
mented on individual spinsd or by some other techniques
se.g., localg-factor manipulation by external electric field
pulsesd. The two-qubit operation in solid-state spin architec-
tures is projected to be achieved by the exchange-gate opera-
tion. The ability of a tunable exchange gateswhich enables
the exchange coupling to change from zero to a finite value
within a “reasonable” gating timed in carrying out theSWAP

operation leads to the implementation of the universal two-
qubit Controlled-NOT gate which, along with single-qubit
gates, provides a universal set of quantum gates. The per-
ceived advantages of solid-state quantum computation are its
scalabilitysbecause of the existing semiconductor microelec-
tronics infrastructured, the low decoherence rate for spin
statessas compared, for example, with charge states in semi-
conductorsd, and the feasibility of precise control over the
local interelectron Heisenberg coupling through the ex-
change gate. Among the disadvantages is the inevitable pres-
ence of some spin decoherence due to the background solid-
state environmentf5g and difficulties in the measurement of
single-electron-spin states. However, recent experimental ad-
vancesf6g have demonstrated single-spin measurements of
localized electrons embedded in semiconductors.

In this work we provide a detailed and quantitatively ac-
curate theoretical study of two complementary aspects of
solid-state spin-quantum-computer architectures. First, we
develop a theory for obtaining an accurate map of the low-
lying Hilbert space of the quantum-dot-based spin-quantum-
computer architecturesthe Loss-DiVincenzof1g architecture
in coupled GaAs quantum dotsd in the presence of an exter-

nal magnetic field. Our calculation of the Hilbert space struc-
ture of the coupled quantum dotswith one electron on each
dotd system differs from earlier work on the problem in the
sense that it is essentially exact for our model.f7,8g. Earlier
work obtaining the Hilbert space structure of the coupled
double-dot quantum computer system used perturbative ap-
proximations akin to Heitler-London or Hund-Mulliken theo-
ries f9,10g. As explained later in this paper we manage to
carry out an exact numerical diagonalization of the two-
electron coupled-dot interaction Hamiltonian by borrowing
theoretical techniques that have been extremely successful in
elucidating the ground-and excited-state properties of the
strongly correlated fractional quantum Hall system. Second,
we describe and discusssagain using the exact diagonaliza-
tion technique as the theoretical toold a subtle topological
feature of a certain class of solid-state spins“cluster”d qubits,
which have attracted considerable recent attention, where
clusters of spins are cleverly aligned to serve as qubits
srather than just single spinsd offering certain advantages in
quantum computationf11–14g. We show that in looped ge-
ometries these spin-cluster qubits have higher-order spin in-
teraction termssthree-spin, four-spin, etc., termsd arising
from chiral interaction terms which will have serious adverse
consequences for quantum computation by providing non-
trivial flux dependence which must be taken into account
f15g. Our finding of the chiral Hamiltonian in spin-cluster
qubits may have possible consequences for all spin-quantum-
computing architecturessand not just the semiconductor-
nanostructure-based onesf16gd. Again, the exact diagonaliza-
tion technique is the theoretical method we employ to
demonstrate, validate, and quantify the chiral spin Hamil-
tonian.

The common theme running through the two complemen-
tary topics studied in this work is a thorough investigation of
the precise applicability of the Heisenberg Hamiltonian as a
description of the spin interaction in exchange-gate quantum-
computer architectures. In particular, we are interested in fig-
uring out the limitations and the constraints on the Heisen-
berg interaction model as the underlying Hamiltonian for
exchange-gate, two-qubit entanglement in the presence of an
external magnetic field. In this context we also want to know
what, if anysand how larged, the correction terms are to the
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Heisenberg model description of the exchange-gate quantum
dynamics in the solid-state spin-based quantum computer.
This study is motivated by the fact that precise knowledge of
the exact Hamiltonian controlling the qubit dynamics is ab-
solutely essential in developing quantum-computing algo-
rithms sand architecturesd since in quantum computation the
Hamiltonian itself determines the programming codes. We
must, therefore, know the Hamiltonian precisely.

To study modifications to the Heisenberg Hamiltonian in
tunnel-coupled single-electron quantum dots in an external
magnetic field we consider a realistic Hamiltonian involving
an equal number of parabolic quantum dots and electrons
interacting through the Coulomb interaction. We find devia-
tions from simple Heisenberg behavior where expected,
when the quantum dots are strongly coupled and under in-
tense magnetic fields. We find, using a variational ansatzf17g
and exact diagonalization, that at high magnetic fields the
two-electron orbital states may be characterized by a vortic-
ity. We define vorticity as the number of zeros attached to
each electron in the many-body wave function through the
term szi −zjdp, wherez=x+ iy is a complex coordinate in the
x-y plane and the integerp is the vorticity of the state. We
find level repulsion between states with either even or odd
vorticity. We identify the parameter regime required to maxi-
mize level repulsion among wanted and unwanted states, en-
suring adiabatic operation of the exchange gate.

Using perturbation theory applied to the extended Hub-
bard model we find other qualitative modifications to the
Heisenberg interaction among weakly tunnel-coupled quan-
tum dots. We find that in spin clusters formed from loops of
three or more spins, many-spin terms couple to external
sources of flux. We focus, numerically, on the triangular con-
figuration in particular. Here, we show quantitatively that a
three-spin chiral term couples to flux through the triangle.
f15g. We investigate both the low- and high-magnetic-field
regimes and model the effective spin Hamiltonian in terms of
two parameters: the flux passing through the triangleand the
vorticity sor effective fluxd attached to each electron. We go
on to study four-spin configurations where three- and four-
body terms modify the Heisenberg interaction.f10g. We find
that four- body terms depend on the flux through closed
loops as well.

Implementations of exchange-based-only quantum com-
putation with the least overhead, from a quantum-computing
perspective, involve several spins interacting simultaneously
through the Heisenberg interaction, although this is not nec-
essary. One may consider algorithms involving no more than
two simultaneously coupled spins or geometries which ex-
clude closed loops of spins. In what follows we analyze a
special case: looped geometries of simultaneously interacting
single-spin quantum dots which, as we will show, necessarily
involve flux dependence.

In Sec. II we present a model of several lateral, single-
electron quantum dots in an external magnetic field. The
model establishes four regimes defined by parameters related
to confinement, the external magnetic field, and interdot
separation. In Sec. II A we relate the coupled-quantum-dot
model to a fourth-order spin Hamiltonian based on well-
known perturbation theories of the extended Hubbard model.
Here, we broaden this treatment to include magnetic field

effects. We find many-body spin terms which couple to ex-
ternal magnetic fields. In Sec. II B we describe a variational
theory of the many-dot problem which accesses nonpertur-
bative regimes of the parameter space. In Sec. III we discuss
implications of the perturbative and variational treatments
for qubit proposals involving two, three, and four coupled
spins. In Sec. IV A we use exact diagonalization of a physi-
cally plausible Coulomb Hamiltonian to explore the low-
energy Hilbert space of two coupled single-electron quantum
dots. We find that the variational ansatz agrees with exact
results. The results suggest that electrons in coupled quantum
dots capture vortices of the many-body wave function to
screen the Coulomb interaction, at high fields. In Sec. IV B
we compare exact diagonalization results of three coupled
single-electron quantum dots with the spin Hamiltonian de-
rived using perturbation theory. We show numerically that
chiral three-spin terms couple the spin states of a
decoherence-free subsystem to external sources of enclosed
flux. We parametrize the magnetic field behavior of the low-
est spin states with a spin Hamiltonian that depends on the
enclosed flux and the number of vorticessor effective flux
f17gd attached to each electron. We conclude in Sec. V.

II. MODEL

We study the low-energy Hilbert space ofN lateral quan-
tum dots containingN electrons lying in thex-y plane with
the following Hamiltonian:

H = o
i=1

N F 1

2m* Spi +
e

c
A iD2

+ VNsr idG + o
i, j

N
e2

«ur i − r ju

+ g*mBS ·B. s1d

We focus on GaAs. In which case we have an effective mass
m* =0.067me, dielectric constant«=12.4, andg factor g* =
−0.44. We work in the symmetric gauge with magnetic field
B=Bẑ. S is the total spin. The single-particle potential con-
fines the electrons to lie in parabolic wells centered atN
positionsRi:

VNsr d =
m*v0

2

2
minhur − R1u2, . . . ,ur − RNu2j, s2d

wherev0 is a parabolic confinement parameter which may
be compared to the cyclotron frequencyvc=eB/m*c. The
confining potential localizes the electrons atN sites with in-
tersite separationR= uRi −R ju. R may be compared to the
modified magnetic lengtha=Î"c/eBs1+4v0

2/vc
2d−1/4. Solu-

tions of the above Hamiltonian take the formAfucl ^ ullNg
whereucl and ullN are the orbital and spin parts of the wave
function,A is the antisymmetrization operator, and the sub-
script denotes the number of electrons and quantum dots.

The parameters inH define several regimes relevant for
quantum-computing architectures utilizing similarly confined
single-electron quantum dots in an external magnetic field.
Figure 1 depicts four separate pieces of the parameter space
with the confinement parameterv0 fixed. The solid line en-
closes an area in which the excited, orbital states of the quan-
tum dots have high energyD, and the interdot coupling be-
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tween two dots maps onto the Heisenberg Hamiltonian
J12S1·S2, as originally envisaged in Ref.f1g. We show, using
both perturbation theory in the Hubbard limitsSec. II Ad and
exact diagonalizationsSec. IV Bd, that in this regime several
coupled quantum dots,N.2, involve symmetry-breaking
many-spin terms with nontrivial flux field dependence.
Above the spin Hamiltonian regimesR/a@1d weak interdot
tunneling yields a small exchange interaction. Below the
dashed line, higher orbital states of the quantum dot have a
particularly low energy and therefore mix with the low-
energy states of the quantum dot,D&J. This regime is char-
acterized by magnetic-field-dependent level crossings among
potential qubit spin states and unwanted higher energy levels
of the double-dot system. Between the level crossing and
spin Hamiltonian regimes we find, using a combination of
exact diagonalizationsSec. IVd and variational techniques
sSec. II Bd, that electrons in the dots capture vortices of the
N-body wave function to screen the strong Coulomb interac-
tion. Here we find that the first excited state of the many-dot
system mixes vorticity leaving the unwanted excited states of
the quantum dot somewhat higher in energy than the spin
splitting between the lowest states,D*J. In Sec. II we dis-
cuss how these regimes pertain to qubit proposals utilizing
coupled quantum dots.

A. Perturbative expansion

We first seek an approximation to Eq.s1d that qualita-
tively captures the structure of the low-energy Hilbert space
in terms of on-site spin operators in the limit of weak inter-
site coupling. Such a Hamiltonian may be used to define
qubit gates among spins localized in neighboring quantum
dots. We work in the single-band, tight-binding limit, a good
approximation in the limitD@J. We also take the on-site
Coulomb interaction to be much larger than the tunneling

energy. As a result we may also restrict our attention to sin-
gly occupied states. As a first approximation we then obtain
the extended Hubbard Hamiltonian:

HH = − o
i,j ,aP↑↓

tijcia
† cja + Uo

i

ni↑ni↓ + V o
i,sa,a8dP↑↓

ni,ani+1,a8

+ g*mBB ·o
i

Si , s3d

where cia
† creates a fermion at the sitei with spin a and

nia=cia
† cia. HH incorporates the on-site spin operatorsSi

= 1
2cia

† saa8cia8, wheres are the Pauli matrices. In the pres-
ence of an external magnetic field the tunneling coefficients
are complex:tij = utij uexps2piFi j /F0d, whereF0;hc/e is the
flux quantum. The magnetic vector potential generates the
Peierls phase

Fi j =E
i

j

A ·dr , s4d

where the integral runs along a path connecting the sitesi
and j . Working in the limit utij u /U!1 andv;V/U!1 we
can self-consistently confine our attention to the single-
occupancy states of the full Hilbert space. For largev the
extended Hubbard term favors double occupancy and our
approximation breaks down. We consider this regime varia-
tionally in the next section.

We expandHH by applying a unitary transformation
expsiKdHH exps−iKd, whereK is an operator changing the
number of doubly occupied statesf18–22g. We obtain, up to
constant terms, the following spin Hamiltonian:

Heff = g*mBB ·o
i

Si + o
i,j

Ai,j
s1dSi ·Sj + o

i,tÞ±t8

Ai,t,t8
s2d Si+t ·Si+t8

+ o
i,t

Ai,t,−t
s3d Si+t ·Si−t + o

i jkPn

Bi,j ,kSi ·Sj 3 Sk

+ o
i jklPh

Ci,j ,k,lFS− Si ·Sj +
1

4
DS− Sk ·Sl +

1

4
D

+ S− Sj ·Sk +
1

4
DS− Si ·Sl +

1

4
D − S− Si ·Sk +

1

4
D

3S− Sj ·Sl +
1

4
DG + qS t5

U4D , s5d

where we define the following flux-independent factors:

Ai,j
s1d = 2F utij u2

Us1 − vd
−

4utij u4s1 + vd
U3s1 − vd3 G ,

Ai,j ,k
s2d =

− 4s1 − 2vdutij u2utiku2

U3s1 − vd3 ,

Ai,j ,k
s3d =

2s1 + vdutij u2utiku2

U3s1 − vd3 ,

and the following flux-dependent factors:

FIG. 1. Schematic showing four regions characterizing spin and
orbital degrees of freedom in several coupled quantum dots defined
by the parameters in Eq.s1d at fixed confinementv0. The vertical
axis depends on the interdot spacingR, while the horizontal axis
depends on the ratio between the cyclotron frequencyvc and v0.
The region of interest for quantum computingsspin Hamiltoniand
yields a spin Hamiltonian dominated by Heisenberg exchange cou-
pling JijSi ·Sj. Here, the higher orbital energy levels of the quantum
dot have much higher energy than the exchange splitting,D@J.
Above this region,R/a@1, the electrons in each dot do not interact
strongly. At high magnetic fields and nearR/a,1, the electrons
capture vortices of the many-body wave function to form mixtures
with D*J. Below the dotted line the small separation between dots
allows single-dot behavior, and therefore level crossing,D&J.
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Bi,j ,k =
24utij uutjkuutkiu
U2s1 − vd2 sinS2pFi jk

F0
D ,

Ci,j ,k,l =
16s5 − 12vdutij uutjkuutkluutli u

U3s1 − vd2s1 − 3vd
cosS2pFi jkl

F0
D .

The second sum in Eq.s5d contains the usual Heisenberg
term if we defineJij =2utij u2/U. The third and fourth sums
modify the Heisenberg term and depend on the lattice vec-
tors t connecting a site to its neighbor. The fifth sum is a
three-site sum over chiralf23g terms around distinct, closed
loops snd, denotedxi jk =Bi,j ,kSi ·Sj 3Sk. The sixth sum in-
cludes four sites around distinct, closed loopsshd. The co-
efficients in the last two sums depend on the flux enclosed by
three-site loopsFi jk and four-site loopsFi jkl . Heff applies to
any half-filled, single-band, singly occupied lattice in the
presence of an external magnetic field, and in the limits
t /U!1 andv!1.

The magnetic field dependence of the tunneling matrix
elements may be calculated directly using a Wannier basis
formed from dot-centered, Gaussian, single-particle states.
An explicit form for ut12u2/U may be found in Ref.f9g with a
slightly different confinement than the one defined in Eq.s2d.
Referencef9g contains two results relevant for our discus-
sion. One first observes that, in the Hubbard approximation,
ut12u2/U decreases exponentially with increasing magnetic
field or interdot separation. Second, one findsJ12,ut12u2/U
.0, for all magnetic fields and interdot separations.

Equations5d incorporates three- and four-body spin terms.
The three-body chiral term splits the energy between states
involving third-order virtual tunneling processes along and
counter to the applied vector potential. The phase 2pFi jk /F0
is the Aharonov-Bohm phase generated by the virtual current
moving around the flux enclosed by the three-site loop. The
chiral term vanishes on bipartite lattices as a result of
particle-hole symmetryf22g. It plays a particularly active
role in triangular lattices, Fig. 2.

While the chiral term vanishes in the zero-field limit,
four-body terms survive forN.3. Four-body terms have
been discussed in relation to coupled-quantum-dot systems
in a four-site, tetrahedral geometryf10g. In the tetrahedral
geometry there are three terms in the sum over four-site
loops sthree distinct h’sd yielding a particle-exchange-
symmetric, four-body contribution to the spin Hamiltonian:
,oi jklPhsSi ·SjdsSk·Sld. We may, similarly, consider a two-

dimensional square geometry with equal tunneling between
all sites. Here we find three distinct, four-site loops, Fig. 2.
These add to give the term discussed in Ref.f10g. In the
absence of diagonal tunneling only the exterior loop, 12341,
survives, yielding the symmetry-breaking four-body term
sS13S2d ·sS33S4d+sS1·S2dsS3·S4d, which, through Ci jkl ,
shows flux dependence.

As the interdot separation decreases we leave the single-
band, single-occupancy limit and a real currentsrather than a
virtual oned splits the energy spectrum. The spin splitting in
this limit depends on first-order, direct-exchange processes
rather than the second-order, superexchange processes dis-
cussed above. Our analysis based on the extended Hubbard
model may miss qualitative features in the low-energy Hil-
bert space by poorly estimating the coefficients of different
spin terms. Nonetheless, symmetry requires that, in the
weakly-coupled-lattice limit Eq.s5d includes all possible sca-
lars formed from spin operators, up to and including four-
body terms. While the magnitude of these coefficients may
be estimated accurately by expanding the Hilbert space, we
seek to study the qualitative physics associated with changes
in sign. To go beyond our single-band lattice model we ac-
count for qualitative changes in sign by modeling orbital
effects with a variational ansatz.

B. Variational states

We now discuss a set of variational states which model
the low-energy orbital states of Eq.s1d in an effort to go
beyond the Hubbard limit discussed above. To obtain an ac-
curate variational wave function we examine the form of the
exact wave function in two limits: the upper left and lower
right corners of Fig. 1. We then construct an ansatz that
connects both regimes. We begin with the simplest system
N=2. It is analytically soluble in two extreme regimes: Two
well-separated one-electron “artificial atoms” and a two-
electron artificial atom in a high magnetic field. The first case
is trivial and consists of two well-separated quantum dots
sakin to two well-separated one-electron atomsnot in a mo-
lecular stated with one electron in each dot,R/a@1. In this
case we may ignore the Coulomb interaction. The noninter-
acting ground state consists of degenerate singlet and triplet
states.

In the second soluble limitsa two-electron artificial atomd
two electrons lie in one parabolic dot in a strong magnetic
field. In this case we takevc/v0@1 andR=0. Correspond-
ingly, the relative andz component of the angular momen-
tum commute with the Hamiltonian. At large magnetic fields
we may project Eq.s1d onto the lowest Landau levelsLLL d,
giving

uHuv0!vc,R=0 = gL̂z + o
m=0

`

VmP̂m, s6d

where we defineg;s" /2dsÎvc
2+4v0

2−vcd andL̂z is the total
angular momentum in thez direction. The second term rep-
resents the LLL Coulomb interaction, projected onto eigen-
states of relative angular momentumm via the projection

operatorP̂m. The coefficientsVm are the Haldane pseudopo-

FIG. 2. Two possible looped configurations of lateral quantum
dots containng single spins in a magnetic field. The triangular con-
figuration contains three tunneling channels with one loop formed
by the vertices 1231. The square configuration contains, in general,
six tunneling channels with seven distinct loops formed by travers-
ing vertices 1231, 2342, 3413, 4124, 12341, 12431, and 14231.
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tentials f24g which, for the Coulomb interaction, decrease
with increasingm, at largem. The unnormalized eigenstates
of relative angular momentum are

uml = sz1 − z2dm expS− uz1u2 − uz2u2

4a2 D , s7d

wherez=x+ iy. It can be shown directly that, because there is
no center-of-mass motion, the above wave functions are also

eigenstates ofL̂z, with eigenvaluem. Thus the set of states
uml form an orthogonal set of eigenstates of Eq.s6d, with
eigenvaluesEm=gm+Vm. The relative angular momentum of
the lowest energy state depends on the parameters ing and
the form of the interaction. For the LLL Coulomb interac-
tion, in the artificial zero-field limit, the lowest energy state
hasm=1. IncreasingB lowers the confinement energy cost
gm,m/B, and raises the Coulomb costVm,ÎB/ sm+1d,
thereby raisingm by 1. The transition from one eigenstate to
the next occurs whenEm=Em+1 which, for vc/v0@1, occurs
at magnetic fields

Bm < S C

Ṽm − Ṽm+1
D2/3

, s8d

where Ṽm;Vm/ se2/4p«ad and C;4p«"3/2v0
2m*e−7/2. For

"v0=3 meV we findCfT3/2g,1.2. The statesuml are sym-
metric santisymmetricd with respect to particle exchange ifm
is evensoddd. The total wave functionAfucl ^ ull2g must be
antisymmetric. Thereforeull2 is spin singletstripletd for m
even soddd. Here, the indexm may be interpreted as the
number of zeros or vortices attached to each electron, allow-
ing us to assign a vorticity to each spin state.

We now construct variational states which reproduce the
exact results discussed above and the low-energy physics of
the intermediate, physical parameter regime as well,R/a
,1 andvc/v0,1. The composite fermion theoryf25g of the
fractional quantum Hall effect offers an accurate variational
ansatz describing two-dimensional electron systems at high
magnetic fields. A composite fermion is the bound state of an
electron and an even number of quantum-mechanical vorti-
ces of the many-body wave function. The corresponding or-
bital wave function isf17,25g c=Jf, wheref is a weakly
interacting fermion state,J a Jastrow factor, andc the
highly correlated state of electrons. In isotropic, spinless sys-
temsJ attaches an even number of vortices to the fermions
in the antisymmetric statef yielding an antisymmetric elec-
tron wave function. In anisotropic systems with additional
quantum numbers one may bind an evenor odd number of
vortices to each particle while preserving the antisymmetry
of the overall wave functionf26,27g. Applying the composite
fermion ansatz to the Hamiltonian studied here we takef to
be the noninteracting ground state of Eq.s1d. A more rigor-
ous, but technically demanding, approach for large systems
should use the weakly interacting ground state instead. We
also takeJ=p j,kszj −zkdp, wherep=0,1,2, . . .,giving

c̄p = p
j,k

szj − zkdpf. s9d

This is our initial, high-field solution of Eq.s1d at arbitrary

N. c̄p reduces to Eq.s7d at R=0. ForR/a@1 the fermions in
the statef become localized on each dot leavingJ constant

,Rp, in which casec̄p reduces to the limit of two indepen-
dent electrons.

To improve the variational states in the low-field regime,
vc/v0ø1, we note that the Coulomb energy cost may be
lowered by mixing with higher energy states of the quantum
dot thereby increasing the average interelectron separation.
In the R=0 limit, rotational symmetry requires the addition
of states with the same angular momentum. This leads to the
following trial states:

cp = p
j,k

szj − zkdps1 + bb†a†df, s10d

where the variational parameterb controls the amount of
mixing with higher energy levels of the quantum dot. The
total raising operatorsb†=b1

†+¯ +bN
† and a†=a1

†+¯ +aN
†

act on the Fock-Darwin basis states centered between the
dots. The single-particle raising operators are given bybj

†

=szj
* /2−2]zj

d /Î2 andaj
†= iszj /2−2]zj

*d /Î2. The above varia-
tional states include mixing with higher-energy states of the
same angular momentum because the operatorb†a† does not
change the angular momentum of a Fock-Darwin state. They
will be tested in Sec. IV.

III. SPIN-BASED QUANTUM DOT QUANTUM BITS

Gate operations on single and multispin qubits rely on the
adiabatic evolution of the spin state under the unitary time
evolution operator defined in terms of the appropriate spin
Hamiltonianfe.g., Eq.s5dg:

T expS− iE
0

T

HeffstddtDulst8 = 0dlN, s11d

whereT indicates time ordering andT the duration of a gate
pulse. The qualitative spin physics captured by the spin
Hamiltonian, Eq.s5d, therefore plays a crucial role in defin-
ing gates formed from coupled quantum dots. Concurrently,
the orbital states Eq.s10d can be used to calculate the param-
eters in Eq.s5d and their regime of applicability. In forming
quantum gates out of coupled, single-spin quantum dots we
study modifications to the Heisenberg paradigm and its im-
plications for qubit proposals in three different systems:sAd
two strongly coupled quantum dots;sBd three simultaneously
weakly coupled quantum dots, andsCd four simultaneously
weakly coupled quantum dots.

A. Two quantum dots

Solid-state qubit proposals often make use of the Heisen-
berg exchange interaction between spins in neighboring
quantum dots. The exchange interaction offers the potential
for a universal set of quantum gates through the adiabatic
operation of the exchange gate withf1g or without f14g
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single-spin operations. Application of the exchange gate to
the two-dot system will be an adiabatic process if the energy
between the lowest, unwanted excited state of the double
quantum dot and the highest spin state storing quantum in-
formation is much larger than the exchange splitting,D
@Jij . This condition is satisfied in the spin Hamiltonian re-
gime in Fig. 1 but is not necessarily met if we change the
parameters in Eq.s1d slightly becauseJ has exponentialB
andR dependence at largeB andR, respectivelyf9g. In fact,
experiments on coupled quantum dots, while pushing for
shorter gate timessand hence larger exchange energiesd may
indeed leave the border defined by the solid line in Fig. 1
f9,28g. It is therefore important to understand the low-energy
Hilbert space of the coupled-dot system whenJij *D. We
will show, for N=2, that the variational states discussed in
Sec. II B capture the magnetic field dependence ofD. At
large fields the variational states describe a bound state be-
tween electrons and vortices of theN-body wave function.
We find the smallestD, Dmin, to occur when the vorticitysthe
number of vortices attached to each electrond of the first
excited states mix to form an anticrossing.

B. Three quantum dots

An accurate characterization of the double-dot system al-
lows us to define the appropriate parameter regime in which
to study several Heisenberg coupled quantum dots and asso-
ciated magnetic field effects. Two spin states of a three-
quantum-dot structure can serve as an encoded qubit. We
first construct encodings which protect quantum information
stored in many-body spin states. These encodings assume a
noise operator which, as a demonstration, we choose to be
collective or Zeeman-like. We then search for degeneracies
in the set of states generated by these noise operators. The
S=1/2 sector of theN=3 system provides a simple example
of a quantum-dot decoherence-free subsystemf29,30g. Con-
sider three electrons confined to three quantum dots whose
centers lie at the vertices of an equilateral triangle as shown
schematically in Fig. 2. In this case a decoherence-free sub-
system makes use of a fourfold degeneracy atB=0 to protect
quantum information stored in the qubit defined byull3,
where l=0 or 1, from fluctuations in the Zeeman energy.
The four states aref31g

ull3 ^ u− 1/2l =
− 1
Î3

su↓↓↑l + vl+1u↓↑↓l + v2−lu↑↓↓ld,

ulu3 ^ u + 1/2l =
1
Î3

su↑↑↓l + vl+1u↑↓↑l + v2−lu↓↑↑ld,

s12d

wherev;exps2pi /3d. The second term in the tensor prod-
uct denotes the totalz component of spin.

Up to second order, Eq.s5d allows an encoding against
Zeeman-like or collective noise. By collective noise we
mean an interaction between spins and the environment
which acts the same on all spins. By construction, the Zee-
man term may alter the energy difference between the states
in Eq. s12d with different Sz, but notl. However, the chiral

term in Eq.s5d actsnoncollectively. The chiral and Zeeman
terms remove all degeneracies required to construct a qubit
immune to fluctuations in the perpendicular magnetic field.
Explicitly,

x123ull3 =
B123

4
s2l − 1dÎ3ull3, s13d

whereB123=s12tJ/Udsins2pF123/F0d in the caseJij =J and
utij u= t for all i and j .

Following Ref.f32g we may now, using Eq.s5d, construct
a projected spin Hamiltonian which acts on the encoded ba-
sis statesull3:

H̄N=3 = F3sAs1d,As2d,As3dd · S̄+
Î3

2
B123S̄z, s14d

whereS̄ is a pseudospin operator defined by projection onto
two encoded basis states,ullN in our case.FN is a basis-
dependent effective magnetic field which may be tuned
through suitable manipulation oftij and dependsonly on the
coefficients of the two-body terms in Eq.s5d. FN may be
calculated from these two-body terms using the exchange
operator:Eij =s4Si ·Sj + I ijd /2, whereI is the identity opera-
tor. As is apparent from Eq.s14d, x123 yields aneffective
Zeeman splitting between the encoded basis states of the
three-spin qubit. In Sec. IV B we verify numerically that the
chiral term is actually sizable in the spin Hamiltonian regime
of Fig. 1. We therefore arrive at a revealing inconsistency in
seeking a decoherence-free subsystem from a looped, three-
spin system. Part of our motivation for simultaneously cou-
pling three spins was to remove the Zeeman term as a po-
tential noise source. However, we have only enhanced the
system’s dependence on the external magnetic field by cou-
pling the three spins in a loop.

In the event that we may control the flux through the
three-spin system, the chiral term offers an additional one-
qubit gate. This term yields two advantages. The first stems
from a comparison with single-spin operations using local-
ized magnetic fields. The three-spin object encompasses a
larger area than a single spin and therefore eases constraints
on locally applied magnetic fields used in applying single-
spin gates. Second, exchange-only encoded universality
schemes require a large overhead and extremely accurate ap-
plication of the exchange gate to implement elementary al-
gorithms. The chiral term may offer some relief form these
constraints using algorithms which include the new, encoded
Pauli-Z gate in Eq.s14d.

C. Four quantum dots

We now turn to the case of four coupled spins, the lowest
number of physical spins supporting a decoherence-free sub-
spacef33,34g. We begin with four quantum dots containing
four electrons coupled with equal tunnelingutij u= t, including
diagonal terms. Figure 2 shows a two-dimensional sche-
matic. With equal tunneling we find a decoherence-free sub-
space among twoS=0 states corresponding tol=0 and 1:
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ull4 = u↑↑↓↓l + u↓↓↑↑l + vl+1u↑↓↑↓l + vl+1u↓↑↓↑l

+ v2−lu↓↑↑↓l + v2−lu↑↓↓↑l. s15d

Including all single- and two-body-spin terms in Eq.s5d,
these states show no explicit magnetic field dependencesex-
cluding the magnetic field dependence ofutij u discussed in
Sec. II Ad. As for the three-body term, the spin Hamiltonian
must respect the intersite exchange symmetry inherent in the
lattice. In the basisull4 we find

o
i jkPn

xi jk ^ I lull4 =
Î3

4
s2l − 1d o

i jkPn

Bi jkei jkl ull4, s16d

whereei jkl is the four-component Levi-Cività symbol and the
sum excludesl = i, j , or k. As expected, the sum vanishes
with tunnelingutij u= t for all i and j even in a uniform, exter-
nal magnetic field.

Four-spin terms have a simple representation in theulu4
basis. The last sum in Eq.s5d, in the caseutij u= t, involves
three sums over four-site loops. Writing the four-spin terms
with the exchange operator, we find that they act as the iden-
tity operator in the basis defined byulu4. In this case we have
a simple, projected Hamiltonian:

H̄N=4 = F4sAs1d,As2d,As3dd · S̄. s17d

It is important to note thatF4 depends only on coefficients
from two-body spin terms of the formSi ·Sj. The three-and
four-body spin termssand therefore external sources of flux
through closed loopsd do not affect the symmetric four-dot
structure with diagonal tunneling. They must maintain inter-
site exchange symmetry imposed by the lattice, precisely the
symmetry exploited in constructing the decoherence-free
subspaceulu4.

We now consider symmetry-breaking effects. In the ab-
sence of diagonal tunnelingsti,i+2=0d only the external loop,
around vertices 12341 in Fig. 2, in the last sum of Eq.s5d
survives. The external loop alone breaks particle-exchange
symmetry. The additional term can be writtensS13S2d ·sS3

3S4d+sS1·S2dsS3·S4d, excluding two-body spin terms. The
entire looped term, including two-body spin terms, contrib-

utes the following term toH̄N=4:−C1234sS̄x+Î3S̄yd. From this
term we see that in the square geometry fourth-order terms
not only modify the Heisenberg interaction, and hence the
effective magnetic fieldF4, but also add an effective in-plane
field in the ulu4 basis. The size of this effective in-plane field
depends on the real external flux piercing the square
plaquette throughC1234,coss2pF1234/F0d.

Additional symmetry breaking occurs during gate pulses
crucial to encoded universality schemes. In order to imple-
ment Pauli gating sequences on the encoded four-spin qubit
we must tuneF4 and therefore the tunneling matrix elements
tij . When applied to a decoherence-free subspace an encoded
Pauli gate composed of Heisenberg terms must, by construc-
tion, involve a spin-specific asymmetry. An example was
considered in Ref.f15g: ut31u= ut23u= ut34u= ts1+dd, whered is
a number and all otherutij u= t. The sum over chiral terms in
Eq. s16d then induces an energy splitting
24pÎ3tJdABz/ sUF0d between the states withl=0 and 1 for

Fi jk /F0!1. HereA is the area of the triangle defined by the
vertices 123 in the square geometry of Fig. 2. This configu-
ration is depicted in the last row of Fig. 3. The table summa-
rizes five-spin-cluster qubit configurations and their encoded
Hamiltonians written in theuluN basis. From the table we see
that configurations which break intersite symmetrysrows 2,
3, and 5d have non-Heisenberg terms which depend on the
flux through closed loops.

IV. NUMERICAL RESULTS AND DISCUSSION

The accuracy of our perturbative and variational analyses
may be checked numerically. We study two systems in par-
ticular, two electrons in two adjacent quantum dots and three
electrons in three adjacent quantum dots arranged in a tri-
angle. We diagonalize the full Hamiltonian Eq.s1d in several
regimes, includingR/a,1 andvc/v0*1. We construct the
matrix representingH in the Fock-Darwinf35g basis cen-
tered between the dots. Previous studies have employed di-
agonalization of similar Hamiltonians using several dot-
centered basis states. This technique requires lengthy
numerical routines to generate an orthogonal set of Wannier
basis statesf9,39g. The limited number of Wannier basis
states allows for high accuracy only in a regime where the
Coulomb interaction may be treated perturbatively. However,
in our treatment we are able to access the strongly correlated
regime by including up to,105 Fock-Darwin basis states
with z component of angular momentum less than 12. We
use a modified Lanczos routine to obtain the ground and
excited states. This technique yields theentire spectrum.
However, here we focus on the lowest energy states. The
energies forN=2 converge to within 1meV upon inclusion
of more basis states and may therefore be considered exact.
While, for the N=3 system, the ground- and excited-state
energies converge to within 6meV upon inclusion of more

FIG. 3. Table showing possible multispin qubits in the left col-
umn, the encoded Hamiltonian in the center column, and the corre-
sponding two-state basis in the right column. In the left column
arrows denote single spins while lines indicate tunneling channels
which are all equal except in the last row. The Hamiltonians in the

center column are written in terms of the encoded spinS̄ defined via
the two encoded basis statesuluN. For N=2 the basis states are the
Sz=0 singlet and triplet states while forN=3 and 4,uluN is defined
in Eqs.s12d ands15d, respectively. The effective magnetic fieldsFN

depend only on the coefficients of two-spin Heisenberg terms,Asid,
in Eq. s5d. The factorsB andC depend on the coefficients of three-
and four-spin terms in Eq.s5d and therefore the flux through closed
loops.
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basis states giving a strict variational bound to the accuracy.
However, the slow convergence is due to corrections in the
overall confinement energy cost,,10 meV. The energy dif-
ferences quoted here converge much fasters,2 meVd as we
increase the number of basis states and may therefore be
considered exact, with a few exceptions. These exceptions
occur near degeneracy points where our Lanczos routine re-
quires a prohibitive number of steps to distinguish between
two states whose energies are within 5meV of each other. In
these rare, but important, cases we extrapolate between the
nearest convergent energies.

A. Two quantum dots

We seek a quantitatively accurate description of the
boundaries and underlying physics of all regions depicted in
Fig. 1. While we find that the perturbative expansion in Sec.
II A is valid for R/a.1 andvc/v0&3, the remaining por-
tions of the parameter space involve long-range correlations.
Using theN=2 system we check the accuracy of the varia-
tional ansatz discussed in Sec. II B in several limits. We ex-
pect that the variational states discussed there should remain
valid for N.2, with appropriate modifications.

We begin with theR=0, lowest-Landau-level limit dis-
cussed at the beginning of Sec. II B. The LLL approximation
cleanly brings out the physics behind the high-field spin tran-
sitions in two-electron quantum dots but, as we have dis-
cussed, needs modification at low magnetic fields. Figure 4
plots Em−Egnd versusB for the four lowest energy statesm
=1, 2, 3, and 4 withSz=0. The parabolic confinement pa-
rameter is"v0=3 meV. Cusps appear atEm−Egnd=0 where
the ground state changes atBm signaling a change in the
number of vortices per electron.fNote that the relation for
Bm, Eq. s8d, is valid for vc/v0@1.g The ground state clearly
shows a number of spin transitions with increasing magnetic
field f36g. Furthermore, the second-highest excited state be-
comes degenerate with the third at level crossings which oc-
cur at magnetic fields between ground-state transitions. This

suggests that quantum information stored in the two lowest
energy spin states in neighboring quantum dots becomes sus-
ceptible to leakage when the dots are brought very close
together.

We now turn to the case with finite interdot separation
R.0 outside of the LLL. The top panel in Fig. 5 shows the
four lowest energies obtained from exact diagonalization of
Eq. s1d versus magnetic field. The energy zero is taken to be
the ground state. We have chosen an interdot separation of
R=10 nm, confinement"v0=3 meV, andSz=0. The energy
of the first excited state gives the effective exchange splitting
which changes sign through successive spin transitions at
each cusp. The results are qualitatively similar to the results
shown in Fig. 4 but are entirely unexpected. Vortex attach-
ment nonperturbatively lowers the Coulomb energy of uni-
form states but does not necessarily apply to highly disor-
dered systems. Yet the intriguing oscillations in the effective
exchange interaction seen in Fig. 5 suggest just this and
therefore require further study.

In comparing Figs. 4 and 5 we find further differences. At
low fields, the top panel of Fig. 5 correctly shows a spin
singlet ground state atB=0 rather than a triplet state as
shown in the unphysical, LLL limit of Fig. 4. Most impor-
tantly, the degeneracies in excited states atB=0, 2.4, 5.2, and
8 T begin to lift, giving Dmin.J. As opposed to the level
crossing in the single-dotR=0 case discussed earlier, the
breaking of rotational symmetry forces an anticrossing
among the first and second excited states. At small to inter-
mediate interdot separationsR/a&1, the higher excited
states are perturbed single-dot states with a nearly uniform
charge density.

A large anticrossing among the two lowest excited states
protects the quantum information stored in the entangled
state of two strongly coupled quantum dots. Experimental
uncertainties inR andv0 may eventually lead to the strongly
coupled regime. Careful study of the states making up the
anticrossing is therefore crucial. The bottom panel of Fig. 5
plots the overlap of the exact ground state and the variational
state Eq.s9d at R=10 nm. Tripletssingletd spin states corre-

FIG. 4. Energy of the four lowest states of a single quantum dot
sR=0d with two electrons under a perpendicular magnetic field in
the lowest Landau level plotted as a function of perpendicular mag-
netic field. The ground-state energy is set to zero and the parabolic
confinement parameter is"v0=3 meV. The ground state, with or-
bital wave function given by Eq.s7d, alternates between spin singlet
sS=0d and tripletsS=1d as a function of magnetic field. The spin
singlet and triplet states correspond to even and odd angular mo-
mentum quantum numbersm, respectively.

FIG. 5. The top panel plots the energy of the four lowest states
of Eq. s1d obtained by exact diagonalization as a function of mag-
netic field with the ground-state energy set to zero. The separation
between parabolic dots is nowR=10 nm. The parabolic confine-
ment parameters is"v0=3 meV. Transitions between spin singlet
and triplet states remain. The bottom panel shows the overlap of the
exact ground state and the trial states given by Eq.s9d. The number
of vortices attached to each electron increases with magnetic field
from p=0 to 3. As in Fig. 4, singletstripletd states correspond to
evensoddd values ofp.
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spond to oddsevend values ofp, as in theR=0 case. The
overlaps drop to zero when the particle-exchange symmetry
of the orbital wave function changes. We have checked by
direct calculation of the density that, byB,9 T, the modi-
fied magnetic length has become small enough to localize the
electrons on each dot. The surprisingly high overlaps prove
that vortex attachment is a valid ansatz even in the highly
localized regime. At large dot separationsRù40 nm, the
Coulomb interaction lowers to a point where the splitting
between spin states is near zero at largeB. However, we have
checked that even here the overlaps remain large. Another
important feature of Eq.s9d is that thep=0 state does not
take into account the Coulomb interaction. The overlaps near
B=0 are correspondingly lower.

The top panel in Fig. 6 plots the exact energy spectrum, as
in Fig. 5, but forR=20 nm. Here we see that, at large mag-
netic fields, the large separation between electrons localized
on each dot suppresses the exchange splitting. However, sev-
eral spin transitions still remain. The bottom panel in Fig. 6
shows the energy of the four variational states Eq.s10d with
p=0, 1, 2, and 3. We take the ground state to be the zero in
energy. We obtain the energy by orthogonalizing the four
variational states and diagonalizing Eq.s1d in this four-state
basis. These variational states are an improvement over Eq.
s9d. They include mixing with higher energy levels of the
dots. The mixing is tuned with the variational parameterb.
We minimize the energy with respect tob at eachB. The
parameterb of the ground state varies from 0.02 atB=0 to
0.0006 atB=5 T, showing that large magnetic fields all but
suppress Landau level mixing. The exchange splitting ob-
tained with the variational states compares well with the ex-
act value. Furthermore, in the rangeB=1–4 T, thesecond
excited state captures the essential features of the corre-
sponding exact results. Rotational symmetry breaking forces
the higher excited states to open an anticrossing observed
nearB=0, 2.4, and 4.3 T. The states at the anticrossings in
Fig. 6 are similar to the states making up the level crossings
in Fig. 4. For example the electrons in the first excited state
at 2.4 T in Fig. 6 form a two- and zero-vortex mixed state in
a 56% to 44% ratio, as opposed to the ground state which
holds one vortex per electron, to within 98%. To evaluate the
anticrossing explicitly we note that forR/a!1 the asymme-

try in confinement acts as a perturbation. We may rewrite the
confinement potential up to an overall constant:

VN=2sr d =
m*v0

2

2
sur u2 − uxuRd. s18d

The second term breaks rotational symmetry and forces an
anticrossing among the lowest two excited states. It is impor-
tant to note that the two lowest excited states involve states
of even vorticity. Symmetry allows these two states to mix,
yielding an anticrossing, as one may find by diagonalizing
the rotational symmetry-breaking term in the even-vorticity
subspace. The matrix elements arem*v0

2R/2kcp8ix1u
+ ux2icpl, where, nearB=2.4 T for example,p andp8 may be
0 or 2. These matrix elements give an anticrossingDmin
,m*v0

2Ra+J. This is in contrast to ground-state transitions
between states with even and odd vorticity. Here the states
cp and cp+1 cannot mix, allowing the exchange splitting to
change sign.

We stress that the top panel in Fig. 6 is obtained by di-
agonalization of Eq.s1d with ,105 basis states while the
lower panel is obtained by the same method but with four
physically relevant basis states. The agreement breaks down
at larger fields,B,5.6 T, because we have not included the
p=4 variational state in the excited states. Inclusion of varia-
tional states with largep is necessary at larger fields. The
excellent agreement obtained thus far demonstrates that the
plethora of spin transitions in strongly coupled double quan-
tum dots originates from a swapping of the particle-exchange
symmetry associated with vortex attachment.

We may parametrize the high-field effects of vortex at-
tachment in an effective spin Hamiltonian based on the
above numerical results and our analysis in Sec. II B. Note
that the exchange interaction changes sign in a roughly peri-
odic fashion as each electron captures an additional vortex.
The vortex may be interpreted, by equating its Berry’s phase
f37g to an Aharonov-Bohm phase, as additional fluxf25g.
The confinement, determined byv0, fixes the area defined by
the electronic wave function.A8, depicted schematically by
the patterned region on theN=2 side of Fig. 7. From Fig. 5

FIG. 6. The top panel shows the same as Fig. 5 but for a dot
separation ofR=20 nm. The bottom panel shows the energy of the
trial states in Eq.s10d as a function of magnetic field. The ground-
state energy is set to zero. The energies are obtained by orthogonal-
izing the four modified variational states withp=0, 1, 2, and 3 and
diagonalizing Eq.s1d. The variational parameterb is chosen to
minimize the total energy.

FIG. 7. Schematic diagram showing the area enclosing flux in
theN=2 and 3 systems defined by the density of theN-body ground
state. The dots represent the centers of the parabolic quantum dots.
The patterned region for theN=2 system defines an areaA8 sym-
metric about the axis joining the two dots. For theN=3 system the
triangular region encloses an areaA. A correction to the triangular
region, shown by the three patterned additions, defines an area
<3A8 /2.

EXCHANGE GATE IN SOLID-STATE SPIN-QUANTUM… PHYSICAL REVIEW A 71, 032340s2005d

032340-9



we note that we may count the number of vortices attached
to each electron using the flux through the double-dot sys-
tem,BA8 /F0. The parameterA8 is fixed by requiring that the
net Berry’s phase swept out by one quasiparticlesthe elec-
tron plus the attached vorticesd circling the other quasiparti-
cle as it encloses the double-dot system, 2pfBA8 /F0−sN
−1dpg, must vanish forp=2 f38g. The net flux includes the
effective flux due to the Berry’s phase associated with attach-
ing p vortices to each electron. The data in Fig. 5, for ex-
ample, show that atB=5.4 T the flux through the double-dot
system exactly cancels the effective flux due to the attached
vortices stwo for each electrond. By fixing A8 in this way,
pBA8 /F0 increases by integer multiples ofp as each elec-
tron captures an additional vortex. We may then write a pa-
rametrized spin Hamiltoniansup to second order int2/Ud

Heff
s2d = 2J̃12S1 ·S2, s19d

where J̃12,s2t2/UdcosspBA8 /F0d. We determineA8 from
our numerical data and sett= ut12u. We have, for simplicity,
excluded the Zeeman term. From Fig. 5, for example, we
find the center of thep=2 region to beF0/A8<5.4 T which
givesA8,800 nm2. The parameterA8 suggests confinement
of an appreciable part of the single-electron density to within
a radius of,10 nm. When we insert the magnetic field de-
pendencef9g of utu and U into Heff

s2d we obtain qualitative
agreement with our numerical estimates ofJij at all magnetic
fields. But, without the cosine term,t2/U remains positive
for all B.

B. Three quantum dots

We now study theN=3 system where the quantum dots
lie at the vertices of an equilateral triangle with side lengths
R=40 nm f15g. We know from the previous section that a
large interdot separation will prevent unwanted excited states
of the quantum dot from approaching the spin states defining
our qubit. We further expect the analysis of Sec. II A to hold
only for low magnetic fields while, at large fields, electrons
capture vortices and initiate spin transitions. As a conse-
quence, an external magnetic field has three noticeable ef-
fects. s1d At low fields the length scalea is set by confine-
ment and the flux enclosed by the triangular loop will
dominate the magnetic field dependence of the states in Eq.
s12d. s2d At higher fields the length scale shrinks with in-
creasing magnetic field. The interdot tunneling matrix ele-
ments will be suppressed as the electrons become more lo-
calized on each dot.s3d The electrons will simultaneously
capture vortices to screen the increased Coulomb interaction.
The latter effect, as for theN=2 system, should, in the ap-
propriate parameter regime, lead to oscillations in the total
spin of the ground state as a function of magnetic field.

Figure 8 shows the energy of the lowest states obtained
from exact diagonalization ofH in the Sz=1/2 sector as a
function of magnetic field. The confinement parameter is
taken to be"v0=6 meV for the top panel and 3 meV for the
bottom panel. The energy of the stateul=0l3 is set to zero.
At B=0 the two lowest energy states have total spinS
=1/2 and aredegenerate, as expected from the reflection

symmetry of the triangular confining potential. The next
highest state hasS=3/2 which corresponds to 6utij u2/U
<0.13 meV. Above this state we findsnot shownd the higher
excited states to lie above 1 meV.

We focus first on the low-magnetic-field data. As we in-
crease the magnetic field the magnetic vector potential
breaks the symmetry of the confining potential leading to a
splitting between the two lowest states. The splitting is linear
in B, for small B, as in Eq.s13d. We expect such a simple
behavior because the two-body terms in Eq.s5d have weak
magnetic field dependence at low magnetic fields, through
utij u2/U. Alternatively, the chiral term annihilatesS=3/2
states. Only two-body terms in Eq.s5d affect the S=3/2
state. We therefore expect that the energy of theS=3/2 state,
ES=3/2, decreases very slowly with increasing magnetic field
at low fields swhile ES=3/2−Eu0l3

should increase linearlyd.
Here the contribution from the chiral term is sizable and is,
for the parameters studied here, larger than the Zeeman split-
ting of a single spin in GaAs,<0.025BfTg meV.

We now turn to the high-field effects in Fig. 8. For highly
localized, noninteracting particles we expect the flux inB123
to beBA/F0, whereA is simply the the area of the triangle
defined by the centers of the three quantum dots. However,
in our system, the parabolic confinement will not perfectly
localize the interacting electrons. The area swept out by a
closed loop around the bulk of the wave function will en-
close an area larger than the triangle. Figure 7 shows a sche-
matic representation of the new, larger area encompassed by
theN=3 system. The additional area due to the expansion of
the wave function is<3A8 /2, whereA8 is the area enclosed
by an equivalentN=2 system. We may use our analysis from
the previous section to determine the area added to the tri-
angle. The net Berry’s phase associated with virtual tunnel-
ing processes of quasiparticles around theN=3 system will
be

FIG. 8. Energy of the three lowest energy states versus perpen-
dicular magnetic field obtained from exact diagonalization of Eq.
s1d in the Sz=1/2 sector forN=3. The centers of the lateral para-
bolic quantum dots lie at the vertices of an equilateral triangle with
40 nm side lengths. The dotted line has total spinS=3/2 while the
dashedsul=1l3d and solid linessul=0l3d haveS=1/2. Theenergy
of the S=1/2 state corresponding tou0l3 is set to zero. The top
panel has a parabolic confinement parameter"v0=6 meV while the
bottom panel has"v0=3 meV. The change in confinement changes
the effective area of the system and, as a consequence, the position
of degeneracy points betweenB=1 and 3 T.
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2pSBA

F0
+

3BA8

2F0
− sN − 1dpD . s20d

The additional flux will appear in the flux-dependent factors
in Eq. s5d. We rewrite the three-spin Hamiltonian in the case
of equal tunnelingt sexcluding the Zeeman, extended Hub-
bard, and fourth-order termsd:

Heff
s3d = J̃o

i,j
Si ·Sj +

24t3

U2 sinS2pFs3d

F0
DS1 ·S2 3 S3,

s21d

where J̃,s2t2/UdcosspFs2d /F0d. We defineFs2d=BA8 and
Fs3d<BsA+3A8 /2d. Note that the integerp, in Eq.s20d, does
not contribute to the chiral term. Therefore, vortex attach-
ment does not directly affect the flux in the chiral term. Fur-
thermore, the cosine in the first term parametrizes large-
magnetic-field behavior while the sine in the second, chiral
term, was derived using perturbation theory.Heff

s3d allows us to
predict the degeneracy point of the three-spin term using the
degeneracy point of the two-spin term with the following
energies:

ES=3/2 − Eu0l3
=

6t2

U
cosSpFs2d

F0
D +

6Î3t3

U2 sinS2pFs3d

F0
D ,

s22d

Eu1l3
− Eu0l3

=
12Î3t3

U2 sinS2pFs3d

F0
D . s23d

From the dotted line in the top panel of Fig. 8 and Eq.s22d
we find F0/4A8<2.2T. Using Eq. s23d, we predict the
dashed line to cross thex axis nearB<1.5 T, where we take
A to be the area of an equilateral triangle with 40 nm side
lengths. A similar analysis yields good agreement for the
bottom panel of Fig. 8.

The slope of the energy splitting between the two lowest
states in Fig. 8 allows us to estimatet /U for this system
using Eq.s22d. t /U is largest and only weakly magnetic field
dependent at lowB. TakingA+ 3

2A8 from above andv=0, we
obtain t /U.0.09 for the top panel and 0.19 for the bottom
panel which shows that our expansion int /U is consistent.
For N=3, only odd powers oftij allow linear magnetic field
dependence in the splitting, showing that, excluding double
occupancy, the magnetic field dependence captured by the
chiral term is accurate up toqst5/U4d.

V. CONCLUSION

We show in this work that the Heisenberg model descrip-
tion of the qubit coupling in the quantum-dot spin-quantum-
computer architecture applies only in a limited regime of the
parameter space. In the GaAs-quantum-dot exchange-gate
architecture, the Heisenberg spin Hamiltonian description
applies only in the intermediate regimeR/a*1 andvc/v0
&1. Using the exact diagonalization technique one can map
out the precise low-lying Hilbert space, and consequently use
this information in the design of the quantum-computer ar-

chitecture. We have also discussed an interesting and non-
trivial level-crossing periodicity in the singlet-triplet energet-
ics. Precise knowledge of the associated, low-energy Hilbert
space could, in principle, be used to protect quantum infor-
mation encoded in the electron spin.

Generalizing our exact diagonalization technique to spin-
cluster qubits formed by a two-dimensional array of electron
spins localized in tunnel-coupled quantum dots, we show
that the chiral term associated with the quantum phase
picked up by an electron enclosing the magnetic flux through
closed loops must be included in the spin Hamiltonian. The
existence of the chiral term in the looped spin-cluster qubits
modifies the Heisenberg interaction and is in some sense a
decoherence mechanism for the simple exchange-gate archi-
tecturessince the two-qubitSWAP operation is no longer de-
termined by just the Heisenberg exchange Hamiltoniand. We
show in this paper how precise knowledge of the cluster
geometry, combined with exact diagonalization, provides us
with the multispin Hamiltonian which would be required for
quantum computation with two- or three-dimensional spin-
cluster qubits. Strictly one-dimensional spin-cluster qubits,
which do not have any topological looping, have a smallsbut
nonzerod chiral contribution and are therefore described, for
the most part, by the Heisenberg Hamiltonian in the appro-
priate subspace of magnetic field, confinement, and dot-
geometry parameters.

We emphasize that in this article we have considered a
relatively simple model, defined by Eqs.s1d and s2d, for de-
termining the applicability of the Heisenberg interaction in
describing the exchange-gate operation. Differences in the
confinement potential may change some of the quantitative
aspects of our results but as long as the confinement consists
of smooth potential wells, there should be qualitative agree-
ment. The key issue we have addressed in this work is the
regime of validity of the Heisenberg exchange-gate operation
in coupled semiconductor quantum-dot quantum-computer
architectures as appropriate, for example, in GaAs-based
quantum-dot systems. In practice, we have obtained the con-
ditions and constraints necessary for a coupled-qubit system
to behave as a coherent molecule as opposed to two decou-
pled atoms. Adiabatic tuning between these two regimes en-
ables the swap idea underlying the exchange gate. Of course,
the issue of He atom-to-molecule transition in coupled-
quantum-dot systems as well as our discussion of the ex-
change oscillations in the coupled-dot system as a function
of the applied magnetic field have implications beyond quan-
tum computation. For example, a direct experimental obser-
vation of the exchange oscillations is of interest in quantum-
dot physics.

Finally we mention that there are many other factors be-
yond the scope of our workfi.e., beyond the model defined
in Eqs. s1d and s2dg which affect the operation of the ex-
change gate. We cite three such example of recent interest
which have been considered in the literature: inhomogeneous
magnetic field effectsf39g, spin-orbit couplingf40,41g, and
multivalley quantum interferencef42g.
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