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Exchange gate in solid-state spin-quantum computation: The applicability
of the Heisenberg model
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Solid-state quantum-computing proposals rely on adiabatic operations of the exchange gate among localized
spins in nanostructures. We study corrections to the Heisenberg interaction between lateral semiconductor
guantum dots in an external magnetic field. Using exact diagonalization we obtain the regime of validity of the
adiabatic approximation. We also find qualitative corrections to the Heisenberg model at high magnetic fields
and in looped arrays of spins. Looped geometries of localized spins generate flux-dependent multispin terms
which go beyond the basic Heisenberg model.
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I. INTRODUCTION nal magnetic field. Our calculation of the Hilbert space struc-
ture of the coupled quantum dowith one electron on each
Scalable quantum-computation proposals, particularly irdot) system differs from earlier work on the problem in the
solid-state architectures compatible with existing microelecsense that it is essentially exact for our modé|8]. Earlier
tronic technology, are of great potential importance. The exwork obtaining the Hilbert space structure of the coupled
change gat€l], based on the Heisenberg interaction betweerdouble-dot quantum computer system used perturbative ap-
localized spins, is a key concept underlying several proposegroximations akin to Heitler-London or Hund-Mulliken theo-
guantum- computer architectures in semiconductor nancres [9,10]. As explained later in this paper we manage to
structures, where the spin of a localized electron serves a=rry out an exact numerical diagonalization of the two-
the single qubit.[1-4]. In most spin-based quantum- electron coupled-dot interaction Hamiltonian by borrowing
computer proposals single-qubit operations involve rotationsheoretical techniques that have been extremely successful in
of individual spins by external magnetic field puldessen- elucidating the ground-and excited-state properties of the
tially a modified electron spin resonance technique implestrongly correlated fractional quantum Hall system. Second,
mented on individual spinsor by some other techniques we describe and discugagain using the exact diagonaliza-
(e.g., localg-factor manipulation by external electric field tion technique as the theoretical tp@ subtle topological
pulses. The two-qubit operation in solid-state spin architec-feature of a certain class of solid-state sfftiuster”) qubits,
tures is projected to be achieved by the exchange-gate operahich have attracted considerable recent attention, where
tion. The ability of a tunable exchange gdtehich enables clusters of spins are cleverly aligned to serve as qubits
the exchange coupling to change from zero to a finite valuérather than just single spinsffering certain advantages in
within a “reasonable” gating timén carrying out theswAap ~ quantum computatiofl1-14. We show that in looped ge-
operation leads to the implementation of the universal two-ometries these spin-cluster qubits have higher-order spin in-
qubit ControllednoT gate which, along with single-qubit teraction terms(three-spin, four-spin, etc., terpnsarising
gates, provides a universal set of quantum gates. The pefrom chiral interaction terms which will have serious adverse
ceived advantages of solid-state quantum computation are itsonsequences for quantum computation by providing non-
scalability(because of the existing semiconductor microelecrivial flux dependence which must be taken into account
tronics infrastructurg the low decoherence rate for spin [15]. Our finding of the chiral Hamiltonian in spin-cluster
stategas compared, for example, with charge states in semigubits may have possible consequences for all spin-quantum-
conductorg and the feasibility of precise control over the computing architecture¢éand not just the semiconductor-
local interelectron Heisenberg coupling through the ex-anostructure-based ond$]). Again, the exact diagonaliza-
change gate. Among the disadvantages is the inevitable presen technique is the theoretical method we employ to
ence of some spin decoherence due to the background solidemonstrate, validate, and quantify the chiral spin Hamil-
state environments] and difficulties in the measurement of tonian.
single-electron-spin states. However, recent experimental ad- The common theme running through the two complemen-
vances[6] have demonstrated single-spin measurements dhry topics studied in this work is a thorough investigation of
localized electrons embedded in semiconductors. the precise applicability of the Heisenberg Hamiltonian as a
In this work we provide a detailed and quantitatively ac-description of the spin interaction in exchange-gate quantum-
curate theoretical study of two complementary aspects ofomputer architectures. In particular, we are interested in fig-
solid-state spin-quantum-computer architectures. First, wering out the limitations and the constraints on the Heisen-
develop a theory for obtaining an accurate map of the lowberg interaction model as the underlying Hamiltonian for
lying Hilbert space of the quantum-dot-based spin-quantumexchange-gate, two-qubit entanglement in the presence of an
computer architecturéhe Loss-DiVincenzd1] architecture  external magnetic field. In this context we also want to know
in coupled GaAs quantum dogtis the presence of an exter- what, if any(and how largg the correction terms are to the
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Heisenberg model description of the exchange-gate quantueffects. We find many-body spin terms which couple to ex-
dynamics in the solid-state spin-based gquantum computeternal magnetic fields. In Sec. Il B we describe a variational
This study is motivated by the fact that precise knowledge otheory of the many-dot problem which accesses nonpertur-
the exact Hamiltonian controlling the qubit dynamics is ab-bative regimes of the parameter space. In Sec. Il we discuss
solutely essential in developing quantum-computing algoimplications of the perturbative and variational treatments
rithms (and architecturgssince in quantum computation the fgor qubit proposals involving two, three, and four coupled
Hamiltonian itself determines the programming codes. Wespins, In Sec. IV A we use exact diagonalization of a physi-
must, therefore, know the Hamiltonian precisely. ~—  cqjly plausible Coulomb Hamiltonian to explore the low-
To study modlflcanons to the Heisenberg H.amlltonlan in nergy Hilbert space of two coupled single-electron quantum
tunnel-coupled single-electron quantum dots in an externglyiq “\ne find that the variational ansatz agrees with exact

magnetic field we consider a realistic Hamiltonian involving results. The results suggest that electrons in coupled quantum

an equal number of parabolic quantum dots and eIectron& ; .
: ; . . . . dots capture vortices of the many-body wave function to
interacting through the Coulomb interaction. We find devia screen the Coulomb interaction, at high fields. In Sec. IV B

tions from simple Heisenberg behavior where expected;

when the quantum dots are strongly coupled and under inve compare exact diagonalization results of three coupled

tense magnetic fields. We find, using a variational arjgafy ~ Single-electron quantum dots with the spin Hamiltonian de-
and exact diagonalization, that at high magnetic fields thé&Ved using perturbation theory. We show numerically that
two-electron orbital states may be characterized by a vorticchiral - three-spin terms couple the spin states of a
ity. We define vorticity as the number of zeros attached tgdecoherence-free subsystem to external sources of enclosed
each electron in the many-body wave function through thdlux. We parametrize the magnetic field behavior of the low-
term (z-z)P, wherez=x+iy is a complex coordinate in the est spin states with a spin Hamlltonlap that depgnds on the
x-y plane and the intege is the vorticity of the state. We enclosed flux and the number of vortices eff_ectlve flux

find level repulsion between states with either even or odd17) attached to each electron. We conclude in Sec. V.
vorticity. We identify the parameter regime required to maxi-

mize level repulsion among wanted and unwanted states, en- Il. MODEL

suring adiabatic operation of the exchange gate.

Using perturbation theory applied to the extended Hub- We study the low-energy Hilbert space Mflateral quan-
bard model we find other qualitative modifications to thetum dots containindN electrons lying in thex-y plane with
Heisenberg interaction among weakly tunnel-coupled quarthe following Hamiltonian:
tum dots. We find that in spin clusters formed from loops of N 5 N
three or more spins, many-spin terms couple to external _ 1 € &

: - H=2> S\ pi+ oA F VN [+
sources of flux. We focus, numerically, on the triangular con- i1 L2m c i elri—rjl
figuration in particular. Here, we show quantitatively that a .
three-spin chiral term couples to flux through the triangle. +Q ugS-B. 1)

[15]. We investigate both the low- and high-magnetic-field\we focus on GaAs. In which case we have an effective mass
regimes and model the effective spin Hamiltonian in terms of =0.067n,, dielectric constant=12.4, andg factor g =

two parameters: the flux passing through the triarmgldthe  _o 44, We work in the symmetric gauge with magnetic field
vorticity (or effective fluy attached to each electron. We go g-g3. sis the total spin. The single-particle potential con-

on to study four-spin configurations where three- and fourfines the electrons to lie in parabolic wells centeredNat
body terms modify the Heisenberg interactiph0]. We find dpositionsRi:

that four- body terms depend on the flux through close
loops as well.

Implementations of exchange-based-only quantum com-
putation with the least overhead, from a quantum-computing
perspective, involve several spins interacting simultaneousi?here o is a parabolic confinement parameter which may
through the Heisenberg interaction, although this is not necce compared to the cyclotron frequenay=eB/m'c. The
essary. One may consider algorithms involving no more thagonfining potential localizes the electronshasites with in-
two simultaneously coupled spins or geometries which extersite separatiolR=|R;~R;|. R may be compared to the
clude closed loops of spins. In what follows we analyze amodified magnetic lengtla=\Ac/eB(1 +4w)/ wl) . Solu-
special case: looped geometries of simultaneously interactindgons of the above Hamiltonian take the foraf|¢) © [\)y]
single-spin quantum dots which, as we will show, necessarilyvhere|¢) and|\)y are the orbital and spin parts of the wave
involve flux dependence. function, A is the antisymmetrization operator, and the sub-

In Sec. Il we present a model of several lateral, single-script denotes the number of electrons and quantum dots.
electron quantum dots in an external magnetic field. The The parameters il define several regimes relevant for
model establishes four regimes defined by parameters relategiantum-computing architectures utilizing similarly confined
to confinement, the external magnetic field, and interdosingle-electron quantum dots in an external magnetic field.
separation. In Sec. Il A we relate the coupled-quantum-doFEigure 1 depicts four separate pieces of the parameter space
model to a fourth-order spin Hamiltonian based on well-with the confinement parametey, fixed. The solid line en-
known perturbation theories of the extended Hubbard modekloses an area in which the excited, orbital states of the quan-
Here, we broaden this treatment to include magnetic fieldum dots have high energy, and the interdot coupling be-

* D
m w
V\(r) = 0

min{[r —=R,% ... |r —Ry%, (2)
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R/a energy. As a result we may also restrict our attention to sin-
Small Exchange gly occupied states. As a first approximation we then obtain
> the extended Hubbard Hamiltonian:
Spin Hamiltonian R
Vortex
T Mixingf/’ HH == 2 tijCiTaCja + UE niTnil +V E Ni o Ni+1,0’
L iLj,aeT] i i(aa')el]
Level Crossing .
— +g'uB -2 S, (3)
1 0 /0, i

FIG. 1. Schematic showing four regions characterizing spin andvhere ¢!, creates a fermion at the sitewith spin a and
orbital degrees of freedom in several coupled quantum dots defineﬂa:CiTacia. Hy incorporates the on-site spin operatds
by the parameters in Eq1) at fixed confinemeni. The vertical =3¢l o,,/C./, Wwhereo are the Pauli matrices. In the pres-
axis depends on the interdot spaciRgwhile the horizontal axis ence of an external magnetic field the tunneling coefficients
depends on the ratio between the cyclotron frequencynd wy. are complext;; :|tij|exq2ﬂ-iq>ij/q)o), where®,=hc/eis the

The region of interest for quantum computifgpin Hamiltonian  flux quantum. The magnetic vector potential generates the
yields a spin Hamiltonian dominated by Heisenberg exchange copgier|s phase

pling J;;S - S;. Here, the higher orbital energy levels of the quantum
dot have much higher energy than the exchange splitthg,J. j
Above this regionR/a> 1, the electrons in each dot do not interact (Dij = f A -dr,
strongly. At high magnetic fields and neB/a~1, the electrons i
capture vortices of the many-body wave function to form mixtures

with A=J. Below the dotted line the small separation between dotsWhere the integral runs along a path connecting the sites

allows single-dot behavior, and therefore level crossing;J. andj. Worklng in the limit !t”|/u<1 anquV/U<1 W.e
can self-consistently confine our attention to the single-

occupancy states of the full Hilbert space. For largéhe

tween two dots maps onto the Heisenberg Hamiltonian,yiended Hubbard term favors double occupancy and our
J125,-S,, as originally envisaged in RelfL]. We show, using  gnroximation breaks down. We consider this regime varia-

both perturbation theory in the Hubbard lini@ec. Il A) and tionally in the next section.
exact diagonalizatiofSec. IV B) that in this regime seve_:ral We expandH,, by applying a unitary transformation
coupled quantum dotd\N>2, involve symmetry-breaking expliK)H,, exp(—-iK), whereK is an operator changing the

many-spin tgrms vvjth _rlontriv!al flux field de;.)endence.number of doubly occupied statEE8—23. We obtain, up to
Above the spin Hamiltonian regin@®/a>1) weak interdot <0t terms, the following spin Hamiltonian:

tunneling yields a small exchange interaction. Below the
dashed line, higher orbital states of the quantum dot have P‘eﬁ:g*/uvBB 2 S +Z -Ai(,]j.)si S+ E 4@ Sivr- S
i i

(4)

particularly low energy and therefore mix with the low- LT

energy states of the quantum dats J. This regime is char-

acterized by magnetic-field-dependent level crossings among ~ + >, A®_S, -S_ + >, Bij xS - S X S¢
i,7

i, 7#£+7

I, 7,—7T

potential qubit spin states and unwanted higher energy levels , kel

of the double-dot system. Between the level crossing and 1 1
spin Hamiltonian regimes we find, using a combination of + > Ci,j,k,{(—s S+ Z)(—SK-S + 4_1)
exact diagonalizatiorfSec. IV) and variational techniques ijklel

N-body wave function to screen the strong Coulomb interac-
tion. Here we find that the first excited state of the many-dot
system mixes vorticity leaving the unwanted excited states of 1 t°

(Sec. 11 B, that electrons in the dots capture vortices of the 1 1 1
dssegllosse i) (s s

(5

the quantum dot somewhat higher in energy than the spin u4
splitting between the lowest states=J. In Sec. Il we dis-
cuss how these regimes pertain to qubit proposals utilizingvhere we define the following flux-independent factors:

coupled quantum dots.
tl* 4l +o)
AV =2 I -
UTlu@ ) - [

A. Perturbative expansion

We first seek an approximation to E(l) that qualita- — 4(1 - 20)t; tu?
tively captures the structure of the low-energy Hilbert space Aj j?k: 3 '3
in terms of on-site spin operators in the limit of weak inter- U1 -v)
site coupling. Such a Hamiltonian may be used to define
qubit gates among spins localized in neighboring quantum
dots. We work in the single-band, tight-binding limit, a good
approximation in the limitA>J. We also take the on-site
Coulomb interaction to be much larger than the tunnelingand the following flux-dependent factors:

_ 2(1 +v)|t; [ty
Ud1-v)®
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3 B dimensional square geometry with equal tunneling between
© 4 3 all sites. Here we find three distinct, four-site loops, Fig. 2.
These add to give the term discussed in R&f]. In the
1 2 absence of diagonal tunneling only the exterior loop, 12341,
1 2 . S .
survives, yielding the symmetry-breaking four-body term

(S1XS)) (S5 X S +(S;-S,)(S3-Sy), which,  through Ciyy,
FIG. 2. Two possible looped configurations of lateral quantumshows flux dependence.
dots containng single spins in a magnetic field. The triangular con- As the interdot separation decreases we leave the single-
figuration contains three tunneling channels with one loop formedand, single-occupancy limit and a real currgather than a
by the vertices 1231. The square configuration contains, in generaljirtual one splits the energy spectrum. The spin splitting in
six tunneling channels with seven distinct loops formed by traversthis limit depends on first-order, direct-exchange processes
ing vertices 1231, 2342, 3413, 4124, 12341, 12431, and 14231. rather than the second-order, superexchange processes dis-
cussed above. Our analysis based on the extended Hubbard
24t lItylltl . (27 ®y model may miss qualitative features in the low-energy Hil-
k= U2(1 - 0)? ( o > be_rt space by poorly estimating the coefﬁc[ents of dlff_erent
0 spin terms. Nonetheless, symmetry requires that, in the
weakly-coupled-lattice limit Eq5) includes all possible sca-
1605 = 120) [t;j |t [t |t | 27D lars formed from spin operators, up to and including four-
Cijkl = U3(1-0)%(1 - 30) D, ) body terms. While the magnitude of these coefficients may
be estimated accurately by expanding the Hilbert space, we
The second sum in Eq5) contains the usual Heisenberg Seek to study the qualitative physics associated with changes
term if we defineJ;=2|t;|?/U. The third and fourth sums In sign. To go peyond our smglp-band lattice quel we ac-
modify the Heisenberg term and depend on the lattice veccount for qualitative changes in sign by modeling orbital
tors 7 connecting a site to its neighbor. The fifth sum is a€ffects with a variational ansatz.
three-site sum over chir@§R3] terms around distinct, closed
loops (A), denotedy;j=5;; kS;-S; X S¢. The sixth sum in- B. Variational states
cludes four sites around distinct, closed lodp$. The co-
efficients in the last two sums depend on the flux enclosed b
three-site loopsb;;, and four-site loopsb;j. Hesr applies to

We now discuss a set of variational states which model
Yhe low-energy orbital states of E¢l) in an effort to go
any half-filled, single-band, singly occupied lattice in the beyond th? Hubbard limit dls_cussed abov_e. To obtain an ac-
presence of an external magnefic field, and in the limiturate variational wave function we examine the form of the
t/U<1 andp<1 ' exact wave function in two limits: the upper left and lower

The magnetic field dependence of the tunneling matrii'ght corners of F!g. 1. We then construct an ansatz that
elements may be calculated directly using a Wannier basi onnects both régimes. We b-egln with the S|mplest _system
formed from dot-centered, Gaussian, single-particle state .=2' It is analytically soluble ‘|‘n t\./v_o.extreme Eeglmes. Two
An explicit form for |t;,>/U may be found in Ref.9] with a well-separated one-electron “artificial atoms” and a two-
slightly different confinement than the one defined in €. electron artificial atom in a high magnetic field. The first case

Referenceg 9] contains two results relevant for our discus- is trivial and consists of two well-separated quantum dots

sion. One first observes that, in the Hubbard approximatio ('akln to two well-separated one-electron atanogin a mo-

[t1J?/U decreases exponentially with increasing magneti ecular stat}ew[th one electron in ea_lch dolR/a>1. In th'S.
field or interdot separation. Second, one fids~[t,,|2/U case we may ignore the 'Coulomb |nteract|on. The nonm.ter-
>0, for all magnetic fields and interdot separations acting ground state consists of degenerate singlet and triplet

Equation(5) incorporates three- and four-body spin terms, States. . i
The three-body chiral term splits the energy between states In the secon_d spluble limita tw.o-elect.ron artificial atoin .
involving third-order virtual tunneling processes along andWo electrpns lie in one parabolic dot |n_a strong magnetic
counter to the applied vector potential. The phaseg,/®, f'eld' In this case we take/wy> 1 andR=0. Correspond-
is the Aharonov-Bohm phase generated by the virtual curredpgly’ the relatlv_e and: component of the angular momen-
moving around the flux enclosed by the three-site loop. ThdUm commute with the Hamiltonian. At large magnetic fields
chiral term vanishes on bipartite lattices as a result ofVe may project Eq(1) onto the lowest Landau levelLL),

particle-hole symmetnf22]. It plays a particularly active giving
role in triangular lattices, Fig. 2. . o A

While the chiral term vanishes in the zero-field limit, H|w0<w Reo= Yot > VP (6)
four-body terms survive foN>3. Four-body terms have ¢ m=0

been discussed in relation to coupled-quantum-dot systems o ——s -

in a four-site, tetrahedral geometfg0]. In the tetrahedral Where we definey=(%/2)(Vog+4wy—w.) andL, is the total
geometry there are three terms in the sum over four-sit@ngular momentum in thedirection. The second term rep-
loops (three distinct 's) vyielding a particle-exchange- resents the LLL Coulomb interaction, projected onto eigen-
symmetric, four-body contribution to the spin Hamiltonian: Statés Ot relative angular momentum via the projection
~Zijk (- §)(S¢+S). We may, similarly, consider a two- operatorP,,. The coefficients/,, are the Haldane pseudopo-
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tentials [24] which, for the Coulomb interaction, decrease Z =TI z - 2)° 9)
with increasingm, at largem. The unnormalized eigenstates P i<k ! '
of relative angular momentum are
This is our initial, high-field solution of Eq(1) at arbitrary
) ) N. ¢, reduces to Eq(7) atR=0. ForR/a> 1 the fermions in
Im) = (2, - 2)" exp<_ |z/” -z ) (7)  the statep become localized on each dot leavifigconstant

2 . . .. .
4a ~RP, in which casey, reduces to the limit of two indepen-
dent electrons.

wherez=x+iy. It can be shown directly that, because there is 10 improve the variational states in the low-field regime,

no center-of-mass motion, the above wave functions are alsge/ @0o=1, we note that the Coulomb energy cost may be
lowered by mixing with higher energy states of the quantum
eigenstates of_z, with eigenvaluem. Thus the set of states

. X dot thereby increasing the average interelectron separation.
|[m) form an orthogonal set of eigenstates of E@), with y 9 9 b

) e = vm+ V... The relati | ¢ ¢ In the R=0 limit, rotational symmetry requires the addition
eigenvalues=y,=ymt+ by, 1 N€ relative anguiar momentum ot ot siates with the same angular momentum. This leads to the
the lowest energy state depends on the parameteysamd following trial states:
the form of the interaction. For the LLL Coulomb interac- ’

tion, in the artificial zero-field limit, the lowest energy state =11 (z - 2)P(1 + pbfah ¢ (10)
p ] !
hasm=1. IncreasingB lowers the confinement energy cost j<k

ym~m/B, and raises the Coulomb co¥t,~+B/(m+1),
thereby raisingn by 1. The transition from one eigenstate to
the next occurs wheR,,=E,,.; which, for w./ wg>1, occurs
at magnetic fields

where the variational parametg controls the amount of
mixing with higher energy levels of the quantum dot. The
total raising operatord’=bl+---+b], and a'=al+---+a,
act on the Fock-Darwin basis states centered between the
dots. The single- partlcle raising operators are glvean)y
C 213 —(z 12-29, )/\2 anda =i(z/2-24; )/\2 The above varia-
’ (8) tlonal states include mlxmg with hlgher energy states of the
m+l same angular momentum because the opelddrdoes not
change the angular momentum of a Fock-Darwin state. They

where Vy,=V,/(€?/4mza) and C=4mehi32wim’ e /2 For will be tested in Sec. IV.
hwy=3 meV we findC[T¥?]~1.2. The stategm) are sym-
metric (antisymmetri¢ with respect to particle exchangenif [l. SPIN-BASED QUANTUM DOT QUANTUM BITS
is even(odd). The total wave functiond[|#) ® [\),] must be
antisymmetric. Therefor@\), is spin singlet(triplet) for m
even (odd). Here, the indexm may be interpreted as the
number of zeros or vortices attached to each electron, allo
ing us to assign a vorticity to each spin state.
We now construct variational states which reproduce the
Texp<—if eﬁ(t)dt)P\(t, =0,

Gate operations on single and multispin qubits rely on the
adiabatic evolution of the spin state under the unitary time
evolution operator defined in terms of the appropriate spin

V\1-|amllton|an[eg Eq.(5)]:

exact results discussed above and the low-energy physics of (11

the intermediate, physical parameter regime as welk

~ 1 andw./ wy~ 1. The composite fermion theof?5] of the  where7 indicates time ordering ant the duration of a gate
fractional quantum Hall effect offers an accurate variationalpulse. The qualitative spin physics captured by the spin
ansatz describing two-dimensional electron systems at higRamiltonian, Eq.(5), therefore plays a crucial role in defin-
magnetic fields. A composite fermion is the bound state of aing gates formed from coupled quantum dots. Concurrently,
electron and an even number of quantum-mechanical vortithe orbital states Eq10) can be used to calculate the param-
ces of the many-body wave function. The corresponding oreters in Eq.(5) and their regime of applicability. In forming
bital wave function i§17,25 =7J¢, where¢ is a weakly  quantum gates out of coupled, single-spin quantum dots we
interacting fermion state.J a Jastrow factor, ands the  study modifications to the Heisenberg paradigm and its im-
highly correlated state of electrons. In isotropic, spinless sysplications for qubit proposals in three different systeiws;
temsJ attaches an even number of vortices to the fermionswo strongly coupled quantum dot®) three simultaneously

in the antisymmetric staté yielding an antisymmetric elec- weakly coupled quantum dots, af@) four simultaneously
tron wave function. In anisotropic systems with additionalweakly coupled quantum dots.

quantum numbers one may bind an everodd number of
vortices to each particle while preserving the antisymmetry
of the overall wave functiof26,27]. Applying the composite
fermion ansatz to the Hamiltonian studied here we téke Solid-state qubit proposals often make use of the Heisen-
be the noninteracting ground state of Et). A more rigor- berg exchange interaction between spins in neighboring
ous, but technically demanding, approach for large systemguantum dots. The exchange interaction offers the potential
should use the weakly interacting ground state instead. Wkor a universal set of quantum gates through the adiabatic
also take7=1II; (7 -2zJP, wherep=0,1,2,...,giving operation of the exchange gate witth] or without [14]

A. Two quantum dots
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single-spin operations. Application of the exchange gate tderm in Eq.(5) actsnoncollectively The chiral and Zeeman
the two-dot system will be an adiabatic process if the energyerms remove all degeneracies required to construct a qubit
between the lowest, unwanted excited state of the doublenmune to fluctuations in the perpendicular magnetic field.
guantum dot and the highest spin state storing quantum irExplicitly,

formation is much larger than the exchange splittirdg,

>J;;. This condition is satisfied in the spin Hamiltonian re- Biss =

gime in Fig. 1 but is not necessarily met if we change the X124N)3 = T(Z)\ - DV3\)s, (13
parameters in Eq(l) slightly becausel has exponentiaB

andR dependence at largg@ andR, respectivel\f9]. In fact, where By,3= (12t3/U)sin(2m®,,5/ ) in the casel; =J and
experiments on coupled quantum dots, while pushing fon[,[._|:t for all i andj !
ij .

shorter gate time&nd hence larger exchange energresy Following Ref.[32] we may now, using EQ5), construct

indeed I(_eave the border defined by the solid line in Fig. 1a projected spin Hamiltonian which acts on the encoded ba-
[9,24]. It is therefore important to understand the Iow—energysis stated\ )y

Hilbert space of the coupled-dot system whi=A. We
will show, for N=2, that the variational states discussed in 5

Sec. Il B capture the magnetic field dependenceAofAt ﬁstz Fa(AD, AP, 43) .S+ L?)Buifgza (14)
large fields the variational states describe a bound state be- 2

tween electrons and vortices of tiNebody wave function. .

We find the smallesA, A, to occur when the vorticitfthe ~ whereS is a pseudospin operator defined by projection onto
number of vortices attached to each electrof the first  two encoded basis statea,)y in our case.Fy is a basis-

excited states mix to form an anticrossing. dependent effective magnetic field which may be tuned
through suitable manipulation ¢f and dependsnly on the
B. Three quantum dots coefficients of the two-body terms in E¢p). Fy may be

o calculated from these two-body terms using the exchange
An accuratg charactenzatl(_)n of the double—dqt sy;tem _albperator:Eij =(4S,-S;+1;)/2, wherel is the identity opera-
lows us to define the appropriate parameter regime in whmlgor_ As is apparent from Eq(14), yi,s yields aneffective

to study several Heisenberg coupled quantum dots and aSSPaeman splitting between the encoded basis states of the

ciated magnetic field effects. Two spin states of a three'hree-spin qubit. In Sec. IV B we verify numerically that the
quantum-dot structure can serve as an encoded qubit. V\Zq_l

! . ] i i iral term is actually sizable in the spin Hamiltonian regime
first construct encodings which protect quantum mformatlonof Fig. 1. We therefore arrive at a revealing inconsistency in

. i hich q trati h i king a decoherence-free subsystem from a looped, three-
noise operator which, as a demonstration, we choose O.bsepin system. Part of our motivation for simultaneously cou-
collective or Zeeman-like. We then search for degeneracie ling three spins was to remove the Zeeman term as a po-
in the set of states generated by th_ese hoise operators. TFbential noise source. However, we have only enhanced the
S=1/2 sector of theN=3 system provides a simple example system’s dependence on the external magnetic field by cou-
of a quantum-dot decoherence-free subsydt2®30. Con-

ider th lect fined to th tum dots wh £Iing the three spins in a loop.
sider three electrons confined {o three quantum dots WNOS€ |, e event that we may control the flux through the

system makes use of a fourfold degeneradg=a0 to protect
quantum information stored in the qubit defined by,
where\N=0 or 1, from fluctuations in the Zeeman energy.
The four states arg31]

from a comparison with single-spin operations using local-
ized magnetic fields. The three-spin object encompasses a
larger area than a single spin and therefore eases constraints
on locally applied magnetic fields used in applying single-

-1 spin gates. Second, exchange-only encoded universality
Nz @ =12 == (LI + YT+ ®TLL), schemes require a large overhead and extremely accurate ap-

V3 plication of the exchange gate to implement elementary al-

L gorithms. The chiral term may offer some relief form these

_ = A+1 2-\ constraints using algorithms which include the new, encoded

Mo® [+112)= (11D + 1D + 01T, Pauli-2 gate In EG(14).

(12

where w=exp(2#i/3). The second term in the tensor prod-
uct denotes the total component of spin. We now turn to the case of four coupled spins, the lowest

Up to second order, EJ5) allows an encoding against number of physical spins supporting a decoherence-free sub-
Zeeman-like or collective noise. By collective noise we space[33,34. We begin with four quantum dots containing
mean an interaction between spins and the environmerour electrons coupled with equal tunnelifig|=t, including
which acts the same on all spins. By construction, the Zeediagonal terms. Figure 2 shows a two-dimensional sche-
man term may alter the energy difference between the statesatic. With equal tunneling we find a decoherence-free sub-
in Eq. (12) with differentS,, but not\. However, the chiral space among tw&=0 states corresponding }o=0 and 1:

C. Four quantum dots
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A, = + + A+1 + A+1 Single Qubit Encoded Hamiltonian Spin Basis
IN)a ITTlii 1L ;; [TLTLy+ o™ HLTLT) Py s o
+® M1+ ™ MTLLT). (15) A Fy 8+ Y3, s
Including all single- and two-body-spin terms in E¢), _ —
these states show no explicit magnetic field dependémce i:i Fi 85— Cune (5, +3,v3) A
cluding the magnetic field dependence|qﬂ discussed in _ R
Sec. Il A). As for the three-body term, the spin Hamiltonian m Fy-5 A
must respect the intersite exchange symmetry inherent in the - _ )
lattice. In the basi$\), we find Fo-8+5 DByeeiuS, +9 (¢/U%) |\

\5 FIG. 3. Table showing possible multispin qubits in the left col-
ik ® [[\y=—(@n -1 Bij€i|\)a, (16 N gp pinq
ing Xik © \)s 4 ( )ijEA ik€ija[Ma, (16) umn, the encoded Hamiltonian in the center column, and the corre-
) o sponding two-state basis in the right column. In the left column
wheree; is the four-component Levi-Civita symbol and the arrows denote single spins while lines indicate tunneling channels

sum excluded =i, j, or k. As expected, the sum vanishes which are all equal except in the last row. The Hamiltonians in the
with tunneling|t;|=t for all i andj even in a uniform, exter-  center column are written in terms of the encoded Spitefined via
nal magnetic field. the two encoded basis statagy. For N=2 the basis states are the

Four-spin terms have a simple representation in[iie  S,=0 singlet and triplet states while fo¥=3 and 4,]|y is defined
basis. The last sum in Eq5), in the caselt;|=t, involves  in Egs.(12) and(15), respectively. The effective magnetic fiellg
three sums over four-site loops. Writing the four-spin termsdepend only on the coefficients of two-spin Heisenberg terfs,
with the exchange operator, we find that they act as the idenn Eq. (5). The factors3 andC depend on the coefficients of three-
tity operator in the basis defined by,. In this case we have and four-spin terms in Ed5) and therefore the flux through closed
a simple, projected Hamiltonian: loops.

Hyzg = Fo(AD, AP, 49) .5, (17 @y /Dy<1. HereAs the area of the triangle defined by the
vertices 123 in the square geometry of Fig. 2. This configu-
ration is depicted in the last row of Fig. 3. The table summa-
rizes five-spin-cluster qubit configurations and their encoded
Hamiltonians written in thé\|y basis. From the table we see
that configurations which break intersite symmergws 2,

It is important to note thaF, depends only on coefficients
from two-body spin terms of the fori§;-S;. The three-and
four-body spin termgand therefore external sources of flux
through closed loopsdo not affect the symmetric four-dot
structure with diagonal tunneling. They must maintain inter—3 and 5 have non-Heisenberg terms which depend on the
site exchange symmetry imposed by the lattice, precisely thﬁbx through closed loops

symmetry exploited in constructing the decoherence-free '
subspace ;.

We now consider symmetry-breaking effects. In the ab- IV. NUMERICAL RESULTS AND DISCUSSION
sence of diagonal tunneling ;.,=0) only the external loop,
around vertices 12341 in Fig. 2, in the last sum of E).
survives. The external loop alone breaks particle-exchan
symmetry. The additional term can be writte€® X S,) - (S5

The accuracy of our perturbative and variational analyses
may be checked numerically. We study two systems in par-
gtefcular, two electrons in two adjacent quantum dots and three

. . electrons in three adjacent quantum dots arranged in a tri-
X 84) +(8;1-$,)(S3-Sy), excluding two-body spin terms. The angle. We diagonalize the full Hamiltonian Ed) in several

entire looped term, including two-body spin terms, contrib- o qimes includingR/a~ 1 andw,/we=1. We construct the

utes the following term tdy-4:~C1234 S+ V3S). From this  matrix representindd in the Fock-Darwin[35] basis cen-
term we see that in the square geometry fourth-order termgred between the dots. Previous studies have employed di-
not only modify the Heisenberg interaction, and hence theagonalization of similar Hamiltonians using several dot-
effective magnetic fieldr,, but also add an effective in-plane centered basis states. This technique requires lengthy
field in the||, basis. The size of this effective in-plane field numerical routines to generate an orthogonal set of Wannier
depends on the real external flux piercing the squaréasis state§9,39. The limited number of Wannier basis
plaquette througit; o34~ COS 27D 1534 D). states allows for high accuracy only in a regime where the
Additional symmetry breaking occurs during gate pulsesCoulomb interaction may be treated perturbatively. However,
crucial to encoded universality schemes. In order to implein our treatment we are able to access the strongly correlated
ment Pauli gating sequences on the encoded four-spin quhiégime by including up to~10° Fock-Darwin basis states
we must tund~, and therefore the tunneling matrix elementswith z component of angular momentum less than 12. We
tj. When applied to a decoherence-free subspace an encodese a modified Lanczos routine to obtain the ground and
Pauli gate composed of Heisenberg terms must, by construexcited states. This technique yields thatire spectrum.
tion, involve a spin-specific asymmetry. An example wasHowever, here we focus on the lowest energy states. The
considered in Refl.15]: |tyq|=|tyg =|ts4|=t(1+5), whereSis  energies foN=2 converge to within JueV upon inclusion
a number and all othdt;;|=t. The sum over chiral terms in of more basis states and may therefore be considered exact.
Eq. (16) then induces an energy  splitting While, for the N=3 system, the ground- and excited-state
247m3tJSAB,/ (Udy) between the states with=0 and 1 for  energies converge to within geV upon inclusion of more
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E-Egng [meV]
=3

Em-Egnd [meV]

Overlap
=4
i

0.5

BT FIG. 5. The top panel plots the energy of the four lowest states
of Eg. (1) obtained by exact diagonalization as a function of mag-
FIG. 4. Energy of the four lowest states of a single quantum doketic field with the ground-state energy set to zero. The separation
(R=0) with two electrons under a perpendicular magnetic field inpetween parabolic dots is no®=10 nm. The parabolic confine-
the lowest Landau level plotted as a function of perpendicular magment parameters ifwy=3 meV. Transitions between spin singlet
netic field. The ground-state energy is set to zero and the paraboligng triplet states remain. The bottom panel shows the overlap of the
confinement parameter fswy=3 meV. The ground state, with or- exact ground state and the trial states given by(Bx.The number
bital wave function given by Ed~), alternates between spin singlet of yortices attached to each electron increases with magnetic field
(S=0) and triplet(S=1) as a function of magnetic field. The spin from p=0 to 3. As in Fig. 4, singlettriplet) states correspond to
singlet and triplet states correspond to even and odd angular M@yen (odd) values ofp.
mentum quantum numbers, respectively.
suggests that quantum information stored in the two lowest
basis states giving a strict variational bound to the accuracygnergy spin states in neighboring quantum dots becomes sus-
However, the slow convergence is due to corrections in theeptible to leakage when the dots are brought very close
overall confinement energy cost, 10 meV. The energy dif- together.
ferences quoted here converge much fagte? ueV) as we We now turn to the case with finite interdot separation
increase the number of basis states and may therefore >0 outside of the LLL. The top panel in Fig. 5 shows the
considered exact, with a few exceptions. These exceptionf®ur lowest energies obtained from exact diagonalization of
occur near degeneracy points where our Lanczos routine r&d. (1) versus magnetic field. The energy zero is taken to be
quires a prohibitive number of steps to distinguish betweerihe ground state. We have chosen an interdot separation of
two states whose energies are withiu8V of each other. In  R=10 nm, confinementw,=3 meV, andS,=0. The energy
these rare, but important, cases we extrapolate between tiéthe first excited state gives the effective exchange splitting
nearest convergent energies. which changes sign through successive spin transitions at
each cusp. The results are qualitatively similar to the results
shown in Fig. 4 but are entirely unexpected. Vortex attach-
ment nonperturbatively lowers the Coulomb energy of uni-
We seek a quantitatively accurate description of theform states but does not necessarily apply to highly disor-
boundaries and underlying physics of all regions depicted imlered systems. Yet the intriguing oscillations in the effective
Fig. 1. While we find that the perturbative expansion in Secexchange interaction seen in Fig. 5 suggest just this and
I A is valid for R/a>1 andw./wy=3, the remaining por- therefore require further study.
tions of the parameter space involve long-range correlations. In comparing Figs. 4 and 5 we find further differences. At
Using theN=2 system we check the accuracy of the varia-low fields, the top panel of Fig. 5 correctly shows a spin
tional ansatz discussed in Sec. Il B in several limits. We exsinglet ground state aB=0 rather than a triplet state as
pect that the variational states discussed there should remashown in the unphysical, LLL limit of Fig. 4. Most impor-
valid for N> 2, with appropriate modifications. tantly, the degeneracies in excited stateB=0, 2.4, 5.2, and
We begin with theR=0, lowest-Landau-level limit dis- 8 T begin to lift, giving Ani,>J. As opposed to the level
cussed at the beginning of Sec. Il B. The LLL approximationcrossing in the single-doR=0 case discussed earlier, the
cleanly brings out the physics behind the high-field spin tranbreaking of rotational symmetry forces an anticrossing
sitions in two-electron quantum dots but, as we have disamong the first and second excited states. At small to inter-
cussed, needs modification at low magnetic fields. Figure 4nediate interdot separationR/a<1, the higher excited
plots E,—Eynq versusB for the four lowest energy states  states are perturbed single-dot states with a nearly uniform
=1, 2, 3, and 4 withS,=0. The parabolic confinement pa- charge density.
rameter ishwy,=3 meV. Cusps appear &f,—Ey,=0 where A large anticrossing among the two lowest excited states
the ground state changes B, signaling a change in the protects the quantum information stored in the entangled
number of vortices per electrofiNote that the relation for state of two strongly coupled quantum dots. Experimental
B EQ.(8), is valid for w./ wy>1.] The ground state clearly uncertainties irR andw, may eventually lead to the strongly
shows a number of spin transitions with increasing magneticoupled regime. Careful study of the states making up the
field [36]. Furthermore, the second-highest excited state beanticrossing is therefore crucial. The bottom panel of Fig. 5
comes degenerate with the third at level crossings which oglots the overlap of the exact ground state and the variational
cur at magnetic fields between ground-state transitions. Thistate Eq.(9) at R=10 nm. Triplet(single) spin states corre-

A. Two quantum dots
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FIG. 6. The top panel shows the same as Fig. 5 but for a dot

separation oR=20 nm. The bottom panel shows the energy of the . -
theN=2 and 3 systems defined by the density offhbody ground

trial states in Eq(10) as a function of magnetic field. The ground- X
state energy is set to zero. The energies are obtained by orthogongfate- The dots represent the centers of the parabolic quantum dots.

izing the four modified variational states wiff=0, 1, 2, and 3 and | he patterned region for thé=2 system defines an aréd sym-

diagonalizing Eq.(1). The variational parameteg is chosen to metric about the axis joining the two dots. For te3 system the
minimize the total energy. triangular region encloses an ar@aA correction to the triangular

region, shown by the three patterned additions, defines an area

spond to oddeven values ofp, as in theR=0 case. The =3A'/2.
overlaps drop to zero when the particle-exchange symmetry
of the orbital wave function changes. We have checked byry in confinement acts as a perturbation. We may rewrite the
direct calculation of the density that, lB~9 T, the modi- confinement potential up to an overall constant:
fied magnetic length has become small enough to localize the
electrons on each dot. The surprisingly high overlaps prove
that vortex attachment is a valid ansatz even in the highly
localized regime. At large dot separatioRs=40 nm, the
Coulomb interaction lowers to a point where the splitting The second term breaks rotational symmetry and forces an
between spin states is near zero at lagklowever, we have anticrossing among the lowest two excited states. It is impor-
checked that even here the overlaps remain large. Anothéant to note that the two lowest excited states involve states
important feature of Eq(9) is that thep=0 state does not of even vorticity. Symmetry allows these two states to mix,
take into account the Coulomb interaction. The overlaps nea¥ielding an anticrossing, as one may find by diagonalizing
B=0 are correspondingly lower. the rotational symmetry-breaking term in the even-vorticity

The top panel in Fig. 6 plots the exact energy spectrum, agubspace. The matrix elements ane*wSR/2<¢p,||xl|
in Fig. 5, but forR=20 nm. Here we see that, at large mag-+[X2l|#;), where, neaB=2.4 T for examplep andp’ may be
netic fields, the large separation between electrons localize@ or 2. These matrix elements give an anticrossiig,
on each dot suppresses the exchange splitting. However, sev-m*w(z)RaH. This is in contrast to ground-state transitions
eral spin transitions still remain. The bottom panel in Fig. 6between states with even and odd vorticity. Here the states
shows the energy of the four variational states @) with ¥, and ¢,,1 cannot mix, allowing the exchange splitting to
p=0, 1, 2, and 3. We take the ground state to be the zero inhange sign.
energy. We obtain the energy by orthogonalizing the four We stress that the top panel in Fig. 6 is obtained by di-
variational states and diagonalizing K@) in this four-state agonalization of Eq(1) with ~10° basis states while the
basis. These variational states are an improvement over Etpwer panel is obtained by the same method but with four
(9). They include mixing with higher energy levels of the physically relevant basis states. The agreement breaks down
dots. The mixing is tuned with the variational parameger at larger fieldsB~5.6 T, because we have not included the
We minimize the energy with respect ® at eachB. The  p=4 variational state in the excited states. Inclusion of varia-
parameters of the ground state varies from 0.02B+0 to  tional states with large is necessary at larger fields. The
0.0006 atB=5 T, showing that large magnetic fields all but excellent agreement obtained thus far demonstrates that the
suppress Landau level mixing. The exchange splitting obplethora of spin transitions in strongly coupled double quan-
tained with the variational states compares well with the extum dots originates from a swapping of the particle-exchange
act value. Furthermore, in the ran§s=1-4 T, thesecond symmetry associated with vortex attachment.
excited state captures the essential features of the corre- We may parametrize the high-field effects of vortex at-
sponding exact results. Rotational symmetry breaking forcetachment in an effective spin Hamiltonian based on the
the higher excited states to open an anticrossing observeabove numerical results and our analysis in Sec. Il B. Note
nearB=0, 2.4, and 4.3 T. The states at the anticrossings itthat the exchange interaction changes sign in a roughly peri-
Fig. 6 are similar to the states making up the level crossingsdic fashion as each electron captures an additional vortex.
in Fig. 4. For example the electrons in the first excited statd’he vortex may be interpreted, by equating its Berry’s phase
at 2.4 T in Fig. 6 form a two- and zero-vortex mixed state in[37] to an Aharonov-Bohm phase, as additional f[2§].
a 56% to 44% ratio, as opposed to the ground state whicfihe confinement, determined lay, fixes the area defined by
holds one vortex per electron, to within 98%. To evaluate théhe electronic wave functiorh’, depicted schematically by
anticrossing explicitly we note that f&*/a<1 the asymme- the patterned region on thé=2 side of Fig. 7. From Fig. 5

FIG. 7. Schematic diagram showing the area enclosing flux in

*
m w3

2

Vpeo(r) = (Ir[>=1xIR). (18)
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we note that we may count the number of vortices attached 02f ' ' s—3/z; 7

to each electron using the flux through the double-dot sys- | ... . -= 812

tem,BA’/®,. The parametef’ is fixed by requiring that the o.1F —=L

net Berry’s phase swept out by one quasipartithe elec- |l T e

tron plus the attached vorticesircling the other quasiparti- -

cle as it encloses the double-dot system]BA’'/dy—(N Wt ]

—-1)p], must vanish forp=2 [38]. The net flux includes the w

effective flux due to the Berry’s phase associated with attach- OdF . b .3 meV ]

ing p vortices to each electron. The data in Fig. 5, for ex- ok \\"-‘ coa i

ample, show that @=5.4 T the flux through the double-dot Sl

system exactly cancels the effective flux due to the attached R

vortices (two for each electron By fixing A’ in this way, B

mBA'/ @, increases by integer multiples af as each elec- FIG. 8. Energy of the three lowest energy states versus perpen-

tron captures an additional vortex. We may then write a pagicular magnetic field obtained from exact diagonalization of Eq.

rametrized spin Hamiltoniatup to second order itf/U) (1) in the S,=1/2 sector forN=3. The centers of the lateral para-
~ bolic quantum dots lie at the vertices of an equilateral triangle with

H# =23,58, - S,, (19) 40 nm side lengths. The dotted line has total sp#r8/2 while the

~ ) dashed|\=1)3) and solid lines|\=0)3) haveS=1/2. Theenergy
where J;,~ (2t°/U)cog mBA' /Do) We determineA’ from o the S=1/2 state corresponding t{®); is set to zero. The top

our numerical data and set|t;,. We have, for simplicity, panel has a parabolic confinement paraméigy=6 meV while the
excluded the Zeeman term. From Fig. 5, for example, wéottom panel hasw,=3 meV. The change in confinement changes
find the center of th@=2 region to beby/A’=5.4 T which  the effective area of the system and, as a consequence, the position
givesA’ ~800 nnt. The parameteA’ suggests confinement of degeneracy points betwe@&=1 and 3 T.

of an appreciable part of the single-electron density to within

a radius of~10 nm. When we insert the magnetic field de- symmetry of the triangular confining potential. The next
pendence9] of || and U into HY we obtain qualitative highest state ha$=3/2 which corresponds to |§[?/U
agreement with our numerical estimateslpfat all magnetic  ~(.13 meV. Above this state we firidot shown the higher
fields. But, without the cosine ternt?/U remains positive  excited states to lie above 1 meV.
for all B. We focus first on the low-magnetic-field data. As we in-
crease the magnetic field the magnetic vector potential
breaks the symmetry of the confining potential leading to a
splitting between the two lowest states. The splitting is linear
We now study theN=3 system where the quantum dots in B, for small B, as in Eq.(13). We expect such a simple
lie at the vertices of an equilateral triangle with side lengthsoehavior because the two-body terms in Es). have weak
R=40 nm[15]. We know from the previous section that a magnetic field dependence at low magnetic fields, through
large interdot separation will prevent unwanted excited statelj|?/U. Alternatively, the chiral term annihilate§=3/2
of the quantum dot from approaching the spin states definingtates. Only two-body terms in Eq5) affect the S=3/2
our qubit. We further expect the analysis of Sec. Il A to holdstate. We therefore expect that the energy ofSh&/2 state,
only for low magnetic fields while, at large fields, electronsEs-3,, decreases very slowly with increasing magnetic field
capture vortices and initiate spin transitions. As a conseat low fields (while Es3,~E|,, should increase linearly
quence, an external magnetic field has three noticeable eHere the contribution from the chiral term is sizable and is,
fects. (1) At low fields the length scala is set by confine- for the parameters studied here, larger than the Zeeman split-
ment and the flux enclosed by the triangular loop will ting of a single spin in GaAs=0.028B[T] meV.
dominate the magnetic field dependence of the states in Egq. We now turn to the high-field effects in Fig. 8. For highly
(12). (2) At higher fields the length scale shrinks with in- localized, noninteracting particles we expect the flux3in;
creasing magnetic field. The interdot tunneling matrix eleto be BA/®,, whereA is simply the the area of the triangle
ments will be suppressed as the electrons become more ldefined by the centers of the three quantum dots. However,
calized on each dot3) The electrons will simultaneously in our system, the parabolic confinement will not perfectly
capture vortices to screen the increased Coulomb interactiofocalize the interacting electrons. The area swept out by a
The latter effect, as for thBl=2 system, should, in the ap- closed loop around the bulk of the wave function will en-
propriate parameter regime, lead to oscillations in the totatlose an area larger than the triangle. Figure 7 shows a sche-
spin of the ground state as a function of magnetic field. ~ matic representation of the new, larger area encompassed by
Figure 8 shows the energy of the lowest states obtainethe N=3 system. The additional area due to the expansion of
from exact diagonalization dfi in the S,=1/2 sector as a the wave function is=3A’/2, whereA' is the area enclosed
function of magnetic field. The confinement parameter isby an equivalenN=2 system. We may use our analysis from
taken to beiwy=6 meV for the top panel and 3 meV for the the previous section to determine the area added to the tri-
bottom panel. The energy of the stdike=0); is set to zero. angle. The net Berry’s phase associated with virtual tunnel-
At B=0 the two lowest energy states have total sfin ing processes of quasiparticles around he3 system will
=1/2 and aredegenerate, as expected from the reflectiorbe

B. Three quantum dots
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chitecture. We have also discussed an interesting and non-
2m o on. (N-Dp]. (200 trivial level-crossing periodicity in the singlet-triplet energet-
0 0 ics. Precise knowledge of the associated, low-energy Hilbert
The additional flux will appear in the flux-dependent factorsspace could, in principle, be used to protect quantum infor-
in Eq. (5). We rewrite the three-spin Hamiltonian in the casemation encoded in the electron spin.
of equal tunneling (excluding the Zeeman, extended Hub-  Generalizing our exact diagonalization technique to spin-
bard, and fourth-order terms cluster qubits formed by a two-dimensional array of electron
spins localized in tunnel-coupled quantum dots, we show
@ 242 (27D that the chiral term associated with the quantum phase
Heir = JZ S-S+ 0z M T, S1-$ X S5, picked up by an electron enclosing the magnetic flux through
" 0 closed loops must be included in the spin Hamiltonian. The
(21) existence of the chiral term in the looped spin-cluster qubits
~ modifies the Heisenberg interaction and is in some sense a
where J~ (2t?/U)cod 7d,)/ D). We defined,=BA’ and  decoherence mechanism for the simple exchange-gate archi-
®5~B(A+3A’/2). Note that the integgp, in Eq.(20), does  tecture(since the two-qubiswAP operation is no longer de-
not contribute to the chiral term. Therefore, vortex attachtermined by just the Heisenberg exchange Hamiltonide
ment does not directly affect the flux in the chiral term. Fur-Show in this paper how precise knowledge of the cluster
thermore, the cosine in the first term parametrizes larged€0metry, combined with exact diagonalization, provides us

magnetic-field behavior while the sine in the second, chiralVith the multispin Hamilt_orr:ian WhiChr:NOUIg'be re_quireld for
term, was derived using perturbation thedﬂﬁf) allows usto Juantum computation with two- or three-dimensional spin-

. i : . cluster qubits. Strictly one-dimensional spin-cluster qubits,
predict the degeneracy point of the three-spin term using thg, : . :
degeneracy point of the two-spin term with the following Wihich do not have any topological looping, have a stz

nonzerg chiral contribution and are therefore described, for

BA 3BA

energies: the most part, by the Heisenberg Hamiltonian in the appro-
6t2 7Dy 6\"§t3 2P 5 priate subspace of magnetic field, confinement, and dot-
Essn—Ejp.=—co i geometry parameters.
s=327 Hj0); = 7 o U2 o , _ S ) _
0 0 We emphasize that in this article we have considered a

(22) relatively simple model, defined by Eg4) and (2), for de-
termining the applicability of the Heisenberg interaction in
describing the exchange-gate operation. Differences in the

) (23) confinement potential may change some of the quantitative
aspects of our results but as long as the confinement consists
L . of smooth potential wells, there should be qualitative agree-
From_ the dotte(/JI line in the_top panel of Fig. 8 anq E20) ment. The '?<ey issue we have addressed i?w this work igs the
we find ®o/4A’~2.2T. Using Eq.(23), we predict the  oqine of validity of the Heisenberg exchange-gate operation
dashed line to cross theaxis neaB~1.5 T, where we take i, “coypled semiconductor quantum-dot quantum-computer
A to be the area of an equilateral triangle with 40 nm sidey chjtectures as appropriate, for example, in GaAs-based
lengths. A similar analysis yields good agreement for theyuantum-dot systems. In practice, we have obtained the con-
bottom panel of Fig. 8. ditions and constraints necessary for a coupled-qubit system

The slope of the energy splitting between the two lowesto behave as a coherent molecule as opposed to two decou-
states in Fig. 8 allows us to estimatteU for this system pled atoms. Adiabatic tuning between these two regimes en-
using Eq.(22). t/U is largest and only weakly magnetic field ables the swap idea underlying the exchange gate. Of course,
dependent at lovi. TakingA+§A’ from above and =0, we the issue of He atom-to-molecule transition in coupled-
obtaint/U=0.09 for the top panel and 0.19 for the bottom quantum-dot systems as well as our discussion of the ex-
panel which shows that our expansiontity is consistent. change oscillations in the coupled-dot system as a function
For N=3, only odd powers of;; allow linear magnetic field of the applied magnetic field have implications beyond quan-
dependence in the splitting, showing that, excluding doubléum computation. For example, a direct experimental obser-
occupancy, the magnetic field dependence captured by thetion of the exchange oscillations is of interest in quantum-
chiral term is accurate up t6(t5/U%). dot physics.

Finally we mention that there are many other factors be-
yond the scope of our work.e., beyond the model defined
in Egs. (1) and (2)] which affect the operation of the ex-

We show in this work that the Heisenberg model descripchange gate. We cite three such example of recent interest
tion of the qubit coupling in the quantum-dot spin-quantum-which have been considered in the literature: inhomogeneous
computer architecture applies only in a limited regime of themagnetic field effect§39], spin-orbit coupling[40,41, and
parameter space. In the GaAs-quantum-dot exchange-gateultivalley quantum interferendet2].
architecture, the Heisenberg spin Hamiltonian description
applies only in the intermediate reginfa=1 and w./ wq ACKNOWLEDGMENTS
=1. Using the exact diagonalization technique one can map We would like to thank J. K. Jain and K. Park for many
out the precise low-lying Hilbert space, and consequently ushkelpful discussions. This work is supported by ARO-ARDA
this information in the design of the quantum-computer ar-and NSA-LPS.
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