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Quantum spin liquids (QSLs) define an exotic class of quantum ground states where spins are disordered down
to zero temperature. We propose routes to QSLs in kagome optical lattices using applied flux. An optical flux
lattice can be applied to induce a uniform flux and chiral three-spin interactions that drive the formation of a

gapped chiral spin liquid. A different approach based on recent experiments using laser-assisted tunneling and
lattice tilt implements a staggered flux pattern which can drive a gapless spin liquid with symmetry protected
nodal lines. Our proposals, therefore, establish kagome optical lattices with effective flux as a powerful platform

for exploration of QSLs.
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I. INTRODUCTION

QSLs are highly entangled spin states that are quan-
tum disordered down to zero temperature and, therefore, do
not display conventional features of magnetism. But QSLs
may nonetheless offer explanations for strongly correlated
phenomena observed in some materials [1,2]. Frustration is
known to favor certain types of QSLs. Kagome lattice models
of spins, in particular, serve as a central archetype hosting a
broad array of QSLs. It is now well established that ground
states arising from the standard antiferromagnetic Heisenberg
interaction (S; - S ;, where §; is the usual spin operator at a site
i) on a kagome lattice can be driven into exotic spin liquids
when certain three-spin interactions [S; - (§; x Si)] are added
to the Heisenberg interaction [3-9].

When the three-spin interaction is added uniformly every-
where to the kagome lattice, a chiral spin liquid (CSL) arises
[4,5,7] since it is an exact ground state of similar interactions
[6,10]. A CSL is related to a bosonic Laughlin state [3,6,11],
and, as such, derives some of the same properties. The CSL is
a topologically ordered ground state and is, therefore, twofold
degenerate on the torus. Such a topological degeneracy is
a key feature of gapped topologically ordered states that
can be used to uniquely identify them in numerics [12-15].
The CSL also possesses chiral edge modes; it derives from
flux attachment in effective Chern-Simons theories [8]; and,
furthermore, the CSL hosts exotic anyon excitations whereby
braiding of anyons changes the many-body wave function
by a nontrivial phase [16,17]. Identifying such exotic braid
statistics in the laboratory is a key goal of quantum many-body
physics [17].

Prospects for driving kagome antiferromagnets into the
CSL remains daunting and rare in the published literature.
Recent works with ultracold atoms placed in optical lattices
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[18,19] show promise because not only are kagome lattices
possible [20,21], but also temperatures low enough to realize
antiferromagnetic order derived from superexchange between
fermionic atoms have recently been realized [22] with atomic
gas microscopes [23-40]. One recent idea suggests that a
CSL may be realizable in systems of polar molecules using
long-ranged dipolar interactions in optical lattices [41]. In this
paper, we examine a very different approach based on more
common short-ranged interactions of fermionic atoms in the
presence of tunable fluxes.

We model fermionic atoms placed in kagome optical lat-
tices with flux. Effective flux in optical lattices can be realized
in a variety of ways [42-48,48-54]. We show that an optical
flux lattice [44,45,48,53] can be used to generate a sufficient
amount of flux to perturbatively drive virtual currents in
an underlying Hubbard model [55-57]. Figure 1(a) shows
one fermion per site in the Mott limit. Ordinary hopping is
prevented, but virtual hops around triangles can capture flux
to drive three-spin terms needed to enhance the CSL. The
equivalent amount of flux for such terms in a solid with an
~1-A interatomic spacing would require large magnetic fields
~10* T. We will, therefore, show that an optical flux lattice in
a kagome optical lattice offers a more direct route to the CSL
than what is achievable in solids with ordinary magnetic-field
strengths.

We also model effective flux generated by laser-assisted
tunneling combined with a potential tilt as first implemented
in square optical lattices [51,52]. When examining this setup
in a kagome optical lattice, we find that the effective flux
pattern is staggered [Fig. 1(b)]. We speculate that this flux
pattern may be able to drive an interesting gapless spin
liquid recently discovered numerically [9] to host symmetry
protected nodal lines and may, thus, offer a platform to study
gapless spinon surfaces [58—61]. Overall, we show that flux
applied to kagome optical lattices offers a powerful tool to
study QSLs, in particular, the long sought chiral spin liquid,
and, possibly, a spin liquid with gapless spinon surfaces.

This paper is organized as follows. In Sec. II, we discuss
the well-known Hubbard limit of kagome optical lattices. We
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FIG. 1. Schematic of one fermion per site (black spheres) on a
kagome lattice. The white spheres denote virtual current driven by
flux passing through the lattice. The plus and minus signs denote
the sign of the flux captured by the virtual currents. Panels (a) and
(b) show a uniform (staggered) flux pattern. In the Heisenberg limit
of a Hubbard model, virtual currents encircling flux lead to chiral
three-spin terms that drive spin liquids.

generalize to the case of complex hopping and describe a
calculation showing that, for large optical lattice depths (weak
hopping), the interactions lead to spin models with interesting
three-body terms that drive spin liquid formation. This section
describes a calculation we will use in the remainder of the
paper. In Sec. III, we discuss an optical flux lattice setup
that leads to a uniform effective flux [Fig. 1(a)]. We use
the derivation in Sec. II to argue that the optical flux lattice
establishes three-spin terms favoring a CSL. In Sec. IV, we
discuss a route to introduce a staggered flux [Fig. 1(b)] with
laser-assisted tunneling and a lattice tilt. We again use Sec. 11
to argue for a spin model with three-spin terms. Although here
we find that the resulting three-spin terms are staggered and
relate to recent work on gapless spin liquids with nodal spinon
surfaces [9]. We end with a summary and conclusion in Sec. V
where we also discuss practical aspects: entropy requirements
and methods to observe these spin liquid phases.

II. HUBBARD MODEL AND KAGOME LATTICES

We begin by discussing the mathematical connection be-
tween effective spin models and Hubbard models in the pres-
ence of flux. Sections III and IV will rely on the derivation
here as a route to model two distinct proposals to realize
effective flux in kagome optical lattices. In both cases, we
assume fermionic alkali atoms equally populating the two
lowest hyperfine states to yield a pseudospin. We also assume
that they are loaded into a kagome optical lattice [20,21,62].
The details of the kagome optical lattice setup have been
discussed elsewhere [21] where it was found that overlaying
two triangular optical lattices formed from lasers with com-
mensurate wavelengths yield potentials deep enough to realize
the Hubbard limit [20,21,63]. For laser intensities yielding a
Bloch bandwidth well below the band gap, we have [20,21,63]

H(X:Hg—FUzniT”lii, (1)

where the second term is a repulsive Hubbard interaction
originating from the s-wave scattering between atoms in spin
states o € {1, |}. Here, n;, = a};am is defined in terms of
dressed fermion annihilation (a5 ) and creation (aL) operators

at site R;. The first term is a single-particle hopping term,
Hy == thal aj,. 2)
(ij)

with nearest-neighbor hopping matrix elements 7. Equa-
tion (1) defines the essential degrees of freedom we will
examine.

We will discuss two different strategies to realize effective
magnetic fields strong enough to drive Mott insulating states
toward QSLs in kagome optical lattices. The first strategy,
discussed in Sec. III, will examine the optical flux lattice as
a route to a uniform flux pattern, Fig. 1(a), « = Un. The
second strategy, discussed in Sec. IV, will examine laser-
assisted tunneling combined with a potential tilt as a route to
implement a staggered flux lattice, Fig. 1(b), @ = St. In both
cases, the flux can be described by effective gauge fields A
captured by a complex hopping via the Peierls transformation:
tlf‘; = |t;j| exp(i®;;/ Do) where the flux on a bond is &;; =

flg ’A - dr. The flux then leads to an Aharonov-Bohm phase
difference as a particle tunnels around a triangle: 2w @A /¢y,
where & = fA(V x A) - d*r is the flux through an upward-
pointing triangle in the kagome lattice (®y is defined in
the same way but for downward-pointing triangles). In the
following, we work in units of 4 = a = g = 1 where a is the
lattice spacing and ¢ is the effective charge so that ®y = 2.

We now turn to interaction effects in the Heisenberg limit
to study the role of our proposed flux patterns in driving QSLs.
Equation (1) is well approximated by spin models when there
is one particle per site and for + <« U. In this limit, we can
derive the spin model by expanding H* perturbatively in
powers of ¢t/U using exp(iK)H* exp(—iK) where K is an
operator that changes the number of doubly occupied sites
[64]. Projecting into the limit of one particle per site, we have
[55,56,64]

HY ~Ju ) Si-8;+Jc(@)| Y Si-(S;xSu)

(ij) ijkeA

+ P Y8 (S; xS0 | + 0t U, 3)

ijkeV

where we have used the mapping: S; = (1/ 2)afaaayara,~(,/ with
0, - as the elements of the usual Pauli matrices. The first term
is the usual antiferromagnetic Heisenberg term arising from
two virtual hops along bonds: Jy = 4t>/U. Here, we assumed
that the magnitude of the hopping on all bonds ¢ is the same
without loss of generality.

In the absence of flux, corrections to the usual Heisenberg
(two-spin) interaction are fourth-order (four-spin) terms. But
here we note that three-spin terms in Eq. (3) arise pertur-
batively from third-order virtual hops around triangles due
to the presence of an effective field. One can see that they
are nonzero only in the presence of time-reversal symme-
try breaking on individual triangles due to effective fluxes:
Jo(®) = (2413 /U?)| sin(Qr @ 5y /Pp)| since Jc(P) vanishes
at zero flux. In the following, we seek routes to impose the
maximum amount of flux through each triangle: |®A v| =
®y/4 to maximize the strength of the three-spin terms.
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The parameter P, captures both the uniform flux P,_y, = 1
(®p = Pv) and the staggered flux cases Py_gt = —1 (Pp =
— &y ) discussed below.

The lowest-order corrections to Eq. (3) arise from fourth-
order virtual hops. Corrections of order t*/U? modify Jy. In
addition to modifying Jy, fourth-order corrections also give
rise to next-nearest-neighbor Heisenberg terms, e.g., S; - Si42.
We exclude next-nearest-neighbor Heisenberg terms in the
following.

The following two sections propose to realize both uniform
and staggered fluxes and, therefore, Egs. (1)—(3) in kagome
optical lattices. We will discuss how each separate setup can
be approximated by Eq. (2) but with different flux patterns.
We discuss the role of interactions by using the derivation of
the above general spin model to argue that a Mott insulator
placed in a deep optical lattice is approximated by special
cases of Eq. (3). The uniform flux case (¢« = Un) will yield
a three-spin term in Eq. (3) that is the same on all triangles
in the lattice (Sec. III). The staggered flux case (« = St) will
yield a three-spin term in Eq. (3) with a sign that alternates
from triangle to triangle (Sec. IV).

III. UNIFORM FLUX FROM AN OPTICAL FLUX LATTICE

Optical flux lattices [44] offer a straightforward route to
implement a uniform effective flux in a kagome optical lattice.
In optical flux lattices proposed so far, the lowest (of two)
hyperfine states adiabatically evolves under external lasers so
that Berry’s phase of an atom adiabatically changes around
closed loops in a lattice to mimic an effective magnetic field.
Details of different optical flux lattices have been discussed
in the literature [44,45,48,53]. A particularly versatile setup
was proposed in Ref. [45] wherein a two-photon dressed state
can be used to address many common atomic species. There it
was argued that low-loss fermionic atoms, which have already
been laser cooled, such as '7'Yb and '"Hg, can be used.
By loading them into the lowest two hyperfine levels and
addressing with two lasers detuned from the first excited level,
one can effect Berry’s phase change. The low-energy states
in this proposal [45] yield just a single-component fermion
moving in an effective magnetic field.

To generate effective flux for a system of two-component
fermions (a spin model), we consider a straightforward two-
copy generalization of Ref. [45] where the atoms are loaded
into four near-degenerate lowest levels (as opposed to just
two). Beams implementing the optical flux lattice are similarly
detuned from excited states. The resulting four hyperfine
states reduce to a dressed state of just the two lowest levels,
thus, leading to an effective spin in an optically induced
field. The dynamics of each atom leads to Berry’s phase
[44] which is equivalent to a flux passing through a closed
loop, identical for each of the two lowest hyperfine states.
Candidate atoms include isotopes of alkaline-earth-like atoms,
such as '*Yb and 37Sr [65-67] which can be used to prepare
SU (N)-symmetric Hubbard models. Recent work has been
able to use optical pumping to load '*’Yb into four degen-
erate lowest levels and cool into a Mott insulator displaying
spin correlations [68]. These four levels can be split with a
Zeeman field to yield an excellent candidate for a two-copy
generalization of Ref. [45].

We first examine the noninteracting part of the kagome
optical flux lattice. The optical flux lattice arises from counter
propagating lasers defining the usual kagome potential but for
the four hyperfine states so that, for each pair of hyperfine
states, the single-particle Hamiltonian becomes

P

3
~ 1
H(EJ“ = om +V ,EZI [cos(kz -r)— 3 cos(2k; ‘r)]al, 4)

where V, is the lattice depth, k; =(0,1), k, =
(+3/2,—1/2), k3 = (—/3/2, —1/2), and o; are the Pauli
matrices. If the kinetic energy is much smaller than the gap
of the second term, the ground state adiabatically follows
the second term in a dressed state ¢(r). Writing the ground
eigenstate of the second term as |\I/)T = [ (r), po(1)]
we assume that the ground state of this Hamiltonian is
nondegenerate everywhere. Projecting to its lower band leads
to an effective two-component Hamiltonian with the vector
potential A = i(W¥|V,|V) where the effective magnetic flux
density perpendicular to the plane of the lattice becomes
ng =(V xA)-2/®.

The top panel of Fig. 2 plots the lowest energy of the
potential term in Eq. (4) E, for a single spin. Here, we see
that minima correspond to a kagome lattice as expected. The
bottom panel plots the flux density in the lattice. The flux
density pattern shows that the flux piercing each triangle is
the same, thus, corresponding to Fig. 1(a).

The flux through the lattice can be tuned to yield a complex
hopping. Passing to the tight-binding limit, we assume that
V. is large enough to keep all atoms in the lowest band of
the kagome lattice (more than a few atomic recoils). Equa-
tion (4) then becomes well approximated by Eq. (2) with
complex hopping f;; =t exp(i®;;/Pg), where ¢ is real and
the same for all bonds. The hoppings capture a uniform flux
passing through all triangles in the kagome lattice (®p =
dy). We have checked that the flux passing through triangles
in Fig. 2 is maximized: Im[t|yt23t31] = 13 sin(Qr &5 /Dp) =
3 sin(2w Py /®o) ~ #3. This shows that an optical flux lattice
can be tuned to yield a large uniform effective flux through
a kagome optical lattice captured by the Hubbard model
discussed in Sec. II.

We now turn to interaction effects in the uniform flux
case. We assume the Hubbard limit with one particle per site.
Perturbation theory discussed in Sec. II with complex hopping
leads to a spin model of the form

HU ~ Jy Y SiS;+Jc(®@o/4) Y Si-(S; xS0
(ij) ijke{s,V}

+o@* /U, (5)

where we assumed a uniform flux &, = ®y = &(y/4 that
leads to the three-spin interaction term that is uniform
throughout the lattice and Jo(®g/4) = 2413 /U>.

We expect Eq. (5) to lead to a gapped CSL [3,6,7,10]. The
three-spin term on the kagome lattice and, therefore, large
Jo(P) ~ 1‘3/U2 in Eq. (5), strongly favors the CSL. But the
derivation of Eq. (5) is most accurate in the perturbative limit
t/U < 1. We, therefore, search for an intermediate range
of t/U which lies in the perturbative regime whereas still
favoring the CSL.
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FIG. 2. Top: Lowest energy of the potential term in Eq. (4) EL,
used to implement the optical flux lattice for lattice depth V, = 1.
Position is plotted in units of the lattice spacing a. The atoms sit
at the energy minima (dark regions). Bottom: The same as the top
but for the magnitude of the effective flux density n,. The bright
spots within the triangles show that atoms experience a uniform flux
through the triangles [Fig. 1(a)].

We study the robustness of the CSL over the entire pa-
rameter range using unbiased exact diagonalization for small
system sizes. We use the Krylov-Schur algorithm [69] which
allows us to handle degenerate eigenvalues. This method is
essentially exact (it includes all quantum fluctuations) and
gives the same results as other unbiased methods on small
lattices. We work on a finite system size, 18 spins (2 x 3 unit
cells) with periodic boundaries to obtain the lowest-energy
states. We point out that similar small-system size studies in
the fractional quantum Hall regime on related models [70] are
applicable to the thermodynamic limit because correlations in
gapped topological phases are known to decay exponentially.
For example, system sizes as small as eight particles capture
the low-energy roton structure of the fractional quantum Hall

ElJ

FIG. 3. Lowest-energy eigenvalues of the spin model with uni-
form effective flux [Eq. (5)] for 18 spins in 2 x 3 unit cells with
periodic boundaries. The lowest energy is set to zero. The strengths
of the Heisenberg and chiral three-spin terms are parametrized
with Jy = J cos(f) and Jc(P) = J sin(f), respectively. With this
parametrization, we have tan(f) = 6t /U and &, = Oy = /4 in
the original Hubbard model. The right side of the graph is dominated
by the three-spin term where we see two ground states defining the
CSL. Different colors indicate different total spin sectors: S, =0
(red), S; =1 (blue), S; = 2 (green), and S, = 3 (orange).

states [12]. Since the CSL maps to the bosonic fractional
quantum Hall states, the presence of the gap and other cor-
roborating numerics [7] allow us to make conclusions about
the robustness of the CSL.

Figure 3 plots the lowest energies of Eq. (5) as a function
of the relative strength of each term using exact diagonaliza-
tion. To perform a more compact exploration of parameter
space, we define new interaction parameters J and 6 via
Ju =J cos(@) and Jc(Py/4) = J sin(f), corresponding to
tan(f) = 6t /U and &, = &y = Py/4 in the original Hub-
bard model. By varying 6 in Fig. 3, we can tune between
the Heisenberg (left) and three-spin (right) limits in Eq. (5).
The rightmost side of the graph shows a twofold degenerate
ground state (arrows) as expected for a CSL on a torus. There
is a gap to a third state that remains robust for 6 2> /4,
i.e., Jc/Ju 2 0.5. In this regime, we see that deviations from
the exact CSL generating model [6] lift the exact degeneracy
induced by the three-spin term at & = 7 /2. Nonetheless, the
CSL remains robust since the gap does not close. The gap
is even somewhat enhanced by the two-spin term. Larger
system size numerics [7] show an even larger range of stability
Jc/Ju 2 0.15 in the thermodynamic limit.

Returning to the original Hubbard parameters, this range of
CSL stability 1 /U 2 0.16 for 18 spins and /U 2 0.026 in the
thermodynamic limit corresponds to parameters well within
the assumption of the perturbative regime. This brings us to
our central result: An optical flux lattice induces third-order
virtual currents which, in turn, drive a CSL state in the Mott
insulator regime of a Hubbard-kagome optical lattice. We
discuss possible routes to observation of the CSL in Sec. V.
The next section discusses a method to introduce staggered
flux and possibly a different QSL in a kagome optical lattice.
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Moving
Lattice

FIG. 4. Schematic of a kagome optical lattice with two additional
fields applied to create a staggered effective flux [Fig. 1(b)]. The
arrows denote a uniform potential gradient (tilt) from a gravitational
field, magnetic field, or another method. The green arrows denote the
direction of the moving lattice created by additional Raman beams.

IV. STAGGERED FLUX FROM A MOVING OPTICAL
LATTICE

We now discuss a separate method to introduce flux in
a kagome optical lattice. The method is based on a scheme
recently used to implement complex hopping in a square
optical lattice [51,52] with a tilt (which can be applied using
a variety of methods including a magnetic field or gravity)
and a moving lattice. The moving lattice is established by two
additional Raman lasers applied perpendicular to the tilt.

Figure 4 shows a schematic of the kagome lattice
containing two species of fermion, e.g., **K with both
external fields applied, the tilt, and the moving lattice. The
kinetic energy of the atoms under the applied fields becomes
a function of time t,

At ==t clcio+ Y [A-Ri+ VR D, cio. (6)

(ij)yo io

where the annihilation and creation operators refer to
undressed fermions [as in Eq. (2) but prior to the applied
fields] in Wannier states localized at sites i and j. The second
term results from the tilt field A = A[£ + (v/3/3)91/2
such that A-R;, =0 and A-R, =A-R; = A/2 where
we assume the positions of the three sites in a unit cell
are R =0, R, = %, and Ry = (1/2)% + (v/3/2). The last
term is due to a moving lattice created by additional lasers
added to the lasers defining the kagome potentials: V (r, 7) =
Qsin(P-r—tA), where P = —(n/2)%+ (V37/2)) is
the momentum of the moving lattice such that P - A=0
and P-R3; =P -Ry+n/2=P-R)+ . Here, we have
chosen an oscillation frequency that helps maximize flux and
equalizes the magnitude of the hopping along all bonds.

We derive a steady-state effective model for the fermions
under the applied fields. By computing the Wannier func-
tions in the presence of the tilt, we find a Wannier-Stark
effect which allows the moving lattice to generate a complex
hopping (see Appendix A). Appendix B shows that the flux
through the kagome lattice is staggered [Fig. 1(b)]. Specifi-
cally, we find that a tilt and moving lattice applied to fermions

in a kagome optical lattice results in Eq. (2) with complex
hopping and staggered flux to yield &, = — Py = Dy/4. We
have checked that varying the angle and other parameters
does not lead to a uniform flux, although other irregular flux
patterns are possible. We conclude that a method already
realized in the laboratory (introducing flux in optical lattices
using a tilt and a moving lattice) always leads to staggered
flux patterns in kagome optical lattices.

We now turn to interaction effects in the staggered flux
case. We again take the Hubbard limit of a deep optical lattice
with one particle per site. Arguments discussed in Sec. II lead
to a spin model of the form

Ifsl %JHZS,SJ
(i)

HIe(@o/H| Y S-S x S~ Y Si-(S; x Sp)

ijkeA ijkeV
+0@*/U?), 7

where we assumed a staggered flux &, = —Py = P(/4 that
leads to a three-spin interaction term that alternates from
triangle to triangle and Jo(®o/4) = 2413 /U2,

We now speculate on the role of strong interactions in
the staggered flux case. The staggered flux ground state of
Eq. (7) is argued [9] to be a gapless spin liquid where the
zero-energy excitations fall along three nodal lines that all
cross zero in momentum space. The gapless nodal lines are
protected by symmetry but finite-size effects may open a gap.
We used numerical exact diagonalization on Eq. (7) with up
to 18 spins with periodic boundary conditions to study the
spectrum in all spin sectors. We find small gaps (Z0.05Jc)
at expected gapless points. We conclude that large system
sizes are needed to see the degeneracy because the gapless
spectrum allows strong finite-size effects. Numerical work on
kagome ladders with as many as 200 spins show a gap [9]
that decreases linearly with system size from ~0.012J¢ for
50 spins to below 0.002J¢ for 200 spins, thus, establishing a
gapless phase for large system sizes. This paper also shows
that the gapless phase is stable for Jc/Jy 2 0.8. This range
corresponds to ¢t/U 2 2/3 and |®a v| = Pg/4 in terms of
Hubbard parameters, indicating that the gapless spin liquid
phase is, indeed, reachable in a perturbative limit where 7 /U is
still less than one. Further work would be needed to study the
gapless phase for lower values of /U where the perturbative
limit is more precise.

V. CONCLUSION

Fermions in a kagome optical lattice in the Heisenberg
limit can be driven into QSLs by applying fluxes that lead
to chiral three-spin terms. If the final state of the combined
lattice /flux system is to approximate a thermal state, we must
assume that the initial state is at low enough entropies [71] to
lead to an approximation to the QSLs discussed here. Recent
work estimates that entropies per particle below ~0.8kg are
needed to reach the Laughlin regime of bosons [72], which
is closely related to the CSL. The entropy to reach the
bosonic Laughlin state is within reach of atomic gas micro-
scopes [22-40] which have already realized the Heisenberg
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(antiferromagnetic) limit in a square optical lattice [22] with
entropies per particle below In(2)kg ~ 0.7kg. To make such
an estimate for the CSL, a detailed study of the high-energy
statistics of the CSL would be needed to extract an entropy-
temperature relationship. Such a study is beyond the scope of
the present paper.

The gapless spin liquid, by contrast, hosts a large number
of (nearly) zero-energy states and may, therefore, offer fa-
vorable entropy requirements. The required entropy (which
scales as the logarithm of the number of ground states) is
not as low as the CSL. A single spin excitation along one
of the degenerate nodal lines hosts an entropy per particle
~In(N)/Nkg for N spins. High occupancy of degenerate
nodal lines implies that entropy can be large in finite-sized
systems. From an entropy perspective, gapless spin liquids,
therefore, appear to be simpler to realize because the low-
energy manifold can be accessed at higher entropies in finite-
sized systems.

QSL ground states discussed here are more difficult to ob-
serve than conventionally ordered spin states (e.g., antiferro-
magnetic or ferromagnetic states [22,73,74]) because the QSL
ground states are uniform and otherwise featureless. The most
obvious route to observe the CSL is the gap, manifest in the
energy cost to change the spin imbalance. The absence of a net
magnetization but an observable gap would offer strong evi-
dence for a CSL. Additionally, the CSL has chiral edge modes
which could be observable using the spin analog of recently
realized quantized circular dichroism [75,76]. Spin liquids
also distinguish themselves in their excitations. CSLs have
anyon excitations which can lead to nontrivial power-law be-
havior [41,77] in the dynamical structure factor and can be ob-
served with Bragg scattering [78—81]. More local probes can
be used to directly observe anyons in optical lattices captured
by spin models [82]. The gapless spin liquid phase can be
revealed in measures of the dynamical structure factor as exci-
tations populate degenerate nodal lines, revealing the gapless
spinon surfaces. In this paper, we have constructed a route to
such spin liquids in ultracold atom systems with short-ranged
interactions to foster their identification in the laboratory.
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APPENDIX A: WANNIER-STARK STATES AND THE
EFFECTIVE HAMILTONIAN

In this Appendix, we show that Eq. (6) leads to Eq. (2)
with complex hopping and effective flux. To find a parameter
regime yielding an effective flux from a combination of a tilt
and a moving lattice, we first study the impact of the first
two terms in Eq. (6) on the basis of Wannier functions. We
numerically solve for the eigenmodes for a system which is
finite along the direction of tilt whereas infinite along the
orthogonal axis. The momentum along the orthogonal axis k|
is a good quantum number. In the limit of strong tilt, we find
two types of states plotted in Fig. 5. States localized near site

N

E 0
-
_20 ...................

-1.0 -0.5 0.0 05 10

ki /n

FIG. 5. Eigenvalues of the static part of Eq. (6) (2 = 0) plotted
against lattice momentum perpendicular to the tilt for A = 20z. The
kagome lattice is infinite along the direction of the moving lattice
but extends three unit cells along the direction of the tilt, Fig. 4. The
dispersive (flat) bands define delocalized (localized) states used to
vary hopping around triangles.

R, are dispersionless since their hopping to sites R, and R;
(see Fig. 4) are suppressed due to the energy difference, and
there is no hopping possible along the direction perpendicular
to the tilt. These states appear as flat bands in Fig. 5. (This
suppression of hopping is key to allowing the moving lattice
to generate a complex hopping.) States localized near sites R,
and R3 can hop freely along the direction perpendicular to the
tilt and, therefore, form the dispersive bands in Fig. 5 with
bandwidth 4¢. Wannier-Stark states are then constructed from
the Fourier transform of the Bloch states where the phases are
chosen to yield states maximally localized on a lattice site. We
denote the Wannier-Stark states localized near R; by |i).

In the basis of Wannier-Stark states, the Hamilto-
nian in the presence of both the tilt and the moving
lattice becomes: hy's = —1 3 1) (jl + (A RN +
Q Zij |i){(i| sin(P - r — rA)|j>(j‘|, where the prime on the

sum indicates a sum only over bonds such that A- R; —
R;) = 0. To remove the time dependence, we pass to the rotat-
ing basis, defined by the unitary time-evolution operator: U =
exp {i Zi[—(ﬁ -R))t — Fp,cos(P - R; — tA)]|i)(i|]}, where
Fp, = (2/A){0|cos P -r|0). Using U, we can now remove
the time dependence in h)'S using: UTh)’SU — iU" (3U /0t).
The resulting model is time independent but now describes
dressed fermions with complex hopping, i.e., we retrieve
Eq. (2). Direct numerical simulation of the Wannier func-
tions and computation of the resulting imaginary part of the
hopping shows that staggered flux with tunable strength is
possible. An analytic argument for the staggered flux pattern
can be derived in the weak-2 limit.

APPENDIX B: STAGGERED FLUX IN THE WEAK-Q LIMIT

In this Appendix, we show that the flux derived from
Eq. (6) is staggered. We have computed this numerically
in a tight-binding construction of the complex hoppings
in Eq. (2). We can work in the weak-Q limit to allow
analytic expressions demonstrating the mechanism behind
the staggered flux. If we let indices 1-3 refer to the sites in
the upward-pointing triangle in Fig. 4 we find (for weak )
a complex hopping: 1, ~ Q(1le~*7|n)/(2i) for n =2,3,
and real hopping along the remaining bond in the triangle:
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tr3 2 tJol(222/A) sin(P - Ro3/2)]. We have checked using
maximally localized Wannier functions that we can maximize
the flux through the plaquettes and adjust Q2 to setz = |f}o| =
Itz = |t31], leading to Im[tat23131] = 13 Sin2r ®p /Pg) &~
13. This shows that we can use the moving lattice to induce an
effective flux in the kagome lattice.

The flux for the downward triangles is different. One
can show that 71, ~ exp[iP - (R; + R,)] for weak @ whereas

ty3 is real and the same for all triangles. This implies that
the sign of the flux is the opposite for downward pointing
triangles in comparison to upward-pointing triangles in Fig. 4,
ie., 1?sin2w ®y/dg) &~ —13. The change in the sign of the
flux arises from the change in sign of the moving lattice
potential set by P. This behavior contrasts with the uniform
flux realized using the same technique but in square optical
lattices.
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