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Probing a topological quantum critical point in semiconductor-superconductor heterostructures
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Quantum ground states on the nontrivial side of a topological quantum critical point (TQCP) have unique
properties that make them attractive candidates for quantum information applications. A recent example is
provided by s-wave superconductivity on a semiconductor platform, which is tuned through a TQCP to a
topological superconducting (TS) state by an external Zeeman field. Despite many attractive features of TS
states, TQCPs themselves do not break any symmetries, making it impossible to distinguish the TS state from a
regular superconductor in conventional bulk measurements. Here we show that for the semiconductor TQCP this
problem can be overcome by tracking suitable bulk transport properties across the topological quantum critical
regime itself. The universal low-energy effective theory and the scaling form of the relevant susceptibilities
also provide a useful theoretical framework in which to understand the topological transitions in semiconductor
heterostructures. Based on our theory, specific bulk measurements are proposed here in order to characterize the
novel TQCP in semiconductor heterostructures.
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I. INTRODUCTION

Quantum critical points (QCP) separate two many-body
quantum ground states distinguishable by a macroscopic order
parameter M [see Fig. 1(a)].1 In Fig. 1(a) the solid curve
denotes a true phase transition line while the dashed curve,
given by kBT ∼ E0 where E0 is the zero-temperature energy
gap, represents only a crossover. The two curves meet at
the QCP at a specific value of the tuning parameter g = gc,
straddling a finite regime in the (T -g) plane usually called the
quantum critical (QC) regime.2 Quite interestingly, at the QC
regime the effects of the zero-T quantum phenomena and the
associated QCP are manifest even at finite temperatures. This
so-called “quantum fan” region, where quantum criticality
manifests far from g = gc at finite temperatures, enables
experimental studies of QCP which are strictly speaking T = 0
phase transitions tuned by the parameter g.

Topological quantum critical points also separate, based
on distinct topological properties, two macroscopic quantum
ground states, although the states in question now have exactly
the same symmetries and thus cannot be distinguished by
any local order parameter or bulk measurements [Fig. 1(b)].3

Frequently, the quantum state on the topological side of a
TQCP can be distinguished by certain nontrivial statistical
properties of its excitations,4–7 as well as a novel ground
state quantum degeneracy which is not associated with any
symmetry in the underlying Hamiltonian.7 An example is
provided by an electron- or hole-doped semiconductor thin
film or nanowire with s-wave superconductivity tuned through
a TQCP by an externally applied Zeeman splitting �. This
system has recently been studied extensively after it was
pointed out by Sau et al.8 that for � greater than a critical
value �c this system supports novel non-Abelian topological
states.9–20 For � > �c, defects in the (proximity-induced)
s-wave pair potential � can support localized topological
zero-energy excitations called Majorana fermions. Majorana

fermions, with second-quantized operators γ satisfying γ † =
γ , follow non-Abelian exchange statistics under pair-wise
exchange of the coordinates.4–7 Majorana fermions have been
predicted to be useful for building a topological quantum
computer which is intrinsically fault tolerant to all local
environmental decoherence.4,7

The existence of Majorana fermions in the defects of �

notwithstanding, � itself remains perfectly continuous and
nonzero on both sides of the TQCP in a semiconductor. This
leads to there being no qualitative difference between the two
states in conventional bulk measurements. Thus, it appears
that simple transport quantities such as resistance are unable
to demonstrate the emergence of the TS state. In this paper we
propose a very specific (and experimentally simple) scheme
for the direct observation of the TQCP in bulk measurements
provided such measurements access the so-called topological
quantum critical regime, which occurs before the system
settles into the TS state at large � > �c. We believe that our
work brings topological quantum phase transitions (TQPT)
in semiconductors explicitly into the mainstream of quantum
critical phenomena, something that was only implicit in
the extensive existing literature on this class of TQPTs in
semiconductors.

II. HAMILTONIAN, TQCP, AND PHASE DIAGRAM
AT FINITE TEMPERATURES

The semiconductor (e.g., InAs) system mentioned above is
mathematically described by the following Bardeen-Cooper-
Schrieffer (BCS)-type Hamiltonian:

H = (ηk2 − μ)τz + � Ŝ · σ + α

2
(k × σ ) · ẑτz + �τx, (1)

where Ŝ is a suitably chosen direction of the applied Zeeman
spin splitting given by � = 1/2gμBB with g the effective
Landé g factor, B the applied magnetic field, and μB the
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FIG. 1. (Color online) (a) Phase diagram associated with a
conventional QCP in the (T -g) plane, where g is the tuning parameter
in the Hamiltonian. Solid curves denote true phase transitions,
while dashed curves denote only a crossover. (b) Finite-temperature
phase diagram associated with the TQCP in a spin-orbit coupled
semiconductor. The tuning parameter � represents a suitably directed
Zeeman splitting. The superconducting pair potential � is perfectly
continuous and nonzero at, and on either side of, the TQCP (T = 0,

� = �c). Consequently, all lines on this diagram are crossover
lines defined by kBT = E0 where E0 is the zero-temperature
energy gap.

Bohr magneton. H is written in terms of the four-component
Nambu spinor [u↑(r),u↓(r),v↓(r),−v↑(r)], and the Pauli
matrices σx,y,z,τx,y,z act on the spin and particle-hole spaces,
respectively. H can describe a 2D system when k = (kx,ky)
is a 2D vector with Ŝ = ẑ, while a 1D structure is described
by choosing k = kx with Ŝ = x̂. Here, η = 1/m∗ with m∗ the
effective mass of the charge-carriers, μ is the chemical poten-
tial measured from the bottom of the top-most confinement
induced band, the Zeeman splitting � breaks the time reversal
symmetry, α is the Rashba spin-orbit coupling constant, and
� is an s-wave superconducting pair-potential proximity
induced in the semiconductor from an adjacent superconductor
(e.g., Al).

The Hamiltonian in Eq. (1) has recently been studied
extensively.8–20 A TQCP exists in this system as the tuning
parameter � is varied through the critical value � = �c =√

�2 + μ2 where the quantity C0 = (�2 + μ2 − �2) changes
sign. For C0 > 0, the (low-�) state is an ordinary, nontopolog-
ical superconductor (NTS) with only perturbative effects from
the Zeeman and spin-orbit couplings. For C0 < 0, however,
the (high-�) state has nonperturbative effects from α, and can
support zero-energy Majorana fermion excitations localized
at the defects of the pair-potential �.8 The parameters for the
TQCP are in the experimentally achievable range, because
for a typical semiconductor wire, say InAs or InSb, because
of a large effective g ∼ 15−50 a moderate magnetic field
B ∼ 0.5 T corresponds to a Zeeman splitting � ∼ 2−8 K.
Noting that μ in Eq. (1) corresponds to the chemical potential
measured relative to the bottom of the top-most confinement
band and � ∼ 1−10 K for an ordinary s-wave superconductor,
a moderate B ∼ 0.5 T should be sufficient to induce the topo-
logical phase transition in the semiconductor. For numerical
calculations in this paper, we have assumed μ = 0 (Fermi
surface at the bottom of the top-most band), � = 0.5 meV,
α = 0.3 meV, so that �c = 0.5 meV. The existence of Majo-
rana fermions at defects, and also the fact that the high-� state
is isomorphic to a spinless px + ipy superconductor,10,21,22

make the high-� state a topological superconductor.

Interestingly, � remains nonzero and continuous across the
TQCP,13,20 so the NTS and TS states break exactly the same
symmetries, namely, gauge and time-reversal. As a result, no
macroscopic local order parameter can differentiate between
the NTS and TS states, and they cannot be distinguished by
any known bulk measurements.

For our present purposes, note that the topological critical
point �c is marked by the single-particle minimum excitation
gap E0 vanishing as a function of the Zeeman splitting. This
can be seen by diagonalizing the Hamiltonian in Eq. (1)
to obtain the lower branch of the quasiparticle excitation
spectrum,

E2
k = �2 + ε̃2 + r2

k − 2
√

�2�2 + ε̃2r2
k , (2)

where ε̃ = ηk2 − μ and r2
k = �2 + α2k2. For � near �c, the

minimum of Ek is at k = 0, and setting k = 0 in Eq. (2), we
find the minimum quasiparticle gap E0 given by

E0 = |� −
√

�2 + μ2|. (3)

E0 vanishes exactly at C0 = 0, which marks the TQCP
separating the NTS and TS states. Note that E0 is finite and
positive for both C0 > 0 (NTS state) and C0 < 0 (TS state).

It is important to note that the system exactly at the
zero-temperature TQCP (T = 0,� = �c) can be thought of
as an s-wave superconductor (� is finite and continuous at
� = �c). This bulk s-wave superconductor, however, coexists
with nodal fermions at k = 0. Since on both sides of � = �c

the ground states are fully gapped, we can construct the
(T -�) phase diagram for this TQCP [Fig. 1(b)] by drawing
two crossover curves marking kBT ∼ E0(�) on both sides of
�c. Note that since � is nonzero everywhere on the phase
diagram, the finite-temperature crossover curves can only be
justified, as we will show below (see the discussion following
Eq. (12)), on the basis of some measurable quantities showing
a pronounced change across these curves.23 Such identification
of crossover curves opens a finite regime in the phase diagram
which we can associate with the quantum critical regime of
this Zeeman-tuned TQCP. The QC regime (and the crossover
curves) can also be understood24 as the regime in which
the system, with increasing length scales, encounters the
thermal length scale [β = (kBT )−1] before it encounters the
zero-temperature correlation length ξ [β < ξ ∼ (� − �c)−1],
which diverges as � approaches �c.

III. BULK MEASUREMENT (ac RESPONSE)

. We now ask what sort of bulk measurements can access
the nodal fermion spectrum and reveal the underlying TQCP at
T = 0. At first glance it may appear that a simple dc resistance
measurement may suffice, because, as a function of increasing
� at low T , one should first see negligible resistance (NTS
state with a gapped spectrum) followed by nonzero resistance
(QC regime with nodal fermions) and finally again negligible
resistance (TS state with re-entrant gapped spectrum). This
idea in practice would not work, however, because in the
presence of a dc voltage, the superconducting condensate will
short the current out even in the QC regime, thus producing
negligible resistance everywhere in the phase diagram with
increasing �.

155302-2



PROBING A TOPOLOGICAL QUANTUM CRITICAL POINT . . . PHYSICAL REVIEW B 85, 155302 (2012)

V I

s-wave SC  s-wave SC

nanowire

FIG. 2. (Color online) Nanowire geometry for identifying the
topological phase transition with increasing Zeeman splitting �. The
nanowire (shown in green) is contacted by two superconducting leads
(blue) which produce the proximity effect. The leads are placed
with a finite potential difference V and the current I is measured.
All quantities V (ω), I (ω), and (ω) are frequency dependent. The
Josephson phase is (ω) = −iV (ω)/ω.

We consider an alternative route to identifying the TQCP:
an ac measurement. For the sake of definiteness, we consider
below (Fig. 2) the ac conductivity across a 1D nanowire
contacted by s-wave superconducting leads which produces
the proximity effect. For ac conductivity measurements,
depending on the frequency of the applied voltage, there
will be significant excitation of the nodal fermions only
when the energy scales corresponding to the frequency or the
temperature become of the order of the single particle gap E0.
The excited nodal fermions contribute to the dissipative (real)
part of the complex ac conductivity, while the superconducting
condensate contributes to the inductive (imaginary) part. Thus,
as a function of increasing � starting from deep in the
gapped NTS state (� = 0), one should first observe negligible,
followed by nonzero, and then re-entrant negligible dissipative
response in ac conductivities. Such a behavior as a function of
� marks a crossover across the dashed curves in Fig. 1(b) and
in turn reveals the underlying zero-temperature TQCP.

For quasi-2D and 3D systems, such a dissipative ac
response of the conductivity due to nodal fermions can be
tracked by electromagnetic absorption experiments.25 In the
present case of a 1D semiconducting nanowire proximity
coupled to bulk s-wave superconductors, such absorption
experiments can be difficult, and another quantity is needed
which nevertheless is still given by the real part of the ac
conductivity suitably defined. Below we show that the ac
Josephson impedance serves this purpose, and it can be easily
measured across a 1D semiconducting nanowire contacted
by s-wave superconducting leads which also produce the
proximity effect (Fig. 2).

IV. ac JOSEPHSON IMPEDANCE

The simplest ac response function that can be measured in
a 1D nanowire in proximity contact with superconductivity is
the Josephson impedance. The linear response of the measured
current I (t) to a sinusoidal voltage V (t) = V (ω)eiωt is written
as I (t) = [χ2(ω) + iχ1(ω)]V (t) where [χ2(ω) + iχ1(ω)]−1 is
the Josephson impedance of the junction26 in Fig. 2. In the
geometry of Fig. 2, when χ2 = 0, the junction behaves like
a conventional nondissipative Josephson junction. However,
when χ2 becomes nonzero, the voltage and current cease to
be completely orthogonal to each other and a finite amount of
power [

∫
dtI (t)V (t)] is dissipated in the junction. For the sake

of brevity, below we will refer to χ2 simply as the dissipative
susceptibility keeping in mind that in reality this is the real
part of the inverse impedance function.

We assume that the time-dependent voltages at the super-
conducting leads are given by VL(x,t) = −V (t)/2 on the left
lead and VR(x,t) = V (t)/2 on the right lead. Correspondingly,
the superconducting phases on the right and the left leads
are φR(t) = −φL(t) = (t)/2, where (t) is the total time-
dependent phase difference between the leads. As is well
known, V (t) and the phase variation (t) are related by the
Josephson relation V (t) = ̇(t)/2.

The time-dependent BCS Hamiltonian describing the
nanowire is given by

H1 =
∫

dxψ†[−∂2
x + V (x,t) − μ + �σx − iασy∂x

]
ψ

+
∫

dx[�(x)eiφ(x,t)ψ
†
↑ψ

†
↓ + H.c.], (4)

where the pairing field �(x) is proximity induced and
therefore is assumed to be nonzero only in the parts
of the nanowire in direct contact with the superconduct-
ing leads. ψ† = ψ

†
s (x,t) creates a fermion in spin state

s = ↑, ↓ and spin indices are implicitly summed over.
V (x,t) is the voltage difference across the wire. By ap-
plying the gauge transformation ψs(x,t) → ei�(x,t)ψs(x,t),
V (x,t) → V (x,t) + ∂t�(x,t), A(x,t) → A(x,t) + ∂x�(x,t),
and φ(x,t) → φ(x,t) + 2�(x,t) to the Hamiltonian in Eq. (4),
and by choosing �(x,t) = −φ(x,t)/2, H1 becomes

H1 =
∫

dxψ†[( − i∂x − A(x,t))2 − μ + �σx

+ασy( − i∂x − A(x,t))]ψ + �(x)[ψ†
↑ψ

†
↓ + H.c.], (5)

where A(x,t) = −∂xφ(x,t)/2. Since the voltage difference
V (x,t) drops smoothly across the junction with width W ,
we choose a phase dependence φ(x,t) = (t)[2erf (x/W ) −
1]/2 so that φ(x,t) increases from −(t)/2 for x � W to
(t)/2 at x � W .

Because of the spin-orbit coupling term in Eq. (4), the
current operator J takes the following modified form:

J (x,t) = −i(ψ†∂xψ − ∂xψ
†ψ) − αψ†σxψ. (6)

H1 can then be rewritten as,

H1(t) ≈ H10 +
∫

dxJ (x,t)A(x,t), (7)

(to linear order in A) where H10 is H1 at A = 0.
The conductance of the wire is calculated from the current

J (x1,t) at a position x1 > W (outside the junction) in response
to a perturbation

∫
dxJ (x,t)A(x,t). In the limit of a small

junction (W → 0), we can approximate the perturbation as
(t)J (0,t)/2 and the measured current as J (0+,t). Therefore,
choosing a time-dependent voltage V (t) = V (ω)eiωt corre-
sponding to a phase (t) = V (ω)eiωt/(iω) and using the
fluctuation-dissipation theorem, the real (dissipative) part of
the current response function, χ2(ω) = Re[δJ (0+,ω)/δV (ω)]
is given by

χ2(ω) = 1

ω
Im

[ ∫ ∞

0
dte−iωt 〈[J (0,0),J (0,t)]〉

]
. (8)

We use Eq. (8) to calculate the dissipative susceptibility χ2.
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FIG. 3. (Color online) Dissipative susceptibility χ2 (G0 =
2e2/h) as a function of frequency ω. If experimentally ω � T is
satisfied, χ2 should be plotted with the Zeeman splitting, see Fig. 4
and the discussion following it. χ2 increases at lower frequencies as
the Zeeman splitting � is tuned through the TQCP (� = �c = 0.5
meV). For � away from �c, in both the NTS and TS states the
low-frequency [ω � E0(�)] dissipative response is negligible. As
the single-particle gap E0(�) closes at k = 0, the threshold frequency
for the dissipative susceptibility approaches zero at the TQCP.
Parameters are � = 0.5 meV, α = 0.3 meV, μ = 0, and T = 0.1 meV
corresponding to 1 K. For reference we have used 1 meV = 250 GHz.

Substituting the operators J (0,t) from Eq. (6) and calculat-
ing the relevant matrix elements we obtain,

χ2(ω) = π

2ω

∑
n,m

∫
dkdk′

(2π )2
|〈n,k|m,k′〉|2(k + k′)2

× [f (En,k) − f (Em,k′)]δ(Em,k′ − ω − En,k). (9)

Here, f (E) = (eE/T + 1)−1 is the Fermi occupation function,
and En,k and |n,k〉 are the Bogoliubov-de Gennes (BdG) eigen-
values and eigenstates of H1,0, respectively. This expression is
manifestly a bulk property which is real and positive only for
positive frequencies.

The dissipative response χ2 vanishes sufficiently far from
the transition, both in the TS and NTS states, for ω smaller
than the gap E0. To see this note that the integrand in Eq. (9)
is nonzero only when Em,k′ − En,k = ω and Em,k′ is empty
together with En,k being filled. At T = 0, this can only happen
when the single-particle gap E0 is less than ω. The behavior
of χ2 as a function of ω for fixed values of � is shown in
Fig. 3. As is clear from this figure, both the NTS and the
TS states are nondissipative for frequencies smaller than a
threshold set by E0(�). As � is tuned toward �c from either
side, E0(�) decreases and the threshold value of ω for the
onset of dissipation decreases to zero at the TQCP. Therefore,
in the experiment suggested in Fig. 2, at sufficiently low
T ,ω � � and away from the TQCP, one would expect the
measured current and the applied voltage to be out of phase by
π/2 so that the power dissipated is zero. As one approaches
the TQCP, at some value of �, ω will surpass E0(�) and
a component of the current will become in-phase with the
applied voltage. This will lead to a finite power dissipation,
signaling the vicinity of the underlying TQCP. The succession
of behavior with increasing �—nondissipative, followed by
dissipative, and then re-entrant nondissipative response—of
the Josephson current versus voltage is a clear signature

of the underlying zero-temperature TQCP. The re-entrant
nondissipative response for � > �c is also a clear signal
of re-entrant high-Zeeman-field superconductivity, which can
only be topological in nature.20

V. SCALING OF DISSIPATIVE SUSCEPTIBILITY

For analytical calculations of the scaling functions, we first
need to derive the low-energy effective theory valid in the
vicinity of the TQCP. To do this we recall that the TQCP
is given by the minimum excitation gap E0 vanishing as a
function of �. Near the transition, only one pair of eigenstates
of the BCS Hamiltonian in Eq. (1) vanishes near k = 0.
Therefore, near the transition, for the low-energy effective
theory we can “integrate out” the other pair of Bogoliubov
eigenstates and focus only on the lowest pair that vanishes at
�c. The pair of eigenstates n = 1,2, whose energies vanish
linearly near k ∼ 0, form a pair of chiral Majorana fermion
operators γn(x) = ∫

dkeikx
∑

s[un,s(k)ψ∗
s (k) + vn,s(k)ψs(k)].

Here, [un,↑(k),un,↓(k),vn,↓(k),−vn,↑(k)] are the BdG eigen-
states n = 1,2 with eigenvalues ±Ek (see Eq. (2)) for � = �c.
The low-energy effective action valid near the TQCP can
then be written in terms of the Dirac fermions �†(x) =
γ1(x) + iγ2(x) as

S =
∫ β

0
dτ

∫
dx[�†∂τ� + iv(�†∂x�

† + H.c.) + δ�†�],

(10)

where δ = (� − �c) is the gap which takes the system away
from the phase transition, and v = α�2/(μ2 + �2) is a
velocity determined by the spin-orbit coupling constant α. It
follows that the dynamic critical exponent z, which relates the
spatial and temporal correlation lengths ξ and ξτ by ξ = ξz

τ , is
1. Since the energy gap δ vanishes linearly with �, ξτ ∼ δ−1

also diverges linearly with the Zeeman coupling, and therefore
the mean field correlation length exponent ν = 1. A similar
critical theory for this TQCP consisting of a single species of
gapless Fermion can be calculated in D = 2 in an analogous
manner. In D = 1 this is the same as the critical theory of
the Ising model in a transverse field, which in one dimension
can be mapped into Eq. (10) by a nonlocal Jordan-Wigner
transformation.1

Note that the nodal quasiparticles constitute a quantum
critical phase which is essentially a noninteracting gas of
two species of chiral Majorana fermions defined by γ

†
i (k) =

γi(−k),i = 1,2. The Gaussian critical point implied in Eq. (10)
is stable against interactions because all four-fermion inter-
action terms can be shown to be irrelevant.1 Furthermore, the
effective action in Eq. (10) involves only one species of regular
fermion � that becomes gapless at the critical point. This is a
key difference between the Dirac spectrum found here and the
analogous Dirac spectrum of the nodal quasiparticles in, say,
dx2−y2 superconductors or HgTe quantum wells27 where there
are two species of gapless fermions corresponding to the spin
degeneracy. Thus, our system avoids the fermion doubling
theorem consequently giving rise to Majorana fermions and
topological superconductivity whereas these other systems
do not.
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In the vicinity of the TQCP, with the effective critical theory
in Eq. (10), the dissipative susceptibility χ2(ω) for small ω and
δ (ω,δ much smaller than the gap at k = kF ) takes a universal
scaling form. This can be obtained by defining the rescaled
variables, k̃ = k/T , Ẽk = Ek/T , ω̃ = ω/T , and δ̃ = δ/T .
The energy in Eq. (2) then takes the form Ẽ =

√
v2k̃2 + δ̃2,

while the matrix element |〈n,k|m,k′〉|2 is invariant under the
rescaling. The dissipative susceptibility in the vicinity of the
TQCP takes the scaling form,

χ2 = T 2f (ω/T ,δ/T ), (11)

where the scaling function f is given by

f (x,y) =
∑

m,n=±

∫
dk̃(Ẽnk̃ + x)

8πxv4k̃′ |〈n,k̃|m,k̃′〉2(k̃ + k̃′)|2

×
[

tanh

(
Ẽnk̃ + x

2

)
− tanh

(
Ẽn,k̃

2

)]
. (12)

Here Ẽ±k̃ = ±
√

k̃2 + y2 and k̃′ in the integrand is implicitly
given by the equation Ẽm,k̃′ = ω + Ẽn,k̃ .

The existence of such a scaling function suggests that for
ω � T (ω/T → 0), χ2/T 2 = f (ω/T ,δ/T ) depends only on
δ/T . In this limit, the scaling function in Eq. (12) becomes
f (0,y) ∼ (1/π )y2e−y , which becomes appreciable only when
the thermal energy scale kBT ∼ δ. This justifies our identifica-
tion of kBT ∼ E0 curves [near the TQCP, E0 = � − �c = δ,
see Eq. (3)] with the appropriate crossover curves in the
finite temperature phase diagram in Fig. 1(b). For ω � T ,
the argument ω/T in the scaling function f approaches ∞
and must drop out. Thus, in this limit χ2/T 2 is a function only
of (ω/T )(δ/T )−1 = ω/δ. This implies that near T = 0, the
dissipative susceptibility becomes appreciable only when ω

approaches δ (and above). This is shown in Fig. 3. In general,
the validity of such a scaling function representation becomes
clear from Fig. 4, where χ2/T 2 as calculated from Eq. (9) is
plotted for fixed ω/T and compared with the scaling function
Eq. (12). The collapse of the data for different ω and T (but
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FIG. 4. (Color online) Dissipative susceptibility χ2(T ,ω,δ) shows
scaling in the vicinity of the topological critical point δ = � − �c =
0. Appropriately scaled susceptibility data for ω/T = 0.5, calculated
using Eq. (9) for different values of ω and T , coincide and collapse
on the scaling function Eq. (11) in the region near the critical point
(δ ∼ 0). The slight asymmetry of the data about δ = 0 is due to the
asymmetry of the zero-temperature gap E0(�) about � = �c (δ = 0).

with the same fixed ratio ω/T ) on the scaling function (dashed
curve) plotted as a function of δ/T is a clear and definitive
experimental signature of the topological quantum critical
point at � = �c.

VI. FINITE-T CROSSOVER IN SUPERCURRENT
RESPONSE

So far we have concentrated only on the dissipative part
of the Josephson response of the nanowire bridge between
the two superconducting leads in Fig. 2. The dissipative
part allows us to access the nodal quasiparticles across the
QC regime. The low-T finite-frequency response indicates
an underlying gap collapse separating a fully-gapped s-wave
superconductor at low � from another fully-gapped s-wave
superconductor at high � that has identical broken symmetries
(pair potential � remains the same). Although such a gap
collapse at isolated points in the momentum space gives
indications of an underlying TQCP, the evidence nonetheless
is still circumstantial. In particular, no information about
the specific topological nature of the critical point and the
high-� TS state can be derived from the behavior of the
dissipative response across the QC regime. We now consider
an indicator of the topological character of the underlying
zero-temperature critical point from the behavior of the
corresponding supercurrent response across the QC regime
at finite temperatures.

The experimental setup in Fig. 2 used to measure the
finite-frequency dissipative response can be used to measure
the supercurrent response as well. When the voltage V is
time-dependent V (t) = V (ω)eiωt , the supercurrent response
is given by the quantity χ1(ω). This is expected to behave
as LJ /ω throughout the phase diagram (LJ is the effective
inductance associated with the Josephson junction), and
therefore cannot distinguish between the NTS and TS states.
Let us therefore consider the limit ω � V (ω) (where the
linear response function χ1(ω) no longer determines the
supercurrent response) and in particular the case when V (t)
is time independent. Even if V (t) is time independent, the
Josephson phase  still linearly depends on time, (t) = V t .
In this case, the Josephson current I (t) through the wire
bridge connecting the superconducting leads in Fig. 2 should
oscillate sinusoidally with a frequency determined by the
applied dc voltage. Below we refer to this frequency as the
ac Josephson frequency and derive its crossover behavior
across the QC regime at low and finite T . At T = 0, such an
experiment has been proposed11,12,28,29 to uniquely identify the
topological character of the nanowire TS state. We show that
the ac Josephson frequency also shows a crossover across the
kBT ∼ E0 crossover line separating the QC regime and the TS
state in Fig. 1. At this crossover a peak at a fractional frequency
in ac Josephson effect becomes dominant and the conventional
Josephson frequency, characterizing the NTS state at small
�, only makes a subdominant contribution. Tracking the ac
Josephson response across the QC regime on the same setup
as that for the dissipative response can uniquely identify the
underlying TQCP and the subsequent TS state at large �.

The current I (t) across a nanowire junction between two
superconducting leads with a voltage difference V (t) is given
by the relation I (t) = 1

V (t)
∂Etot
∂t

, where Etot is the total energy
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in the system. The energy of a Josephson junction can be
decomposed into two parts, Etot = Ejunc + Eqp, where Ejunc is
the energy stored in the localized states around the junction
while Eqp is the energy dissipated into the quasiparticles
that propagate away from the junction. The quasiparticle
contribution to the current at low frequency is dissipative and
can be described by the dissipative response function given
earlier. The energy stored in the junction Ejunc is a function of
both the energy of the Andreev bound state εABS(), which
depends on the phase difference , and the occupation number
n = 0,1 of the Andreev bound state. Specifically, shifting the
occupation number n(t) of the junction switches the sign of
Ejunc (because of particle-hole symmetry) so that Ejunc(,n) =
−(−1)nεABS(). The usual Josephson supercurrent carried
by the Andreev state in the ground state (i.e., n = 0) is
dissipationless and is given by ISC() = − ∂εABS()

∂
, while the

true current through the junction I (,n) = ∂Ejunc(,n)
∂

has an
additional factor of (−1)n.29 For a fixed dc voltage, (t) = V t

and therefore

I (t) = I [(t),n(t)] = (−1)n(t)ISC(V t). (13)

In the NTS state of Eq. (1) the numerical results for εABS can
be fit by,

εABS() = E0

√
1 + D cos , (14)

while in the TS state it crosses zero energy and can be
approximated by

εABS() = E0

√
D cos



2
, (15)

where D < 1 is the effective interface transparency.30 While
these spectra (together with the particle-hole symmetric
partners) look similar, particularly in the regime D → 1, they
are fundamentally different in terms of fermion parity. In
particular, for a fixed fermion number n = 0 in the NTS state
the energy of the junction Ejunc(,n = 0) remains negative
for all values of the phase , while in the topological state the
state with a fixed fermion parity n crosses zero energy. The ac
Josephson current in the presence of a dc voltage qualitatively
distinguishes between the NTS and TS states. In the NTS state
we get a ground-state (i.e. n = 0) current,

I [n(t) = 0,t] = �
D sin V t√

1 + D cos V t
, (16)

which has harmonics only at multiples of V . In contrast the
current in the topological phase is given by the relation

I [n(t) = 0,t] = �
√

D sin
V t

2
(17)

and has a frequency of V/2.
The above picture for the supercurrent in terms of Andreev

bound states is only valid for biases that are smaller than
the bulk gap of the system, i.e., V � E0. For higher biases,
V � E0, the harmonically varying superconducting pairing
term �eiV t can excite a quasiparticle out of the Andreev bound
state into the quasiparticle gap making the Andreev bound state
ill defined. Therefore the definition of the Josephson effect is
valid for voltages significantly smaller than the gap.

For voltages that are smaller than the gap (i.e., V � E0),
the Josephson current has a sign that is determined by the

occupation of the Andreev bound state, namely

I (t) = (−1)n(t)ISC(V t), (18)

where n(t) is the occupation of the Andreev bound state.
Here we assume n(t) to change instantaneously between the
values 0 and 1 and vice versa. Fermion parity conservation
requires that such a change be accompanied by the emission
of a quasiparticle which costs energy εqp > E0. Thus the
transition from the state n = 0 to n = 1 requires an energy
of εqp + εABS() while the reverse transition requires an
energy εqp − εABS(). At zero temperature such excitations
are forbidden, and the Josephson effect operates without
fluctuations of n(t) as discussed before. At finite T , the energy
required for the above transitions is provided by thermal
fluctuations either in the form of phonons or quasiparticles.
In the following we refer to such excitations as phonons even
though the results will apply to more general excitations. For
simplicity, we assume that a phonon above the required energy
threshold will flip n(t) whenever it is energetically allowed.
For temperatures T � E0, the density of phonons with energy
ε incident at the junction is given by the Bose-Einstein
distribution nBE(ε) = 1

eε/T −1 . Assuming that the phonons move
with the sound velocity vk , the rate of transitions at the junction
for energy bigger than ε is given by

ρphonon(ε) =
∫ ∞

ε

dε′ vk(ε′)D(ε′)
eε′/T − 1

∼ T e− ε
T (19)

for E0 � T . Here we have used that D(ε) = [ dε(k)
dk

]−1 and
vk = dε(k)

dk
. As expected the rate has the dimensions of energy.

The corresponding flip rates can then be written as

P [n(t) = 0 → 1] = T e−(E0+εABS[(t)])/T (20)

P [n(t) = 1 → 0] = T e−(E0−εABS[(t)])/T . (21)

In the low-temperature limit (T < E0) one can apply a
voltage V such that E0(1 − √

D) > V > T e−E0/T . In this case
the Josephson oscillation frequency is much bigger than the
flip rate for n(t). For runs of I (t) where n(t) changes only after
many periods of oscillation of ISC(t), the Fourier transform
should show a pronounced peak at ω = V for the regular
Josephson effect (on the NTS side) and ω = V/2 for the
fractional Josephson effect (on the TS side). In the temperature
range T � E0 one is restricted to low voltages, V < T e−E0/T ,
since V is bounded by E0. In this case the dynamics of the
quasiparticle state n(t) is rapid compared to the phase and one
can assume that n(t) is in local equilibrium, so that the resulting
current I (t) will be a 2π -periodic function of the phase
 = V t . To show the crossover in the frequency dependence
of the Josephson current across T ∼ E0, we calculate I (ω)
as the Fourier transform of I (t) in Eq. (14) and calculate the
average 〈|I (ω)|2〉 where the average is taken with respect to
random realizations of n(t) according to Eqs. (16) and (17). In
Fig. 5 we show the evolution of the frequency dependence of
the ac Josephson response at fixed low T for various values of
δ/T (a horizontal cut across the QC regime in Fig. 1(b). The
finite-T Josephson response shows a pronounced crossover
across the kBT ∼ E0 curve separating the QC regime from
the TS state at large �. At this crossover, frequency peaks
indicating an underlying zero-T Josephson period-doubling
transition start making a dominant contribution, and the usual
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FIG. 5. (Color online) Spectral decomposition of current
〈|I (ω)|2〉 as a function of rescaled frequency ω/|δ| where δ =
� − �c at several values of δ characterized by δ/T . The applied
dc voltage is taken to be V = δ/2 so that the ac Josephson current
in the nontopological phase (i.e., δ < 0) shows a peak at ω = δ/2
characteristic of the conventional ac Josephson effect. At and above
δ/T ∼ 1 (i.e., the crossover curve kBT ∼ E0 for δ > 0) a peak
appears at ω = δ/4 which signals the appearance of the fractional
Josephson effect and an underlying T = 0 TQCP at δ = 0.

Josephson frequency becomes subdominant. Such a crossover
in the superfluid response can serve as an unambiguous
marker of an underlying zero-T TQCP in the semiconductor
heterostructure.

VII. SUMMARY AND CONCLUSION

TQCPs separate two macroscopic ground states which have
the same symmetries and hence cannot be distinguished by
an order parameter. Consequently, the topological and the
nontopological states on the two sides of a TQCP cannot
in general be distinguished by any bulk measurement, e.g.,
no thermodynamic quantity diverges at the TQCP. To solve
this problem, we propose the use of specific aspects of the
topological phase transition itself as an identifier. We consider
the TQCP in a spin-orbit coupled semiconductor (e.g., InAs)
thin film or nanowire on which s-wave superconductivity
is proximity induced. The TQCP in this case is tuned by
an external Zeeman splitting �, and for large � the ground
state of the system is a topological superconductor. We ask if
straightforward bulk transport measurements can help identify
the emergence of the TS state with increasing values of �. We
show that this is indeed possible and establish that the finite-T
ac Josephson impedance along with the supercurrent response
of the semiconductor can access the topological quantum

critical regime which precedes the TS state in the finite-T
phase diagram (Fig. 1).

We do this by first identifying the entire QC regime
with a bulk s-wave superconductor coexisting with gapless
nodal fermions at k = 0. Since both the nontopological
superconducting state at low � and the TS state at high �

are fully gapped, both these states are devoid of quasiparticles
at sufficiently low T ,ω � E0, where E0(�) is the Zeeman-
tunable single-particle energy gap. The real part of the inverse
ac Josephson impedance (χ2), which gives the dissipative
response of a nanowire contacted by two superconducting
leads (Fig. 2), is therefore negligible away from the TQCP
for ω,T less than E0 in both the NTS and TS states. As
the TQCP is approached with increasing �, the Josephson
impedance for a given frequency picks up as the frequency
becomes comparable with the decreasing values of the energy
gap. In the low-temperature QC regime in the finite-T phase
diagram, the impedance follows a scaling function involving
T ,ω, and δ = � − �c, which can be experimentally verified
to help reveal the underlying quantum critical point. When
the Josephson impedance for a given frequency decreases
again with increasing values of � past �c, it indicates the
emergence of the TS state on the high-Zeeman-field side
of the critical point. The finite-T superfluid response in
the setup of Fig. 2 also shows a pronounced crossover at the
kBT = E0 curve on the large-� side of the phase diagram
[Fig. 1(b)]. At this crossover, the usual Josephson current
frequency in response to a dc voltage becomes subdominant,
and pronounced peaks at a fractional frequency dominate
the spectral decomposition of the Josephson current (Fig. 5).
Such a finite-T crossover in the superfluid response can be
observed in the same setup as in Fig. 2 and can serve as an
unambiguous indicator of the underlying T = 0 TQCP in the
semiconductor heterostructure. Our work demonstrates that a
bulk experimental characterization of TQCP may indeed be
possible although it may require a careful analysis of specific
properties of the topological phase transition as we have carried
out here for the TS state in semiconductor heterostructure
systems, with the real significance of our work lying in the fact
that no TQCP has yet been clearly identified experimentally
in any system.
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