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We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic
Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our
study is focused on the temperature range of current experimental interest. We employ two theoretical methods—
dynamical mean-field theory and high-temperature series—and perform comparative benchmarks to delimit their
respective range of validity. Special attention is devoted to understand the implications that thermodynamic
properties of this system have on cooling. Considering the distribution function of local occupancies in the
inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e.g., temperature)
can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution
of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable.
Finally, we provide a simplified picture of a recently proposed cooling procedure, based on spatial entropy
separation, by applying this method to an idealized model.
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I. INTRODUCTION

One of the main ongoing efforts in cold atom gases is the
investigation of strongly correlated phases. Our theoretical
understanding of strongly correlated phases is, in general,
far from complete. For example, computational studies, of
fermions in particular, are severely limited. As a result,
the possibility of performing analog simulations of model
Hamiltonians, using cold atoms in optical lattices [1–5], has
raised great hopes. The remarkable controllability of cold
atom systems, allowing, for example, the application of a
specific time-dependent perturbation, has also opened the
possibility of studying strongly correlated systems in regimes
inaccessible to solid-state materials, especially away from
equilibrium.

Among all model Hamiltonians relevant to the physics
of strong correlations, the Hubbard model has attracted the
greatest attention. On one hand, this model is the simplest
to have important competition between kinetic and potential
energies. It also plays in the field of strong correlations a
somewhat analogous role to the one played by the Ising model
in classical statistical mechanics. On the other hand, its physics
is of direct relevance to high-temperature superconductivity, a
phenomenon still veiled in mystery. In fact, this new field often
dubbed “condensed matter of light and atoms” was pioneered
by the theoretical prediction [1] and experimental observation
of an incompressible regime, characteristic of a Mott insulator,
and of the transition between this phase and itinerant ones, first
for bosons [6] and recently also for fermions [7,8]. For recent
reviews (see, e.g., Refs. [4,5]).

In order to make progress toward the ultimate goal of
performing analog simulations of model Hamiltonians, a
good synergy between experimental efforts and theoretical
investigations is crucial. For example, theoretical inputs are
useful in establishing maps, in parameter space, of the location
of the different phases present in a realistic setup which

takes into account the trap-confining potential. Moreover,
experiments are currently confronted with the great difficulty
of cooling fermions in optical lattices to sufficiently low
temperatures to reach many interesting strongly correlated
phases. This relevant temperature range is significantly lower
than the one corresponding to mere quantum degeneracy.
Theoretical control over these issues is greatly needed and
requires a quantitative understanding of the thermodynamic
properties of the Hubbard model, both for the homogeneous
system and in the presence of a trap.

In this article, we perform a comprehensive study of
the thermodynamic properties of the homogeneous three-
dimensional (3D) fermionic Hubbard model, and of cold
fermionic atoms in a three-dimensional optical lattice sub-
jected to a trapping potential. We focus on the range of
temperature which is of direct interest for current experiments
as well as for the next generation of experiments. Particular
emphasis is put on aspects related to cooling of the system.

The main theoretical technique used in the present study
is dynamical mean-field theory (DMFT). This approach
(reviewed, e.g., in Ref. [9]) is a controlled approximation
which is able to capture the competition between the kinetic
energy that tends to delocalize atoms over the whole lattice,
and the repulsive potential energy that prevents atoms from
occupying the same site, hence promoting localization. We
also use another theoretical approach, namely high-order high-
temperature series expansions [10–13]. One of the goals of the
present article is to delimit, in parameter space, the respective
range of validity of each of these approaches, and to provide
a benchmark for their use through quantitative comparisons.

This article is organized as follows. In Sec. II, we define
the model considered in this article, specify notations and
conventions, and briefly outline the theoretical methods used.
In Sec. III, we provide detailed results for the thermodynamics
of the homogeneous Hubbard model in three dimensions.
Finally, the effect of the trapping potential is considered
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in Sec. IV, with several applications geared toward cooling
fermionic cold atom systems.

II. MODEL, METHODS, AND CONVENTIONS

Cold fermionic gases with two hyperfine states loaded in
an optical lattice potential can be described in a wide range
of parameters by the fermionic Hubbard model [1,14,15]. The
model Hamiltonian is given by

H = −J
∑

〈j,j ′〉,σ
(c†j,σ cj ′,σ + H.c.) + U

∑
j

n̂j,↑n̂j,↓

−µ
∑
j,σ

n̂j,σ +
∑
j,σ

V (rj ) n̂j,σ , (1)

where c
†
j,σ is the creation operator of a fermion with spin σ at

site j and n̂j,σ = c
†
j,σ cj,σ is the density operator at site j . rj

is measured in units of the lattice spacing. The spin σ =↓ , ↑
labels the two hyperfine states of the atoms, and 〈j,j ′〉 labels
neighboring sites.

The first term in the Hamiltonian describes the kinetic
energy of the atoms with J the hopping amplitude between
nearest-neighbor sites. In this paper, we mainly consider a
three-dimensional cubic lattice and use the half-bandwidth 6J

as our energy units. The second term represents the s-wave
scattering between fermions in different hyperfine states, and
its strength U is proportional to the s-wave scattering length
which can be tuned over a wide range using a Feshbach
resonance. We often use a grand-canonical description of the
system in which the filling can be adjusted by the chemical
potential µ. The last term in the Hamiltonian represents the
external trapping potential. Aspects related to this trapping
term will be discussed in more detail later.

We investigate the properties of the system in a moderately
high-temperature regime, typically kBT /6J >∼ 1/10, or β6J <∼
10 where β ≡ 1/kBT is the inverse temperature. This is the
temperature regime of interest in current ultracold quantum
gases experiments [16]. Also one should note that we often
use kB = 1.

At moderate temperature and commensurate filling (one
atom per site) the homogeneous model displays a crossover
between a liquid phase at weak interaction and an incompress-
ible regime at larger interaction. The latter is characterized
by suppressed density fluctuations and is a Mott insulator.
The properties of these two phases will be discussed in detail
in the next sections. A simple picture of these two regimes
can already be obtained by considering the extreme limits of
vanishing interaction and vanishing hopping. In the first case,
the system only consists of a mixture of noninteracting free
fermions. The fermions are delocalized and form a Fermi sea.
In the case of vanishing hopping, the so-called atomic limit,
the system consists of disconnected sites, and the problem of
a single site can be solved. The atoms localize and a Mott
insulator forms at half filling.

The atomic limit can be seen as the zeroth order term in
a high-temperature expansion of the grand potential, � =
− ln (Z)/β, in βJ , where Z = Tr exp(−βH ) is the grand

partition function. The series for the grand potential in a
uniform system (V = 0) can be written:

−β�̃ = ln z0 +
∞∑

m=2

(βJ/z0)mX(m)(w,ζ ), (2)

where ζ = exp(βµ) is the fugacity, �̃ ≡ �/N , w =
exp(−βU ), and z0 = 1 + 2ζ + ζ 2w is the partition function
of a single site in the atomic limit. The atomic limit can be
improved by systematically calculating [10–13,17–19] higher
order series coefficients, X(m). Thermodynamic quantities at
high temperatures can be accurately derived from leading
terms in Eq. (2).

For intermediate couplings and temperatures, the solution
of the Hubbard model is highly nontrivial. In this article,
we mainly use dynamical mean-field theory [9] to explore
this regime. DMFT is an approximate method in which
the lattice model is replaced by a self-consistent impurity
model. This model can be solved using highly accurate
numerical algorithms such as the strong-coupling CT-QMC
algorithm [20] which we use in the present work. Although
approximate, DMFT is a controlled approximation: it is
exact in both noninteracting and atomic limits, and bridges
the gap between the two limits. Furthermore, it becomes
mathematically exact in the formal limit of infinite lattice coor-
dination. Physically, DMFT neglects spatial correlations, but
treats accurately local quantum fluctuations. Besides DMFT,
we also use high-order high-temperature series expansions
[10–13,17–19]. In fact, one of the aims of this article is
to provide benchmarking of DMFT in the high-temperature
domain from comparison with these series. More details on the
regions of validity of the two methods are given in Sec. III C.

Finally, at low temperature (β6J >∼ 16), a phase transition
into an antiferromagnetically order phase occurs [15,21]; this
regime will not be considered in the rest of this paper.

III. HOMOGENEOUS HUBBARD MODEL

In this section we focus on the properties of the homoge-
neous Hubbard model. We discuss in particular the density,
the double occupancy, and the entropy in this model. These
quantities are very important in the characterization of ultra
cold quantum gases. The effect of the trap will be considered
in Sec. IV.

A. Density, double occupancy, and entropy

The physics of the competition between kinetic and poten-
tial energy in the Hubbard model is exemplified by the behavior
of the density per site nj = 〈nj,↑ + nj,↓〉 as a function of the
chemical potential µ. For simplicity, since we are considering
the homogeneous system, we drop the site index in this section.
At low enough temperature, this quantity has a qualitatively
different behavior for weak and strong interaction (Fig. 1). At
weak coupling (cf. U/6J < 1 in Fig. 1), n(µ) has a smooth
evolution from n = 0 for µ 	 −6J to n = 2 for µ 
 6J + U .
In this case, the compressibility κ = ∂n/∂µ is always finite
when 0 < n < 2. In the opposite limit of strong coupling
(cf. U/6J > 2 in Fig. 1), the potential energy disfavors the
presence of two fermions on a single site and n develops a
plateau around µ = U/2. On this plateau, characteristic of
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FIG. 1. (Color online) Density n versus chemical potential µ

for different interaction strength U and at fixed inverse temperature
β6J = 10 (DMFT). For large interaction strength a clear Mott plateau
of filling n = 1 develops.

the Mott-insulating state, the compressibility κ vanishes in
the zero temperature limit. As the chemical potential must be
of the order of U to overcome the potential interaction and
to generate doubly occupied sites, the central plateau widens
with increasing interaction.

Increasing the temperature causes a softening of these
features. Figure 2 shows the density plotted at kBT /6J = 1.

At weak interaction strength, thermal excitations reduce
the slope which characterizes the variation of the density with
chemical potential. For strong interactions, large temperatures
of the order of U (the Mott gap) are needed to generate
thermal excitations and to destroy the Mott plateau. One
can see comparing Figs. 1 and 2 how the plateau found at
kBT /6J = 0.1 for U/6J > 2.5 disappears at high temperature
only leaving behind an inflection in the U/6J = 5 curve.

The double occupancy d = 〈nj,↓nj,↑〉 (Figs. 3 and 4) offers
another perspective on the Mott phenomenon. This quantity
is particularly interesting as in cold atom systems it can be
directly measured [22]. Hence, understanding how double
occupancy varies is very useful to characterize the state of
an experimental system. Furthermore, this quantity is directly
related to the potential energy of the system which is given
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FIG. 2. (Color online) Density n versus chemical potential µ

for increasing interaction U and fixed inverse temperature β6J = 1
(DMFT). Only a reminiscent behavior of the Mott plateau is left for
large interaction strength.
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FIG. 3. (Color online) Double occupancy d versus chemical
potential µ at fixed inverse temperature β6J = 10 and different
values of the interaction strength U (DMFT).

for a site by Ud. In Fig. 3, we display the behavior of d as
a function of the chemical potential µ. At weak coupling,
d tracks the behavior of the density (for the noninteracting
system, d = n2/4) and the two quantities contain essentially
the same information. However, for large coupling, d is
strongly suppressed when the chemical potential is lower than
the potential energy U , and increases steeply in the region
µ >∼ U , precisely the region where the density increases above
unity. This qualitative difference between weak and strong
coupling is well apparent on Fig. 4 where we plot d versus
n. For U/6J = 0.5, the curve is nearly quadratic while for
U/6J = 5 the double occupancy d is close to zero for n < 1
and linear for n > 1. The behavior of d at strong coupling is
to be contrasted with the behavior of the density. For strong
coupling, n presents a plateau at n ∼ 1, and hence can be
used to determine the chemical potentials for which n drops
below unity as well as for which n exceeds unity. Instead, d is
suppressed in the whole region µ <∼ U , and is only sensitive to
the point at which n exceeds unity. This is advantageous when
it comes to experimentally detecting the Mott state [10,23]. In
the inset of Fig. 4, we also display a plot of d/n as a function
of n.

0 0.5 1 1.5 2
n

0

0.2

0.4

0.6

0.8

1

d

U/6J=0.5
U/6J=1
U/6J=1.5
U/6J=2
U/6J=2.5
U/6J=3
U/6J=5

0 0.5 1 1.5 2
n

0

0.1

0.2

0.3

0.4

0.5

d/
n

FIG. 4. (Color online) Double occupancy d versus density n

at fixed inverse temperature β6J = 10 and different values of
the interaction strength U (DMFT). (Inset) d(n)/n at the inverse
temperature β6J = 10 and different values of the interaction strength
U (DMFT).
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FIG. 5. (Color online) Entropy per site s versus chemical potential
µ at the weak interaction strength U/6J = 0.5 for different values of
the inverse temperature β (DMFT).

Another quantity of fundamental importance is the entropy
as preparation of cold atom systems is often done almost
adiabatically. Therefore, the entropy of the system, rather
than the temperature, is a conserved quantity which can be
used as a constant to characterize the system evolution. We
calculate the entropy by integrating a fit to the DMFT energy
data starting from infinite temperature. The high-temperature
regime (β6J < 1) is approximated using a second-order high-
temperature expansion.

In the weakly interacting regime (Fig. 5), the entropy per
site s has a simple evolution with temperature and chemical
potential: it is maximal at µ = U/2 and decreases mono-
tonically with increasing |µ − U/2|. With decreasing tem-
peratures, s(µ) decreases uniformly over the whole chemical
potential range.

In the strongly correlated regime (Fig. 6), s(µ) presents
nontrivial features. Already at relatively high temperatures,
the entropy has two maxima located approximately at µ = 0
and µ = U , while it has a minimum at the particle-hole
symmetric point µ = U/2. From an atomic limit point of
view, the presence of these two peaks in the entropy at µ = 0
and µ = U is easily interpreted. These two chemical potential
values correspond to the regions where the density crosses over
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s

FIG. 6. (Color online) Entropy per site s versus chemical potential
µ at the strong interaction strength U/6J = 5 for different values of
the inverse temperature β (DMFT). The curves legend is the same as
in Fig. 5.
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FIG. 7. (Color online) Entropy per site s versus density n at
different interaction strengths U and inverse temperatures β (DMFT).
The curves legend is the same as in Fig. 5.

rapidly between n ∼ 0 and n ∼ 1 (µ ∼ 0), and between n ∼ 1
and n ∼ 2 (µ ∼ U ). The charge fluctuations in these regions
are maximal and contribute significantly to the entropy.

The temperature evolution is also interesting (Fig. 6):
the entropy for µ <∼ 0 and µ >∼ U decreases quickly with
lowering T , while in the region µ ∼ U/2 the temperature
dependence slows down and the entropy approaches a finite
value, s(µ = U/2) → ln 2. This value reflects the fact that, in
the Mott insulator regime, the system gets frozen into a local
moment state (with two spin states per site) in a rather extended
temperature range below the Mott gap. Naturally, we expect
that, as the system is cooled down further, the entropy will
eventually decrease again below ln 2 as magnetic correlations
develop between local moments. As DMFT neglects spatial
correlations in the paramagnetic phase, within this theory, the
decrease in entropy only happens right at the Néel transition
where long-range antiferromagnetic order sets in (this Néel
transition occurs at a lower temperature than the ones studied
in the present paper). However, in reality, the entropy will start
deviating significantly from ln 2 above the Néel transition,
as short-range correlations develop [16,24–26]. Nevertheless,
the single-site DMFT description can be regarded as a good
description of the paramagnetic Mott insulator down to a
characteristic temperature. We will see in Sec. III C how
it is possible to evaluate this temperature with the help of
high-temperature series expansions.

In Fig. 7, a similar behavior is observed by plotting the
entropy versus the density. For low interaction strength, a
maximum of the entropy is found at half filling. In contrast, at
large interaction strength and intermediate temperatures, a dip
in the entropy arises at half filling, which is due to the freezing
of the density degree of freedom in the Mott insulator. At low
temperatures, the entropy decreases linearly in temperature for
the liquid regimes away from half filling, while the value at
half filling remains fixed to ln 2 (for a range of temperatures;
see above).

In Fig. 8, we additionally plot the entropy per particle s/n

as this quantity will be useful later on to better understand
the behavior of the entropy in the presence of a trapping
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FIG. 8. (Color online) (Color online) Entropy per particle s(n)/n

at different interaction strengths U and inverse temperatures β

(DMFT). The curves legend is the same as in Fig. 5.

potential. We note in particular that upon dividing the entropy
by the particle number, the entropy per particle decreases with
increasing particle number.

B. Pomeranchuk effect

The double occupancy provides a wealth of information
on the physics of cold atom systems. For example, this
quantity can be used as a thermometer in a certain regime
of temperatures and interactions [16,22,23,27,28]. To obtain a
good understanding of how this quantity behaves in a trapped
system, we first show here the dependence of the double
occupancy on temperature in an homogeneous system (Fig. 9).

For moderate interaction strength, the double occupancy
presents a nonmonotonous behavior at low temperatures. The
appearance of the initial decrease in the double occupancy
with increasing temperature (from T = 0) is analogous to
the Pomeranchuk effect observed in liquid Helium-3 and has
been discussed previously in the half-filled case [15,24,29].
The reason behind this decrease of the double occupancy
with increasing temperature is that the system prefers, when
heated, to localize the atoms. For this localized state, the
(spin) entropy is larger than for a state where fermions
form a Fermi liquid. In this regime, the minimum of d is
determined by the quasiparticle coherence temperature. Since,
in the particle-hole symmetric case, the coherence temperature
decreases with U , the “Pomeranchuk” effect occurs if U/6J is
not too large and disappears in the Mott insulator. Away from
particle-hole symmetry, the system behavior is quite different.
In that case, the “Pomeranchuk” temperature at which d(T )
has a minimum increases with U . We also note that the double
occupancy has recently been studied below and close to the
Néel transition to the antiferromagnetic order [30], a regime
that we do not consider here. In the antiferromagnetic phase,
the coherent alignment of spins causes an increase of the
double occupancy.

As the entropy and double occupancy are related by the
thermodynamic (Maxwell) relation [15],

∂s

∂U
= − ∂d

∂T
, (3)
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FIG. 9. (Color online) (Left column) Double occupancy d as
a function of temperature T for different interactions strength U

(DMFT) (from top to bottom: n = 1, n = 0.8, and n = 0.6). (Right
column) Entropy s as a function of U for different temperatures
(DMFT) (from top to bottom: n = 1, n = 0.8, and n = 0.6). The
inverse temperature β is measured in units of 1/6J .

the Pomeranchuk minimum in d(T ) translates into a non-
monotonous behavior of the entropy as a function of the
interaction strength. For this quantity, a maximum is found
at sufficiently low temperatures. As in the case of the double
occupancy, this effect persists away from half filling (Fig. 9).
We will see later in Sec. IV C the consequences of these
considerations for systems subjected to a trapping potential.

In the strong interaction limit, the low-energy properties
become similar to the properties of the Heisenberg model. The
entropy for this model has been recently studied in Ref. [26].

C. Regimes of validity of DMFT and of high-temperature
series: a comparative study

In this section, we perform a comparative study of the
validity of the two theoretical approximations used in the
present paper: DMFT and high-temperature series. The moti-
vation for doing this is twofold. On the one hand, in regimes
where a converged result can be reliably extracted from
the series expansion (which is an exact technique implying
no further approximation), we can use this comparison to
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FIG. 10. (Color online) Comparison of the results for temperature
dependence of the entropy s and double occupancy d at fixed chemical
potential µ/6J = 4 and intermediate interaction strength U/6J =
2.5 obtained by high-temperature series and DMFT.

benchmark the validity of DMFT as an approximation to the
thermodynamic properties of the three-dimensional Hubbard
model. On the other hand, by comparing different orders of
the series expansion, we can delineate the regime in which this
method can be used reliably and in which regime DMFT is a
better option.

In Figs. 10 and 11, we display the results obtained by the
two methods for the entropy and the double occupancy as a
function of temperature, at intermediate interaction strength,
for two different chemical potentials. Different orders (up
to order 10) of the series expansions are also compared in
these figures. It is immediately clear from these two figures
that the temperature down to which the series expansion can
be safely used, and consequently down to which a reliable
assessment of DMFT can be made, depends considerably on
the value of the chemical potential (or density). For µ/6J = 4
(Fig. 10), corresponding to a quite high density, the agreement
between the different orders of the series expansion, and the
overall agreement with DMFT is essentially perfect over the
whole range of temperatures considered. In fact, only very
small deviations of the second-order expansion can actually
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FIG. 11. (Color online) Comparison of the results for temperature
dependence of the entropy s and double occupancy d at fixed chemical
potential µ/6J = 2.45 and intermediate interaction strength U/6J =
2.5 obtained by high-temperature series and DMFT method.
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FIG. 12. (Color online) Comparison of the results for the entropy
s versus the chemical potential at intermediate interaction strength
U/6J = 2.5 obtained by high-temperature series and DMFT method.

be detected. This agreement provides strong evidence for the
correctness of both methods down to quite low temperatures
in the high-density regime (and by particle-hole symmetry,
also in the low-density regime). In contrast for µ/6J =
2.45 (corresponding to an intermediate filling n ≈ 1.3), it
is clear from Fig. 11 that the different orders of the series
expansion start to deviate from one another already at a
rather high temperature β6J  4. Below this temperature, the
series expansion method becomes unreliable. This breakdown
happens approximately at the same temperatures for the
entropy and the double occupancy. As shown in the following,
this regime of intermediate densities is the hardest one for the
series expansion method.

By comparing the different quantities as a function of the
chemical potential at fixed temperature, we identify more
clearly these different regimes of density. In Fig. 12, we show
the results for the entropy per site s as a function of chemical
potential at a fixed temperature β6J = 5. Here one can clearly
identify three different regions. At very low (and very high,
due to particle-hole symmetry) chemical potential µ, where the
density of the system is close to zero (close to two particles
per site), both DMFT and the series expansion give reliable
results down to fairly low temperatures (at least of the order
of β6J ∼ 10). In contrast, in the intermediate region around
µ ∼ 0 and µ ∼ U where the density crosses over from 0 to
1 and from 1 to 2, respectively, the series expansion breaks
down at a rather high temperature. Already at β6J ∼ 5 it is not
reliable anymore. Very close to half filling, the opposite trend
is found. In this region, the series expansion gives reliable
results down to quite low temperatures, actually lower (as
further detailed later) than the temperature at which DMFT
ceases to be an accurate approximation [31].

In Fig. 13, we summarize the validity of the high-
temperature series expansion by showing the difference
between different orders. For this plot, it appears that the
breakdown temperature for the series expansion depends
sensitively on the chemical potential and that the method works
best close to very low and very high filling, as well as exactly
at half filling.

In Fig. 14, we focus in more detail on the comparison
of the entropy at half filling (n = 1,µ = U/2). As mentioned
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FIG. 13. (Color online) Contour plot of the absolute value of
the difference between the results obtained with tenth- and sixth-
order series for the entropy versus chemical potential and inverse
temperature at U/6J = 2.5.

previously, the single-site DMFT approximation overestimates
the entropy at half filling, yielding a value ln 2 in the large-U
limit because it neglects short-range magnetic correlations.
This value also corresponds to the mean-field value for the
entropy of the Heisenberg model in its paramagnetic phase.
In reality, the value of the entropy is reduced by short-range
antiferromagnetic correlations [26]. In Fig. 14, this limitation
of single-site DMFT is exposed as we compare entropy
obtained with DMFT to the ones given by the series expansion
and the Heisenberg model. While the DMFT curve saturates
at ln 2 at low temperature, the different orders of the series
expansion reach a lower value of the entropy before diverging.
The Pade expansion of the high-temperature series expansion
lies slightly above the entropy of the Heisenberg model
calculated in Ref. [26] by QMC simulations. This situation
represents a case in which the high-temperature expansion can
be used down to a lower temperature than single-site DMFT.
Finally, we note that further extensions of DMFT (especially
cluster-DMFT methods [32,33]) exist which overcome these
limitations of single-site DMFT, and restore the physical
effects of short-range magnetic correlations.

0 10 20 30 40
β6J

0

0.5

1

1.5

s

DMFT
10th order
8th order
6th order
Padé
Heisenberg model (QMC)
ln(2)

U/6J=2.5, µ=U/2

FIG. 14. (Color online) Entropy per particle in a system at half
filling and intermediate interaction strength U/6J = 2.5 obtained by
series expansion, DMFT, and QMC (for the Heisenberg model) [26].

IV. TRAPPED SYSTEM

In present day experimental setups, an external potential is
usually present to confine the atomic cloud. This confinement
can be due to different sources, for example, to the focusing
of the lattice laser beams or a magnetic or dipole trap. In most
cases, a parabolic form is a good approximation for the shape
of the confining potential at the location of the atom cloud.
However, many refinements can be considered to obtain a more
precise spatial dependence of the confining potential V (r) [last
term of Eq. (1)].

A. Local density approximation and local occupancy histogram

Within the local density approximation (LDA), the prop-
erties of the trapped system at a certain position rj are
assumed to be those of the homogeneous system with the
chemical potential set to the value µ(rj ). LDA has been found
to be a good approximation for local quantities in a three-
dimensional fermionic gas in an optical lattice [30,34], and
was also validated in the high-temperature regime applicable
to ongoing experiments [10,16]. However, as LDA neglects the
influence of surrounding sites with different densities, the main
inaccuracies occur close to phase boundaries, where proximity
effects occur, and also when one computes nonlocal longer
range physical observables [34,35].

Using LDA and taking the continuum limit, it is possible
to describe the system using rescaled variables that do not
depend explicitly on the strength of the confining potential.
To illustrate this we consider a radial symmetrical form for
the trapping potential V (r) = Vt (|r|/a)α in d dimensions (a
is the lattice spacing). Thus, the position-dependent chemical
potential becomes

µ(rj ) = µ0 − Vt

( |rj |
a

)α

, (4)

with rj the d-dimensional position vector labeling each lattice
site and µ0 the chemical potential at the center of the trap.
Within LDA, any local observable O(rj ) in the inhomogeneous
system is related to its homogeneous counterpart by O(rj ) =
Oh(µ(rj )), where Oh denotes the corresponding quantity in
the homogeneous system (in the following we will drop the
label “h”).

The number of atoms, which corresponds to the sum of the
local occupancy over the whole system, can be expressed in
the following way:

N =
∑

j

n(j ) = �d−1

ad

∫
dr rd−1n(r), (5)

with �d−1 the surface of a sphere in d dimensions. Chang-
ing variables to an integration over the chemical potential
using (4) finally leads to

ρ ≡ N

(
Vt

6J

)d/α

= �d−1

α

∫ µ0

−∞
dµ (µ0 − µ)

d
α
−1n(µ). (6)

In this expression µ ≡ µ/6J is the dimensionless chemical
potential (similarly µ0). The LDA approximation enters in the
assumption that nis a function of �r only through its dependence
on µ. This formula can be easily generalized to the case for
which the strength of the confining potential is different along
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the different Cartesian directions (which is usually the case in
experiments) by replacing Vt with a proper averaged quantity
V̄t . For example, in three dimensions V̄t ≡ (Vt,xVt,yVt,z)1/3.
Equation (6) shows that the dimensionless combination ρ =
N (Vt/6J )d/α is a quantity that does not depend on the strength
of the confining potential, and hence can be used to describe
properties of experimental systems regardless of the particular
realization of the trap. For the one-dimensional case, see
Ref. [36]. It also shows that in this approximation the key
quantity is the observable in the homogeneous system [e.g.,
n(µ)], and that everything can be derived from it. Obviously
the same holds true for all the other quantities that can be
expressed as a sum of a local quantity over the whole system.

Another very useful way to express averages of observables
over the trap is to introduce the distribution function of site
occupancies in the system, defined for 0 � n � 2 as

P (n) ≡
∑

j

δ(nj − n), (7)

and the related quantity in which each site is weighted by its
occupancy:

Q(n) =
∑

j

nj δ(nj − n) = nP (n). (8)

Using again a continuous-space integration over the system
and changing variables in favor of the chemical potential, one
obtains

q(n) ≡ (Vt/6J )d/αQ(n) = �d−1

α

n

κ(n)
[µ0 − µ(n)]d/α−1. (9)

In this expression, κ(n) is the (dimensionless) compressibility
of the homogeneous system:

κ(n) = ∂n

∂µ

∣∣∣∣
µ=µ(n)

. (10)

Hence, the local chemical potential and local compressibility
entirely determine the distribution of local site occupancies in
the trap. The distribution Q(n) and rescaled distribution q(n)
obey the sum rules:∫ 2

0
dnQ(n) = N,

∫ 2

0
dn q(n) = ρ, (11)

with N the total atom number and ρ = (Vt/6J )d/αN its
rescaled form.

These distribution functions allow one to express the
average of any observable over the trap, within the LDA
approximation, as

O ≡
∑

j

o(j ) =
∫ 2

0
dnP (n)o(n) =

∫ 2

0
dnQ(n)

o(n)

n
, (12)

where o is the local operator corresponding to the observable.
Because Q(n) is a normalized distribution obeying the sum
rule (11), the last expression is particularly useful. As we shall
see later, when varying an external parameter, it allows one
to separate in a simple manner the changes in O which are
due to a redistribution of the particles in the trap [reshaping of
Q(n)] from the contribution due to the intrinsic dependence of
the local observable on the parameter, already present in the
homogeneous system.

In the following, we make use of this description, in
combination with thermodynamic relations, in order to discuss
cooling or heating of the trapped system as the coupling
is changed. We will concentrate on the case of a three-
dimensional lattice in a harmonic potential (i.e., d = 3, α = 2).

B. State diagram

One consequence of the presence of an inhomogeneous
trapping potential is that different quantum phases can spatially
coexist in the gas. This can actually be seen as a favorable
situation, in which several different physical regimes can be
studied in a single experiment. In an optical lattice realizing the
three-dimensional Hubbard model, coexistence between liquid
and Mott-insulating regions in the trap were, for example,
documented in theoretical studies [23,34].

In Fig. 15, we display the different regimes expected in
a three-dimensional optical lattice confined into a parabolic
trap, as a function of the coupling U/6J and of the scaled
particle number ρ. Different temperatures in the currently
accessible range are considered. At still lower temperature
(not displayed), antiferromagnetic long-range order [37] will
occur in the regimes with a commensurate Mott plateau.
The state diagram of Fig. 15, which generalizes to different
temperatures the results of Ref. [23], was obtained on the basis
of the theoretical calculations described in the previous section
for the homogeneous model, using LDA approximation. In
addition, in Appendix, we introduce a simple approximation
which allows one to obtain analytical expressions for the
various crossover lines of the state diagram in the low-
temperature regime.

The state diagram displays four characteristic regimes
(labeled L, B, Mc, and Ms), which are illustrated by the
four corresponding density profiles n(r) and local occupancy
distribution functions q(n) calculated at four representative
points and displayed in Fig. 16.

0 1 2 3 4 5
U/6J

0

10

20

30

40

50

ρ

L
Mc

Ms

B
β6J=3
β6J=5
β6J=10

FIG. 15. (Color online) State diagram of the gas in a three-
dimensional optical lattice with parabolic trapping, for different
temperatures (DMFT). The four characteristic regimes (see text) are
labeled as follows: B (band insulator in the center of the trap), Mc
(Mott insulator in the center of the trap, shaded areas), Ms (shell of
Mott insulator away from the center), and L (liquid state). For each
temperature the (crossover) lines indicate, from bottom to top, the ρ

values at which the central density takes the values 0.995, 1.005, and
1.995. The gray dashed line marks the crossover from the liquid to
the Mott state with increasing interaction. The crosses indicate the
points for which the density profiles are plotted in Fig. 16.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 16. (Color online) Density profiles (left column) and
occupancy distribution q(n) (right column) for four typical points
in the state diagram (obtained with DMFT): a and b (in regime “L”),
U/6J = 1, ρ = 10; c and d (in “B” for low T ), U/6J = 1, ρ = 20;
e and f (in “Mc”), U/6J = 3, ρ = 10; g and h (in “Ms”), U/6J = 3,
ρ = 20.

For low interaction strength [regime “L,” Fig. 16(a)] the
density profile adjusts to the trapping profile and the system
remains a Fermi liquid everywhere in the trap. With increasing
temperature the density distribution broadens. The weighted
particle number distribution q(n) displays a maximum at
filling unity which, according to Eq. (9) reflects the smaller
compressibility at that filling. A rather sharp drop is seen
toward larger occupancies which represents the center of the
trap, whereas a slower decay occurs toward smaller particle
numbers, due to the tails of the density distribution. Increasing
the temperature shifts weight from larger occupancies toward
smaller occupancies.

For very large values of the scaled particle number ρ, a band
insulator with n = 2 forms in the center of the trap [regime “B,”
Fig. 16(c)]. The pinning to n = 2, and hence the band insulator,
is destroyed by increasing the temperature. In the presence of
a large band insulating region, the corresponding distribution
q(n) displays a sharp peak at filling n = 2. Increasing the
temperature, this peak decreases and the weight moves to lower
occupancies.

For larger interaction strength [regime “Mc,” Fig. 16(e)] a
Mott-insulating region appears, in which the density is pinned
to n = 1 particle per site. Close to the boundary of the trap,
the Mott-insulating region is surrounded by a liquid region.
The Mott-insulating region shows up in q(n) as a large and

narrow peak at filling n = 1 with a sharp edge on the large
occupation numbers side. The peak reflects the essentially
vanishing compressibility of the Mott insulator. Increasing the
temperature decreases the size of the Mott-insulating plateau,
and results in a shift of the weight from filling one to low
densities.

Increasing the number of atoms in the trap at large
interaction strength can increase the pressure exerted on the
atoms, and can cause the occurrence of a liquid region with
filling larger than one in the center, surrounded by a shell
of Mott insulator with n = 1 [regime “Ms,” Fig. 16(g)].
Correspondingly, the sharp peak in q(n) broadens somewhat.

Recently, experimental evidence of the Mott-insulating
region has been reported [7,8]. This has been achieved by
observing the suppression of the double occupancy in the
Mott-insulating region [7,10,23] and the compression of the
cloud as a response to the variation of the external trapping
potential [8].

We note that in bosonic two-dimensional gases the density
profiles n(r) and therefore the occupancy number distributions
q(n) can nowadays be measured with a very high spatial
resolution [38–40]. In three-dimensional gases, the integrated
column density can be measured, for example, by using an
electron microscope [41]. Furthermore, new techniques such
as the immersion of a single trapped ion into the atomic
gas are being developed to locally measure the density in
three-dimensional systems as well [42].

C. Temperature changes in the trap during
an adiabatic evolution

Cold atom clouds are almost perfectly isolated from their
environment. Therefore, assuming that manipulations can be
performed adiabatically, the quantity that is conserved during
the evolution of the system is the entropy. However, the
temperature will in general change. Consequently, studying
the effects of an isentropic change of parameters on the system
temperature is important. Here we focus our attention on the
increase of the interaction strength, U , and identify if such
a change can help to reach lower temperatures in a trapped
system (i.e., whether cooling occurs).

The change in temperature induced by a change in a certain
parameter x at constant entropy is δT /δx|S . If this quantity is
negative (positive), an increase of the parameter is associated
with cooling (heating). As we now show, one can consider
alternatively the change in entropy at constant temperature
δS/δx|T . Indeed, the location T (x) of isentropic lines in the
(x,T ) plane is defined by the equation S[T (x); x] = const.
Taking a derivative of this equation, we obtain

δT

δx

∣∣∣∣
S

δS

δT

∣∣∣∣
x

+ δS

δx

∣∣∣∣
T

= 0. (13)

Denoting by c = T δS/δT the specific heat of the system, we
finally obtain the expression of the relative cooling rate in the
form,

1

T

δT

δx

∣∣∣∣
S

= − 1

c

δS

δx

∣∣∣∣
T

. (14)
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s1<s2

s1

s2

0 x

T

FIG. 17. Schematic evolution of the temperature as a function of
a parameter x along isentropic lines, in a case where cooling occurs
as x is increased. The continuous line corresponds to a lower entropy
per particle than the dashed line, s1 < s2. The figure illustrates that
for this situation, increasing x while keeping T constant will increase
the entropy [Eq. (14)].

Since c is a positive quantity, we see that there is cooling
(heating) when δS

δx
|T is positive (negative). This is illustrated

schematically in Fig. 17.
In the following, we consider the temperature change under

an adiabatic increase of the coupling U . We observe that
the derivative δS

δU
|T is related to a derivative of the total

double occupancy D = 1
N

∑
j 〈n↑,j n↓,j 〉 through the Maxwell

relation [15]:

δS

δU

∣∣∣∣
N,T

= −δD

δT

∣∣∣∣
N,U

. (15)

So that the relative cooling rate reads

1

T

δT

δU

∣∣∣∣
S,N

= 1

c

δD

δT

∣∣∣∣
N,U

. (16)

Hence, when the derivative of D with respect to temperature
is negative (positive) there will be cooling (heating) upon an
isentropic increase of the interaction strength. One advantage
to use the change of D is that this quantity can be measured
quite accurately in present experiments [7,22].

In Figs. 18–20, we plot D as a function of temperature
for different interaction strengths and particle numbers. For

FIG. 18. (Color online) Temperature dependence of the number
of doubly occupied sites D(T ) for the interaction strength U/6J = 1
and at different scaled particle numbers ρ = 5,10,15 (DMFT).

FIG. 19. (Color online) (Color online) Temperature dependence
of the number of doubly occupied sites D(T ) for the interaction
strength U/6J = 2 and at different scaled particle numbers ρ =
5,10,15 (DMFT).

U/6J = 1 (Fig. 18), D(T ) is a decreasing function of
temperature for all particle numbers. This implies that in the
weak-coupling regime an increase of U generates cooling.
Increasing the interaction the situation gradually changes. For
U/6J = 2 (Fig. 19), D(T ) becomes much flatter and cooling
is restricted to large particle numbers or low temperatures.
Finally, for U/6J = 3 (Fig. 20), the tendency inverts and at
high temperature, heating occurs. It has to be stressed that
the absolute value of the derivative drops with increasing
interaction and that at large U the heating or cooling is
essentially negligible.

In order to better understand the origin of the cooling or
heating, we write the derivative δD/δT |N,U using Eq. (9),
under the form,

δD

δT

∣∣∣∣
N,U

=
∫ 2

0

dn

n
[q(n)∂T d|n + d ∂T q(n)]. (17)

The usefulness of this expression resides in the clear separation
of two different contributions. The first term in the integrand
takes into account changes to the total double occupancy in the
trap due to the intrinsic temperature dependence of the double
occupancy d(n,T ,U ) in the homogeneous system. Cooling can
occur from this term whenever the Pomeranchuk mechanism
discussed earlier applies. The second term instead represents
the contribution due to the redistribution of the atoms in the trap
upon a temperature change. The two terms can be calculated

FIG. 20. (Color online) Temperature dependence of the number
of doubly occupied sites D(T ) for the interaction strength U/6J = 3
and at different scaled particle numbers ρ = 5,10,15 (DMFT).
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FIG. 21. (Color online) The two contributions to δD/δT for
U/6J = 1 (DMFT). Continuous line (left side, top to bottom:
ρ = 5,10,15,20) shows redistribution of atoms in the trap [reshaping,
second term in Eq. (17)]. Dotted line (right side, top to bottom:
ρ = 20,15,10,5) shows intrinsic change of the double occupancy
with temperature [first term in Eq. (17)].

separately in order to determine the most relevant mechanism
behind the cooling observed for low interaction.

In Fig. 21, we plot the first (“intrinsic,” dotted lines) and
second (“redistribution,” continuous lines) terms of Eq. (17) at
U/6J = 1 for different atom numbers ρ. Note that, for read-
ability, these quantities are plotted versus inverse temperature
β = 1/kBT . We notice that the “redistribution” term is always
negative, and hence the reshaping of the density profile always
induces a cooling effect. In contrast, the “intrinsic” term is
positive at high temperature and becomes negative only for
β6J >∼ 5 (kBT /6J <∼ 0.2). Hence, we conclude that at high
temperature the cooling is dominated by the redistribution
of atoms in the trap, while at lower temperatures, both the
redistribution and the intrinsic “Pomeranchuk” effect con-
tribute on comparable footing. The latter may even dominate
at still lower temperatures (e.g., kBT /6J <∼ 1/8 in Fig. 21).

A qualitative understanding of the behavior of each term
in Eq. (17) can be achieved from the inspection of the
properties of d(n)/n and q(n). The first observation is that
d(n)/n is a monotonically increasing function of n (cf. inset
of Fig. 4). Secondly, from Figs. 16(b) and 16(d) we notice
that ∂T q(n) (possibly with the exception of the region around
n = 1) is always negative for n larger than a certain value
n̄ and always positive for n smaller than n̄. Furthermore∫

dn q(n) = ρ implies that
∫

dn ∂T q(n) = 0. Combining these
two observations, we conclude that the second term in Eq. (17)
is generally negative. Hence, the redistribution of the atoms
indeed produces cooling, in general, as observed previously.
The presence of the peak in q(n) around n = 1 might
undermine the reasoning but this is never the case for the
parameters considered here (Fig. 21).

The behavior of the first term in Eq. (17) is closely con-
nected to the Pomeranchuk effect in homogeneous systems. As
we saw in Fig. 9 in the homogeneous system the Pomeranchuk
effect is active only at sufficiently low temperature. Therefore,
the intrinsic contribution in the trap can only lead to cooling at
low temperatures. This is in good agreement with the results
in Fig. 21.

The situation is only quantitatively different at stronger
coupling. For U/6J = 3 (Fig. 22), the redistribution of atoms
still corresponds to cooling, although the absolute value of

FIG. 22. (Color online) Different contributions of the intrinsic
and the reshaping term to δD/δT for U/6J = 3 (DMFT). Continuous
line (left side, top to bottom: ρ = 5,10,15,20) is the reshaping; dotted
(left side, top to bottom: ρ = 20,15,10,5) is the intrinsic double
occupancy change with temperature.

the contribution is roughly an order of magnitude smaller
than for weaker interaction strength. However, in this case,
the “intrinsic” contribution becomes dominant and its sign
corresponds to heating (opposite to the Pomeranchuk effect).
At lower temperature, the intrinsic term becomes negative
again (cooling) but anyhow the cooling rate in this regime
is fairly small.

The conclusion of this section is that in trapped systems
an increase of the interaction is accompanied by cooling for
interactions weaker than the interaction needed to have a Mott
insulator. On the other hand, at larger interactions, there is no
substantial cooling associated with an increase of U , and even
slight heating can occur at high temperature. On the whole, the
dominant contribution to cooling is usually the redistribution
of the atoms in the trap, although the Pomeranchuk effect
(intrinsic contribution) can become operative at low tempera-
ture.

D. Cooling by trap shaping

Reaching sufficiently low temperatures to observe complex
quantum phases is one of the main challenges currently faced
by cold atom physics experimentalists. In this section, we
show that by adiabatically reshaping the confining trap, to
divide the system into entropy-rich and -poor regions, a gas
can be cooled down by one order of magnitude lower than
currently achievable using state-of-the-art techniques [43].
Before presenting our method, we would like to point out that
employing adiabatic changes to cool down gases was proposed
in related contexts. For example, a Bose-Einstein condensate
was experimentally produced by adiabatically deforming the
external trapping potential to increase the gas phase space
density [44,45]. Furthermore, reshaping the underlying trap
to create entropy-rich regions that are later isolated from the
remaining system was proposed for bosons loaded into an
optical lattice [46,47]. For fermions confined to an optical
lattice, cooling could be achieved by immersion into a bosonic
bath [48,49]. In Ref. [49], it was cleverly proposed to reduce the
entropy of lattice fermions in contact with a bosonic reservoir
by compressing them into a band insulator or more generally a
gapped phase. This last cooling method requires a transfer of
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entropy between two distinguishable quantum gases, a process
experimentally demonstrated in Ref. [50].

Our cooling method does not rely on immersing the atoms
into a reservoir but on creating spatially distinct regions of
high and low entropy that can be isolated from one another,
and on subsequently removing the high-entropy region. Once
this procedure is completed the remaining system has a much
lower average entropy per particle allowing for the study
of interesting phenomena requiring lower temperatures than
previously attainable. To demonstrate our cooling procedure,
we use a twofold approach. We first present our method using
an idealized setup, and in a second time, we revisit with a new
perspective the experimental setup presented in Ref. [43]. We
further highlight the differences between our cooling method
and another one recently proposed in Ref. [51].

1. Idealized realization

As explained earlier, we first present our cooling method
using an idealized setup uncluttered with experimental details.
Within an idealized two-fluid model, we show here that by
reshaping the confining trap we can reduce the entropy per
particle of a gas loaded in an optical lattice to nearly zero
while keeping a bit less than half of the atoms.

As we have seen in Fig. 8, at high temperatures, the entropy
per particle s(n)

n
is largest for low densities. Therefore to

segregate the entropy in our system, we would like to create
two distinct regions (Fig. 23): (i) a “core region” with a deep
trapping potential in which the density nC is close to two
particles per site (i.e., nC ≈ 2) and (ii) a “storage region” with
a very flat trapping potential in which the density nS is very
low (i.e., nS 	 1). In the language of the Q(n) distribution
introduced in the previous sections, this idealized setup results
in two sharp peaks: one at a very low density due to the storage
region and another one very close to n = 2 due to the core.
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FIG. 23. (Color online) Occupation number (dashed line, left top
panel), entropy per particle (solid line, left top panel), and potential
profile (solid line, bottom panel) for the idealized trapping potential.
Q(n) [solid line (full system), dashed line (core region), right top
panel] as a function of the density. The core region is taken to be
cylindrical with r0 = 51a; the storage region is a rectangular box
of size 300 × 300 × 100a3. Each region has a homogeneous density
ncore = 2, nstorage = 0.31. The average entropy per particle for the
total system is ST

NT
= 1.65 and SC

NC
= 0 for the core region. The ratio

of particles in the core region versus the total particle number is
NC

NT
= 0.39.

To obtain these two regions of unequal densities, we start
from a gas confined to the usual harmonic trapping potential
with total entropy ST , and adiabatically deform the trap to
reach the trapping profile presented in Fig. 23. While the
total entropy remains constant under this deformation, the
entropy is now inhomogeneously distributed. The entropy per
particle in the core region will be very low, ideally zero,
whereas in the storage region the entropy per particle will
be quite large. In contrast, the temperature T0 remains equal
throughout the system and is set by the constraint requiring
entropy conservation, that is,

S =
∫ 2

0
dn

{
QC(n)

s(n,T0)

n
+ QS(n)

s(n,T0)

n

}
≡ ST , (18)

where QC(n) = ∑
i∈C niδ(ni − n) and QS(n) =∑

i∈S niδ(ni − n). For the idealized two-fluid model
presented here, Eq. (18) simplifies to

S = NC

s(nC,T0)

nC

+ NS

s(nS,T0)

nS

≡ ST , (19)

where NC and NS are the number of particles in the core and
storage regions, respectively.

In this idealized situation an infinitely narrow barrier is used
to separate the two regions adiabatically. After the separation,
the high-entropy region can be removed and the core region
can be used to perform the experiment. As the density is
uniform throughout the core region, the average entropy per
particle at the time of separation is given by Sfinal

Nfinal
= s(nC,T0)

nC
.

Therefore, the final average entropy per particle in the core
region, Sfinal

Nfinal
, can be much lower than the initial average entropy

per particle. It is important to note that after this separation
further adiabatic changes of the system parameters can lead to
temperature changes, but the average entropy per particle will
remain constant.

The minimal entropy which can be reached depends on
different quantities as seen from Eq. (19). As expected the
initial entropy ST is an important factor. Furthermore, the
cooling procedure is more efficient if the entropy per particle
in the storage region is much larger than the entropy per
particle in the core region (i.e., s(nC,T0)

nC
	 s(nS,T0)

nS
). For fixed

temperatures, a typical behavior of the entropy per particle
with the density is shown in Fig. 8. As one can see the
decrease in entropy per particle with increasing density is more
pronounced at larger temperatures. Hence the procedure will
become less efficient at lower initial temperature.

We also find that the differences in entropy per particle are
largest between very low and very high densities, such that
the procedure would be most efficient if such densities were
used for the storage and core regions, respectively. However,
it is important to note that it is not essential that the state
stabilized in the core region is gapped as the band insulator
is. What really matters is that a sizable difference is achieved
between the entropies per particle characterizing the densities
of the core and storage regions. By tuning the trap shape
the number of atoms in the core and storage regions can
be adjusted. Ideally one would like to create a very large
storage region with a lot of atoms at very low density, since
there the entropy per atom would be maximal. However, this
situation can only be achieved within a certain range due to
experimental limitations. In particular, the trap can only be
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engineered within a certain spatial extension and the final
number of particle (Nfinal = NC) should be reasonably large in
order to perform the actual experiment afterward.

Before turning our attention to the experimentally realizable
setup, one important comment is in order. We want to
emphasize that the adiabatic isolation of the core region from
the storage region is favorable or even necessary to achieve
cooling. Without proper isolation, the entropy of the storage
region can flow back into the experimentally relevant region.
At best this backflow of entropy may simply render the cooling
scheme less efficient, but in the worst scenario it may heat up
the region of interest. At low temperature, heating may occur
because the experimentally relevant phase may accommodate
more easily the entropy than its parent high-density state (in
our case the band insulator). Therefore, while changing back
the trap shape to generate the experimentally relevant phase,
the entropy may flow back into the region of interest if the core
and storage regions are not properly isolated from each other.

2. Realistic realization

Let us now turn our attention to the experimentally
realizable trapping potential. To be truly relevant, this trapping
profile should be achievable using present technology and
should not require fine-tuning of the system parameters.
Such an experimentally realistic trapping potential has been
described in Ref. [43]. Here we only briefly summarize the
setup. In order to achieve the required entropy modulation, the
potential has to allow for a tight trapping in the core region,
for a wide shallow ring in the storage region, and for high
potential barriers isolating these two regions from each other.
To produce this profile, we envision using three elements:
(i) a shallow harmonic trap (either magnetic or optical), (ii)
a dimple which confines atoms to a small region around the
trap symmetry axis and helps to create the band insulator,
and (iii) a cylindrically symmetric potential barrier to isolate
high- and low-entropy regions. The dimple (ii) and potential
barrier (iii) are produced by red- and blue-detuned laser beams,
respectively, creating attractive or repulsive dipole potentials.
The dimple has a Gaussian profile, while the barrier needs
to be a narrow annulus. Experimentally this can be realized
either by setting a tightly focused laser beam in rapid rotation,
or by engineering the beam profile using phase plates or other
diffractive optics [52]. Consequently, in addition to the lattice
potential, the trapping profile is given by

V (r) = Vharmonic + Vdimple + Vbarrier,

with

Vharmonic(r) = Vh(x2 + y2 + γ 2z2)/a2,

Vdimple(r) = −Vd exp
[−2(x2 + y2)

/
w2

d

]
,

Vbarrier(r) = Vb exp
[−2(

√
x2 + y2 − rb)2

/
w2

b

]
,

where V{h,d,b} are the potential amplitudes, γ is a measure
of the anisotropy of the harmonic trap, w{d,b} are the waists
of the Gaussian laser beams forming the dimple and barrier,
rb is the radius of the cylindrical barrier, and a the lattice
spacing. An example of the resulting trapping profile is shown
in Fig. 24. The gain in entropy per particle for this particular
case is approximately one order of magnitude while keeping
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FIG. 24. (Color online) Occupation number (dashed line, left top
panel), entropy per particle (solid line, left top panel), and potential
profile (solid line, bottom panel) in the presence of the dimple and
barriers, as a function of the transverse coordinate. The potential is
offset such that V = 0 is at the bottom of the dimple. Q(n) [solid line
(full system), dashed line (core region), right top panel] as a function
of the density. We chose the following experimentally realistic
parameters: U

6J
= 0.5, Vh

6J
= 1.8104, γ 2 = 50, Vb

6J
= 6, rb = 15a,

ωb = 5a, Vd

6J
= 15, ωd = 15a, and 12 × 104 atoms. The average

entropy per particle in the total system is ST

NT
= 1.95 and in the core

region SC

NC
= 0.198. The ratio of particles in the core region versus

the total particle number is NC

NT
= 0.404. Obtained with DMFT. See

also Fig. 2 of Ref. [43].

about 50% of the atoms. In Fig. 24, in addition to the density
distribution and entropy per particle for the corresponding
trapping profile, one can see on the right panel from the Q(n)
distribution that the two sharp peaks of the idealized setup have
been replaced with broader features. In particular, the lower
peak is not well defined and removing the storage region results
in an almost complete extinction of its weight.

However, experimentally removing the storage region is
not straightforward due to the presence of the optical lattice
potential. In Ref. [43], several possible methods have been
proposed. Fortunately, since the publication of this article,
different techniques aiming at locally addressing the atoms
have been developed and could be employed to remove the
storage region. One of these methods makes use of an electron
microscope and could be used to blast away the storage region
in a very controlled manner [41]. Another possibility would
be to use locally trapped ions to remove the atoms from the
storage region [42].

All previous considerations assumed the system evolution
to be perfectly adiabatic. In a real experiment this will not be
the case as the deformation of the trap needs to be performed
within a finite time. In Ref. [43], we showed that, for a one-
dimensional system, reshaping the trapping potential can be
performed within an experimentally realistic time scale while
inducing heat on a scale more than 10 times smaller than the
antiferromagnetic exchange coupling.

Consequently, using the scheme presented earlier, exper-
imentalists could cool down quantum gases to one order of
magnitude lower than presently achievable while keeping
about half the atoms in the system. Cooling into highly
sought-after quantum phases could thus be achieved.

023606-13



DE LEO, BERNIER, KOLLATH, GEORGES, AND SCAROLA PHYSICAL REVIEW A 83, 023606 (2011)

V. CONCLUSION

In this article, we performed a detailed study of the
thermodynamics of the three-dimensional fermionic Hubbard
model, for a rather wide range of couplings. We mainly focused
on the temperature regime kBT /6J >∼ 0.1, of current interest
for experiments on cold fermionic atoms in optical lattices.

Our theoretical study is mainly based on single-site
dynamical mean-field theory, a well-established theoretical
method based on a controlled approximation in which nonlocal
correlations are neglected but local quantum fluctuations are
treated accurately. In addition, we used high-temperature series
expansion. A comparative study between these two methods
allowed for a precise assessment of their respective range
of validity. DMFT is found to be accurate down to fairly
low temperatures when not too close to half filling (one
particle per site). Because of their convergence properties,
the series expansion are most useful at low density or
exactly at half filling. At or close to half filling, single-site
DMFT can be trusted only down to T ∼ J . Below this
temperature, short-range magnetic correlations set in, which
require the use of cluster extensions of DMFT. Hence, our
study validates the use of single-site DMFT for understanding
experimental results on cold fermionic atoms in a 3D lattice
in the currently accessible temperature range, while future
experiments at lower temperature will require extensions of the
method.

We considered the implications of the thermodynamic
properties of the homogeneous system for fermionic atoms in
an optical lattice confined in a parabolic potential, within the
local density approximation. A state diagram was established,
with different regimes for the density profile in the trap.
Special emphasis was devoted to the distribution function
of site occupancies in the trap, a quantity which can be
experimentally measured by imaging techniques with single
lattice-site resolution. Such techniques have recently become
available for two-dimensional systems.

This distribution function proved to be of particular use
when discussing how a given observable (e.g., temperature)
changes in the trap as the system evolves in an adiabatic
manner when a parameter is varied. Indeed, it allows for a
clear separation of two contributions, one corresponding to
the redistribution of atoms in the trap during the evolution,
and another from the intrinsic change of the observable. We
applied these considerations to the temperature change in the
trap under an adiabatic variation of the coupling, and identified
the regimes where a significant cooling can be expected.
However, we would like to point out that for these results to be
completely applicable to trapped cold atoms confined to optical
lattices, one would need to take into account several processes
that could prevent a fully adiabatic evolution. Considering the
effects of processes such as lattice heating will be the subject
of future works.

Finally, we elaborated on a previously proposed cooling
mechanism, based on the separation of regions of small
and large entropy. This procedure is promising for cooling
further cold fermionic systems by approximately one order
of magnitude, a necessary step and major future challenge
for accessing and studying experimentally strongly correlated
phases in those systems.

Note added: Recently, we became aware that another
study, conducted by Fuchs et al., on the thermodynamics
of the 3D Hubbard model was also in its final stage. The
focus of Ref. [53] is on the characterization of the low-
temperature region near the antiferromagnetic transition. In
the temperature range where our two works overlap, the results
are in agreement.
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APPENDIX: A SIMPLE ANALYTICAL APPROXIMATION

In this appendix, we present a very simple approximation
that allows us to obtain the state diagram (Fig. 15 and
Ref. [23]) of trapped fermionic atoms in an optical lattice
with very little computational effort. It also allows us to obtain
approximate analytical expressions for the crossover lines in
this state diagram, hence providing qualitative understanding
into the numerical results presented earlier in this article.

This approximation is based on the following approximate
form of the one-particle spectral function of the homogeneous
system:

A(ω)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for ω + µ < −D

1
U−�+2D

for − D < ω + µ < U
2 − �

2

0 for U
2 − �

2 < ω + µ < U
2 + �

2

1
U−�+2D

for U
2 + �

2 < ω + µ < U + D

0 for ω + µ > U + D.

(A1)

In this expression, D ≡ 6J is the half bandwidth and � is
a parameter that plays the role of the Mott gap (see below).
The rationale behind this expression is the following. When
� = 0, (weakly interacting regime) it describes a density
of states broadened by interaction effects. When � �= 0, it
describes two Hubbard bands (Fig. 25) separated by a Mott
gap. The contribution of quasiparticle states appearing in
between the two Hubbard bands are neglected, because the
temperatures considered in this article are typically larger than
the quasiparticle coherence scale.

Compared to the atomic limit, this approximation has
a better behavior in the low-temperature limit while still
retaining a simplicity that allows for a completely analytic
solution. The disadvantage of the atomic limit is that it models
the zero-temperature spectral function as an unrealistic pair of
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0 U+D
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−D

−D ∆/2 ∆/2

A

A
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∆

FIG. 25. Modelization of the spectral function in the metallic
(top) and insulating (bottom) phases. In the metallic phase � = 0,
while in the insulating phase � > 0.

delta functions located at 0 and U . The atomic limit is indeed
the first term of the expansion in βJ and as such is valid at
high temperature. Our approximation instead takes into ac-
count the fact that the Hubbard bands are broadened by
the kinetic term. The result is in better agreement with the
DMFT data at temperatures lower than the limit of validity of
the atomic limit. Our approximation eventually breaks down
due to the fact that at low temperature the details of the
shape of the Hubbard bands become more relevant and the
boxlike model of the bands shows its limits. In this sense, our
approximation should only be regarded as acceptable at high
temperature.

This form of the spectral function leads to the following
expression of the dependence of the particle number on
chemical potential:

n(µ,T ) = 2
∫ ∞

−∞
dωA(ω)f (ω) (A2)

= 1 + 2kBT

U − � + 2D

× ln

⎧⎨
⎩

cosh
(

µ+D

2kBT

)
cosh

(
µ−U−D

2kBT

) cosh
(µ− U

2 − �
2

2kBT

)
cosh

(µ− U
2 + �

2
2kBT

)
⎫⎬
⎭ . (A3)

In the zero-temperature limit, this expression reduces to

n(µ) = 0(µ < −D)

= 2

U − � + 2D
(µ + D) for − D < µ <

U − �

2

= 1 for
U − �

2
< µ <

U + �

2

= 1 + 2

2D + U − �

(
µ − U + D

2

)

for
U + �

2
< µ < D + U (A4)

= 2 for µ > D + U, (A5)

that is, a function with steps at n = 0, n = 1 and n = 2
(zero compressibility), while n(µ) in between the steps (liquid
regions) is approximated by a linear dependence on µ (constant
compressibility approximation).

We regard the parameter � as a fitting parameter, function
of coupling and temperature, and perform a least-square
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k
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∆ 
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U/6J=3
U/6J=5

FIG. 26. (Color online) The gap parameter �(µ,T ) as a function
of T for different interaction strength U .

minimization of Eq. (A3) to the DMFT data to determine
its value. The result of this procedure is displayed in Fig. 26.
The fit looses in quality as we reduce the temperature and the
value of U . Restricting to the high temperature and large U

region, the dependence of � on U and T can be separated to
a good approximation and �(U,T ) can be fit remarkably well
by the law:

�(U,T ) ∼ �0 + αUU + αT kBT

= −1.7 + 0.96U + 2.66kBT , (A6)

where the parameter with the largest deviation is αT which
shows a slight increase as a function of U .

Using the approximate expression (A3) of n(µ,T ) for the
homogeneous system, it is straightforward to obtain the state
diagram of the trapped system by using the relation between
the scaled density ρ and the chemical potential µ0 at the
center of the trap, which reads, in the LDA approximation,

ρ ≡ N

(
Vt

D

)3/2

= 2π

∫ µ0

−∞
dµ

√
µ0 − µ n(µ,T ). (A7)

The calculations can be performed analytically in the T = 0
limit (we warn the reader that T = 0 is considered here only
as a formal limit in order to make an analytical calculation

0 1 2 3 4 5 6
U/6J

10

20

ρ

approximation
k

B
T/6J=0.1

FIG. 27. (Color online) Comparison of the state diagram obtained
by DMFT (circles) and the simple analytic approximation (solid lines)
(cf. Ref. [23]).
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possible, since the approximations made in this paper are
no longer valid physically in this limit). Let us, for example,
focus on the crossover lines which delimit the “Mc” region in
Fig. 15 within which the central occupancy is n = 1. In view
of our approximate form of n(µ), the lower boundary of this
regime will correspond to µ0 = (U − �)/2 and the upper
boundary to µ0 = (U + �)/2. Inserting these values into (A7)
and performing the integrations at T = 0 yields the following
expressions for the lower and upper boundaries of the Mc
region:

ρ<
Mc = 2

√
2π

15

(
U − �

D
+ 2

)3/2

, (A8)

ρ>
Mc = 2

√
2π

15

(
U+�

D
+ 2

)5/2 − (2�/D)5/2

(U − �)/D + 2
. (A9)

Using the previous determination of �, this provides an
explicit form of the boundaries. Analytical expressions

can be similarly obtained for all crossover lines in the
state diagram. In Fig. 27 we compare these approximate
analytical expressions to the actual lines obtained for a DMFT
calculation at a low enough temperature T/6J = 0.1 and find
very satisfactory agreement.

Finally, we note that thermodynamic quantities such as
the double occupancy and the entropy can in principle
be reconstructed from a given approximate expression for
n(µ,T ,U ) thanks to the thermodynamic (Maxwell) relations
relating their derivatives:

∂s

∂µ
= ∂n

∂T
, (A10)

and
∂d

∂µ
= − ∂n

∂U
. (A11)
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[35] C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger, Phys.
Rev. A 69, 031601 (2004).

[36] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalettar,
Phys. Rev. Lett. 91, 130403 (2003).

[37] M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter,
New J. Phys. 10, 093008 (2008).

[38] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature
(London) 460, 995 (2009).

[39] W. S. Bakr, J. I. Gillen, A. Peng, S. Foelling, and M. Greiner,
Nature (London) 462, 74 (2009).

[40] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, e-print arXiv:1006.3799 (2010).

023606-16

http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/453736a
http://dx.doi.org/10.1126/science.320.5874.312
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.102.135302
http://dx.doi.org/10.1103/PhysRevLett.102.135302
http://dx.doi.org/10.1103/PhysRevB.46.6328
http://dx.doi.org/10.1103/PhysRevB.46.6328
http://dx.doi.org/10.1103/PhysRevB.46.6313
http://dx.doi.org/10.1103/PhysRevB.46.6313
http://dx.doi.org/10.1103/PhysRevLett.89.220407
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevLett.104.180401
http://dx.doi.org/10.1143/PTP.69.1345
http://dx.doi.org/10.1143/PTP.71.479
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1007/s100510070120
http://dx.doi.org/10.1007/s100510070120
http://dx.doi.org/10.1103/PhysRevLett.96.030401
http://dx.doi.org/10.1103/PhysRevLett.101.210403
http://dx.doi.org/10.1103/PhysRevB.76.064402
http://dx.doi.org/10.1103/PhysRevA.77.023623
http://dx.doi.org/10.1103/PhysRevA.77.023623
http://dx.doi.org/10.1103/PhysRevB.81.052405
http://dx.doi.org/10.1103/PhysRevA.73.031601
http://dx.doi.org/10.1103/PhysRevA.74.043602
http://dx.doi.org/10.1103/PhysRevA.74.043602
http://dx.doi.org/10.1103/PhysRevB.48.7167
http://dx.doi.org/10.1103/PhysRevLett.105.065301
http://dx.doi.org/10.1209/0295-5075/90/10004
http://dx.doi.org/10.1209/0295-5075/90/10004
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevA.69.031601
http://dx.doi.org/10.1103/PhysRevA.69.031601
http://dx.doi.org/10.1103/PhysRevLett.91.130403
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08482
http://arXiv.org/abs/arXiv:1006.3799


THERMODYNAMICS OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW A 83, 023606 (2011)
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