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Cluster Perturbation Theory (CPT) is a computationally economic method commonly used to estimate the
momentum and energy resolved single-particle Green’s function. It has been used extensively in direct com-
parisons with experiments that effectively measure the single-particle Green’s function, e.g., angle-resolved
photoemission spectroscopy. However, many experimental observables are given by two-particle correlation
functions. CPT can be extended to compute two-particle correlation functions by approximately solving the
Bethe-Salpeter equation. We implement this method and focus on the transverse spin-susceptibility, measurable
via inelastic neutron scattering or with optical probes of atomic gases in optical lattices. We benchmark the
method with the one-dimensional Fermi-Hubbard model at half-filling by comparing with known results.

I. INTRODUCTION

Cluster methods offer viable approximations to otherwise
intractable quantum many-body problems'. Strongly interact-
ing models pose challenging problems at first glance because
the Hilbert space scales exponentially. Yet certain problems
are tractable because small sub-systems offer good approxi-
mations to the thermodynamic limit. Such problems present
an opportunity to approximate eigenstates as factorized sub-
systems. In lattice models the subsystems can be real-space
clusters.

Cluster methods are often applied to Hubbard models with
local (on-site) Hubbard interactions:

Hy=Hy+ UZ”%‘,T”M (1)

K2

where Hj is a single-particle term that includes inter-site hop-

ping. U is the Hubbard interaction parameter and n;, =

cj »Ci,o» Where cz . creates a fermion at site ¢ and spin state
, ,

o € (1,1). This model is written in a single band but clus-
ter methods can be adapted to include multiband models as
well. In the following we focus on a single band and nearest
neighbor hopping of energy ¢.

CPT " is one of the simplest cluster methods applicable to
Hy. Tt uses exact diagonalization results from small clusters
and perturbatively couples them together using inter-cluster
perturbation theory, thus offering approximations to the ther-
modynamic limit. The CPT formalism allows a straightfor-
ward estimate of important single-particle correlation func-
tions, e.g., the spectral function. The spectral function can be
measured in angle resolved photo emission spectroscopy thus
offering a useful connection between Eq. | and experiments
on, for example, transition metal oxides’.

Two-particle correlation functions, by contrast, offer im-
portant insight into certain ordered phases of Hy. Density-
density and spin-spin correlations signal charge density and
spin ordering, respectively. Spin susceptibilities in particular
are observable using neutron scattering in materials™”. Inter-
estingly, ultra-cold atoms in the Hubbard regime have been
probed using optical analogues of neutron scattering to re-
veal spin-spin correlation functions in a Hubbard system as

well . It is therefore important that we have a straightforward
method to approximate two-particle correlation functions.

Previous work examined promotion of CPT to two-particle
correlation functions. Kung et al.'' calculate the spin-
susceptibility for the translational symmetry broken cluster
and periodize the result but neglect inter-cluster terms. Brehm
et al.'~ use the variational cluster approximation, an improve-
ment over CPT, to approximately solve the Bethe-Salpeter
equation for a two-dimensional (2D) Hubbard model at large
interaction strength, U = 8t. The variational cluster approxi-
mation includes a self consistent loop that improves accuracy
but comes with the added cost of computational complexity.
Here we follow their approach but for CPT to construct a
method that can be used with low computational cost so that
it can be applied to more complex models, e.g., multi-band
models.

Following Ref. 12, we extend the CPT formalism to two-
particle correlation functions by using the Bethe-Salpeter
equations to couple cluster solutions to the full lattice in di-
rect analogy to the CPT method used for one-particle cor-
relation functions. This generalization allows us to com-
pute spin-susceptibilities on small clusters that can in turn
be used to compare with experiments done in the thermo-
dynamic limit. Our central aim is to benchmark the method
by comparing with known results in the single-band 1D Hub-
bard model. The 1D Hubbard model has strong quantum fluc-
tuations yet many exact (or nearly exact) results are known
from Bethe Ansatz '", density matrix renormalization group
(DMRG) %, and perturbative limits' -'°. Here we find that
the spin-susceptibilities computed using CPT offer excellent
approximations to known results for weak and strongly inter-
acting limits. We also find reasonable agreement at interme-
diate interaction strengths. Our results set the stage for use of
CPT to efficiently compute two-particle correlation functions
on higher dimensional Hubbard models and models with band
degrees of freedom.

The paper is organized as follows: In Sec. II we review one-
particle CPT to establish notation and prepare for the gener-
alization to two-particle correlation functions. In Sec. III we
use the one-particle CPT formalism to define the protocol for
two-particle CPT '~. In Sec. IV we test the accuracy and via-
bility of the formalism with the 1D Hubbard model in a single



band by comparison with the Random Phase Approximation
(RPA), DMRG calculations, and the Miiller estimate''. We
summarize in Sec. V.

II. ONE-PARTICLE CLUSTER PERTURBATION THEORY

We first review the basics of one-particle CPT to establish
notation and provide a framework for a direct application to
two-particle correlation functions. One-particle CPT focuses
on approximating the single particle Green’s function:

VksT
s (iv) = /O dre™ (Tyco(7)ch (0))

where c; (1) (ca(7)) creates (annihilates) fermions in states
indexed by S (a) at imaginary time 7. These composite in-
dices specify both position, r;, and spin, o, e.g., @ = (i,0).
T indicates time ordering. Here we choose to present the
formalism in the Matsubara representation at non-zero tem-
perature T for simplicity but when we apply the method nu-
merically in Sec. [V, we will pass to zero temperature.

The CPT scheme approximates the single-particle Green’s
function by breaking up the original lattice and calculating a
Green’s function in a mixed representation. The mixed repre-
sentation is given by tiling the lattice into clusters connected
perturbatively by inter-cluster single-particle coupling in Hy.
The scheme results in a single-particle Green’s function with a
continuously valued momentum derived from a small system.
This is achieved formally by rewriting original lattice position
(momentum) vectors as the sum of the cluster and superlattice
position (momentum) vectors as: r; = R +r, (k = k+ K),
where o indexes cluster sites and k superlattice momentum.
This procedure breaks translational symmetry on the cluster
but keeps it among clusters.

CPT couples clusters perturbatively in the inter-cluster hop-
ping to form the full lattice. Another way of deriving the CPT
equations for the full lattice Green’s function is through the
Dyson equation:

G(k,iv) = Go(k,iv) + Go(k, iv)Z(k, iv)G(k, iv) .

Here G is the connected Green’s function, G is the non-
interacting Green’s function, and 3 is the sum of all one-
particle-irreducible diagrams. All quantities are matrices in
the cluster sites. Fig. 1a depicts the Dyson equation diagram-
matically for later comparison. A similar relation holds for
the corresponding quantities on a cluster:

Ge(iv) = Go(iv) + Goo(iv) e (iv)Geliv).

These relations allow for an approximate solution for the CPT
Green’s function.

To derive the CPT approximation to the Green’s function
we assume:

Y(k,iv) = X (iv).

This is the central approximation to one-particle CPT that al-
lows us to solve for the lattice connected Green’s Function,
yielding:

Gk, iv) = Gyl (k,iv) + G (iv) — Goi(iv).  (2)

This CPT approximation to the Green’s function can be com-
puted numerically in a straightforward fashion because the
mixed representation allows us to insert an approximation for
the self-energy derived from numerically solving the small
sized cluster. Appendices A1 and A2 detail how Eq. 2 is
computed numerically with exact diagonalization.

We can use Gcpr to compute one-particle correlation func-
tions in momentum space to bridge small cluster results (with
a momentum space mesh) and large systems (with a contin-
uous momentum space). To express the Green’s function in
momentum space we take a Fourier transform and ignore the
off-diagonal cluster momenta to restore translational invari-
ance:

. 1 —ik-(ro—r N
G(k,iv) =~ A Ze e lrar) [Gepr (K, iv)]ab,  (3)

a a,b

where V; = ~Ld is the volume of the d-dimensional cluster and
we have set k = k since K is periodic. It is important to note
that this approximation for G (k, iv') is equivalent to exact re-
sultsat U = 0 and ¢ = 0. For U = 0 there is no self-energy
and we recover the non-interacting Green’s function. In the
atomic limit, ¢ = 0, we retrieve the Green’s function for just
a single site, where G cpr = Go, so then G = G.. Addi-
tionally, in the limit L — oo, CPT is equivalent to the full lat-
tice. CPT systematically approaches the thermodynamic limit
with increasing cluster size V. Using this structure we can
construct an analogous procedure for two-particle correlation
functions.

III. TWO-PARTICLE CLUSTER PERTURBATION
THEORY

We now apply the logic of the one-particle CPT formalism
reviewed in Sec. II to two-particle correlation functions. A
general two-particle correlation function in the particle-hole
channel is given by:

B
Xom/ﬁ,a’/(iw,2'1/,Z'V/)=/d7'efimle("””‘")”e’(i”,““’)T3
0
X (Trel (11)car (r2) el (73)cs0(0)),

where 7 = (71, T2, 73). In general there are four independent
frequencies, but due to energy conservation, they can be re-
duced to only three: iw, iv, and iv’'. Where iw is the bosonic
transfer Matsubara frequency and iv and 72/ are fermionic
Matsubara frequencies. To approximate a two-particle cor-
relation function using CPT we start with the Bethe-Salpeter
equation (represented diagramatically in Fig. 1b):
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FIG. 1. Diagrams used in cluster perturbation theory: (a) the Dyson
equation, (b) the Bethe-Salpeter equation for the generalized four-
point susceptibility, (c) the Bethe-Salpeter equation for the two-point
susceptibility and (d) the analogue of the Dyson equation for the two-
point susceptibility. The four-point vertex, T'(iv, v/, iw), is approx-
imated by the two-point vertex, I'(iw). Dashed lines represent the
non-interacting Green’s function G, while double lines represent
the interacting Green’s function G.

X(iwa iI/, iV’) = Xo(iw, il/, iV/)aiu,iu’ (4)
+ Z xo (iw, iv, i\ (iw, V" iv"" ) x (iw, i iv")
iV”,’iUlI,
where,

xo(iw, iv,iv’) = G(iv + iw)G(iv),

and all quantities are matrices in the site indices. The four-
point vertex I is the sum of all scattering diagrams that are ir-
reducible in the particle-hole channel. The full Bethe-Salpeter
equation is expensive to evaluate for any arbitrary two-particle
correlation function because it is a rank-4 tensor and has 3
independent frequencies. To connect with inelastic neutron
scattering experiments and keep the discussion tangible, we
focus on the spin susceptibility defined as:

1ksT
iy (iw) = /0 dre T (T, 55 (7)85 (0)) 5)

1/kgT
_ / dre™ ™ (Trcl (T)eiy (T)ch | (0)c;1(0))

where the spin raising and lowering operators are given by
SH(r) = CZT(T)CZ"J,(T) and S; (1) = C}vJ’(T)Cj,T(T), respec-
tively. Note that here 7 = 70 = 7 and 73 = 0. In other
words, we join the outer legs in Fig. Ib making 7w the exter-
nal frequency and ¢v and 72/ internal frequencies to produce
Fig. lc.

As stated previously, evaluating the full two-particle cor-
relation function, and hence the full 4-point vertex I', is ex-
pensive. To reduce the computational cost, we neglect the de-
pendence of I' on the internal frequencies (and momentum),
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FIG. 2. CPT approximation (Eq. 2) to the Green’s Function,
—Im G(k, v + in), for the one-dimensional Hubbard model at half
filling plotted as a function of wavevector k. We choose a cluster size
L = 16, small broadening parameter 7 = 0.2, and plot Nyoins = 144
points for k£ and v. From top to bottom we have: U = 0, 2,4, and 8.
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FIG. 3. Left: CPT approximation (Eq. 10) to the spin susceptibility, Im x (g, w + in) for the one-dimensional Hubbard model at half filling
plotted as a function of wavevector. We choose L = 16,7 = 0.5, and Npoinis = 96 Right: The same but for the RPA-CPT approximation,
Eq. 11. The interaction is chosen to be weak, U = 0.1 and U = 0.5, (top and bottom respectively) so that the RPA-CPT is accurate. The

oscillating lines are a numerical artifact discussed in Sec. A 5

ie.,
I (iw,iv,iv") ~ T(iw) . 6)

This simplification was argued in Ref. 12 to provide a good
approximation for the magnetic particle-hole channel, for
which the dominant correlations have very little internal fre-
quency (and momentum) dependence. This approximation
then gives a Dyson-like two-leg Bethe-Salpeter equation de-
picted diagramatically in Fig. 1d and given by:

Xe(iw) = Xxo0.c(iw) + X0, (iw)Te(iw) X (iw) (7b)

for the lattice and cluster respectively.
We can now apply the CPT procedure outlined in Sec. II to
the spin susceptibility. Using the above two equations for the

lattice and cluster spin susceptibilities along with the central
assumption of our work:

L(iv, i, iw) ~ T'(iw) ~ T (iw), 8)

we can derive a CPT approximate spin susceptibility for the
lattice:

XEI}T(Q’ iw) = X(;,éPT(q’ iw) + Xc_l(iw) - Xoig (iw), (9)

where xo,cpr is the dressed bubble diagram using the CPT
Green’s function, Eq. 2. The appendix A 3 details how to
compute the bubble diagram. As a final step we make contact
with the momentum space spin susceptibility in the full lattice:

. 1 g (ra— )
x(q,lw)%vdze atee) [y epr(q, iw)]ap.  (10)
a,b

This approximation for y can now be compared with experi-
mental data continuous in ¢. In principle this procedure can
be used similarly for other two-particle correlation functions.
However, depending on the channel and the structure of the
dominant correlations in that channel, one may have to dress
the irreducible four-point vertex with appropriate form-factors
in Eq. 6 that describe the structure of the leading correlations
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FIG. 4. Same as Fig. 3 but for an intermediate interaction strength, U = 1 (top) and U = 2 (bottom). The CPT (left) and RPA-CPT (right)
agree well up to U = 2 where deviations between the methods start to appear.

in that channel. This generalization will be discussed in future
work.

The above scheme leads to an approximation for the spin
susceptibility which is exact in certain limits. As with CPT
for the single-particle Green’s function, we retrieve the exact
results in the two limits for the Hubbard model, U = 0 and
t = 0. For U = 0, there is no self-energy, the irreducible
vertex is zero, and we recover the non-interacting x. In the
t = 0 limit we are once again restricted to the single site and
X0,CPT = X0, £Ving X = Xcluster- Additionally, the CPT
approximation for the spin susceptibility is systematically im-
proved with increasing cluster size L, approaching the exact
result as L — oo. The applicability of the method away from
these points depends on the model. In the next section we
benchmark the approximation on a model where exact results
are known.

IV. APPLICATION TO THE ONE-DIMENSIONAL
HUBBARD MODEL

We now test the accuracy and viability of the CPT approx-
imation to the spin susceptibility on a specific model. The
method applies generally to H in any dimension but here we
focus on a model where exact results are known. We consider
the single-band d = 1 Hubbard model:

Hip=-—t Z c;r’gcjg + UZ NN — MZ Nio-
7 1,0

(1,4),0€1,4

The 1D Hubbard model has been studied extensively'*. Ex-
act results are known for single-particle correlation functions
in the ground state. The only known exact results for the
spin susceptibility involve scaling near poles or extreme lim-
its (weak and strong interaction). DMRG offers an accurate
method for comparison of the spectral function at intermedi-
ate interaction strengths'’~*'. Here we focus on half filling
(1w = U/2), zero temperature, and use units with t = i = 1.
We also set the lattice spacing constant to unity, ag = 1.
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FIG. 5. Left: The same as Fig. 3 but for larger interaction strengths, U = 4 and U = 8, and with n = 0.2. Right (top): DMRG result for a
64 site chain and U = 4. Here we see that the CPT method broadens the peak at ¢ = 7 in comparison to DMRG. Right (bottom): Miiller
estimate, Eq. 12, for U = 8 with a cutoff intensity such that max [xwmiuer (¢, w)] = max[Im xcer(gq, w + in)].

First, we test our numerical implementation for the single-
particle CPT. By computing the spectral function we repro-
duce work in Ref. 2, which has been benchmarked against
exact results. We find that the CPT results for the Green’s
function in Fig. 2 also agree with the time-dependent density
matrix renormalization group results for the Green’s function
in Ref. 21.

We now move beyond single particle correlation functions
to compare CPT results for the spin susceptibility x with
known results. In the low U limit, we can accurately use per-
turbation theory on Hp. Here the RPA should be reasonably
accurate, and leads to:

Xo,cpt (4, iw)

— U <« t. 11
1 = Uxo,cpr(g, iw) (b

XRPA-CPT (¢, iw) =

Here, xo,cpr is the bare susceptibility (bubble diagram) com-
puted with the dressed CPT Green’s function Gcpr in Eq. 2.
We call this approximation RPA-CPT because it amounts to
replacing the full vertex I in Eq. 7a by its leading order (RPA)
approximation U.

Figures 3 and 4 compare the CPT to the RPA approxima-
tion. Here we see that both methods agree at low U. But the
CPT results also show oscillations which are numerical arti-
facts. The 1D Hubbard model is SU(2)-symmetric; therefore,
the cluster spin susceptibility, x.(w + %7) is non-invertible for
all w’s””. The appendices A4 and A 5 explicitly detail how
we evaluate Eq. 9, and how we alleviate finite-size numerical
issues. These effects arise for a small broadening parameter 7).
For comparison with experiments, the small 7 limit may not
be needed due to intrinsic experimental broadening in mea-
sures of the spin susceptibility. The appendix (Sec. A 6) shows
the frequency dependence of the CPT vertex function I'(w).
We find that for small U and for w below ~ 4, I'(w) ~ U, i.e.
the RPA approximation in Eq. 11 and CPT agree reasonably
well.

We now turn to comparisons at larger U. The top pan-
els in Fig. 5 compare our CPT results for yx, Eq. 10, with
DMRG !, Here the DMRG system size, 64 sites, is con-
verged enough to approximate the thermodynamic limit. We
see that DMRG produces a narrower/taller peak for w < 0.05



and ¢ = m, otherwise all of the other qualitative features ap-
pear to be the same. The limited CPT cluster size (16 sites
chosen here), broadens the peak near ¢ = 7 for the left plot
because there are fewer ¢ points to sample.

In the very large U limit the 1D Hubbard model maps to
the isotropic Heisenberg spin chain with spin-spin interaction
J ~ 42 JU. For U = 4 and U = 8, DMRG calculations
of x(g,w) on the Hubbard model show close agreement with
the Heisenberg model. In the Heisenberg limit, a well known
phenomenological estimate for the spin susceptibility can be
used for comparison to CPT

Olw — wr(9)]Owr(g) — W]

w? —wi(q)

Xwiter (¢, w) = ;U >t (12)

where O is the step function. The lower energy branch is given
by wr(q) = (7/2)J|sin(gag)| and the upper energy branch
is given by wy(q) = wJ|sin(qag/2)|, thus reproducing the
Cloiseaux-Pearson relations. Eq. 12 yields accurate results in
comparison to the exact results for the Heisenberg model
for the large interaction limit because it was chosen to match
small system size Bethe-Ansatz results while respecting sum
rules and the Cloiseaux-Pearson relations. Eq. 12 deviates
from exact results on the upper boundary of the Cloiseaux-
Pearson relation because it incorrectly predicts a step in the
upper boundary.

Figure 5 compares our CPT results for y with the Miiller
estimate. We find that CPT better approximates the Miiller
estimate at larger U. This is reasonable because the Miiller
estimate was derived in the Heisenberg limit. But we do see
notable differences even at U = 8t. For example, there is less
weighting in x at large w, near w ~ 1 — 1.5¢. The shifting
of spectral weight from the upper spinon branch to the lower
spinon branch is as expected™'. The larger U enhances the
peak at ¢ = 7 and is evidence for strong antiferromagnetic
correlations.

The CPT graphs in Fig. 5 shows a small gap at ¢ = 7.
This is due to the finite size of the cluster. The gap here
should vanish in the thermodynamic limit~". The Appendix
(Sec. A7) discusses extrapolations of the gap as a function of
cluster size. We find that the gap tends to diminish as L. — oo.
But we find that finite size effects do not allow a precise ex-
trapolation to zero.

Overall we have found that CPT for two-particle correla-
tion functions offers a good approximation for the 1D Hub-
bard model. CPT reduces to exact results for the spin suscep-
tibility in weak and strong interaction limits. From Figs. 3- 5,
we see that for a wide range of interaction strengths CPT for
the spin-susceptibility agrees reasonably well with benchmark
methods. These are nontrivial tests because quantum fluctua-
tions are strong in 1D.

The CPT method shows deviations from expected behavior
due to two primary issues. The first issue is the finite size of
the cluster, which leads to a finite gap at ¢ = m. Finite-size
scaling is needed to extrapolate to a zero gap and make more
accurate predictions for the thermodynamic limit. The sec-
ond issue arose from pole mismatches in approximations to x
that led to numerical artifacts (Secs. A4 and A 5) particularly
when our broadening parameter was small. A general solution

could be to construct a Lehman representation of xcpr. This
would be useful for a more numerically controlled CPT-based
method when small broadening parameters are needed.

V. SUMMARY

CPT is a simple and economic method to compute the
momentum-resolved Green’s function for Hubbard models
with local interactions. CPT with exact diagonalization is use-
ful for exploring parameter space because it is less complex
than competing methods such as quantum Monte Carlo, den-
sity matrix renormalization group, or dynamical mean field
theory. We find that the CPT-extension to a higher order cor-
relation function, the transverse spin-susceptibility, allows a
relatively economic and accurate implementation in the 1D
Hubbard model. Our results also suggest that the method can
be applied to other more sophisticated Hubbard models where
clusters offer reasonable approximations to bulk physics.
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Appendix A: Appendix
1. (@-Matrix representation for two-point correlation functions

Here we discuss approximation of two-point dynamical
imaginary time correlation functions (7O, (T)OL(O)) on a
single cluster. Ordinarily the use of the Lanczos method leads
to a large number of poles. In this section we show how we
reduce calculation of such correlators for a single cluster to a
representation in terms of ”()-Matrices”. The new representa-
tion allows use of band Lanczos™ where only a single set of
poles arises for each element.

To be specific we focus on the Green’s function G =
— <T7—Ca(7')(3;2(0)> although the same procedure works for
x = —(I-57(7)S, (0)). We first pass to the Lehman
representation.  After constructing the thermal average of
the Green’s function, we can insert an eigenstate basis and
rewrite the imaginary time operators only considering 7 > 0.
After a Fourier transform into frequency space, using the
(anti)periodicity e®*5T = F1 for fermions and bosons re-
spectively, and simplifying terms, we have:

Gap(iv) = 5 3 {nl ca|m) (m c} In)

n,m

e_En/kBT + e_Em/k'BT

)

w+E, - E,

where the plus (minus) sign is for fermionic (bosonic) fre-
quencies and Z is the canonical partition function. We avoid



evaluating at tw = 0 for the bosonic correlation functions to
avoid the singularity.

A useful representation of the above Green’s function is
given using ’Q-Matricies”

e—Fn/ksT { ¢—Em/kpT
Qanm = <n‘ Ca |m> \/ 7

which have dimension (L X Ngyees). We can combine the sum
over eigenstates and eigenvalues n, m into a single sum over
S?

ZQQS.

where A\, = E,, — E,, and the diagonal matrix S handles
the statistical sign. We order the Green’s function such that
hole excitations are first followed by the particle excitations
and then S = diag(1,...1,—¢,... — §), where £ = F1 is
the statistical sign for fermions and bosons, respectively. This
allows a more compact representation:

sstﬁv

aﬁ ZV

1

1 gt
w1-Ace (AD

G(iv) =Q

We can now represent the Green’s function explicitly in

terms of elements of the () matrices. Using a Kronecker prod-
uct we get:

Gw(z‘v):Z[(SQ*) ®Qve"< iAﬂ

1
- Ca s N A2
zs: A W — Ag (A2)

where the subscript vec indicates transformation of a matrix
into a column vector by stacking the Oth column on top of the
1st column, 1st column on top of the 2nd, and so on. Here we
also introduce the rank-3 tensor:

Cozﬂ,s = [(SQT)T ® Q} af,s

This expression shows that we can rewrite the Green’s func-
tion in terms of () matrices.

We can also apply the above procedure to the spin suscep-
tibility. In the Lehman representation we have:

Xab(i) = ZZ (] 55 [m) (m] 5 |n)

e—En/kBT + e—Em/kBT

iw+ E, — B, ’

which is analogous to the Lehman representation for the
Green’s function. We can therefore obtain an expression for
the spin susceptibility in terms of () matrices by replacing
fermion operators with spin operators in Cyg3 5.

The expressions for G and x in terms of ()-Matrices are
useful for efficient evaluation. For small enough systems we

can diagonalize the entire matrix and get all of the wavefunc-
tions, |¢,) and E,. For larger systems we use Lanczos to
estimate the Green’s function. Using band Lanczos we ob-
tain the Q matrices and the energies F,,. At zero temperature,
running Lanczos once produces the ground state eigenpairs
|tho) and Ey. We then run a banded Lanczos with the set of
starting vectors. The algorithm produces the () matrix and the
energies F,, allowing approximations of the Green’s function
and spin susceptibilities. The advantage of this algorithm over
normal Lanczos is that there is only a single set of poles for
each matrix element.

2. Lehmann Representation for CPT Green’s function

We can define the inter-cluster hopping matrix in the mixed
representation as:
V(fc) = Goii(iw) — Ggl(ic,iw).
We can see this by splitting up the lattice hopping matrix ¢
into an intra and inter-cluster hopping matrix,

t(k) =t.+ V(k),

and expressing the non-interacting Green’s function for the
lattice and the cluster respectively as:

Gyl (k,iv) =iv —t(k),

and
Ga;(iu) =iv — t..

This allows us to write the Green’s function from the CPT
Dyson equation as:

Gk, iv) = G (i) — V (k)
This is the usual CPT equation as derived in Ref.

If we have the cluster Green’s function written in the Q-
matrix formalism in Sec. A 1 we can derive a Lehmann’s rep-
resentation of the CPT Green’s function. Following Knap et
al.”” but ignoring the spin-statistic matrix .S, since we are only
interested in fermions for the Green’s function, we get the

Lehman representation for the CPT Green’s function,

Gk, iv) = Q(k)—

i
Py VoA

where the new CPT poles and weights are, respectively:

A(k) =U(k)A +Q'V (k)Q(k)U" (k)

Q(k) = QU (k).
Equation A3 is our Lehmann representation for the CPT
Green’s function.
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FIG. A6. Top: CPT susceptibility for L = 16, U = 0.5 withn = 0.2
to highlight the numerical instabilities arising from a low broadening
parameter. The white dots appear where w < 0. The badly behaved
points follow along an oscillating structure with peaks proportional
to cluster size L. Bottom: the same but for U = 1.0. The oscillat-
ing structure shrinks as the misbehaving poles lose weight at lower
energy scales.

3. Evaluating the CPT bubble diagram in the mixed
representation

In this section we rewrite the bubble diagram for the trans-
verse spin susceptibility, xg, in terms of ()-Matrices. We do
this by re-expressing x as a convolution of two Green’s func-
tions and analytically computing the frequency integrals. This
provides a more accurate X.

In the mixed representation G (k,iv) we can write the
spin susceptibility as:

X0.ab(aiw) = —kpT Y Gap(p, i) Gra (P + q, iv + iw).
p,iv
After substituting in the spectral representation:

00 . ’
Gk iv) = / ay Gtk ),

1w —v

and doing the Matsubara summation,

1 _ fe(n) = fe(v2)
kBT; (iv —v1)(iv — 1) =4 v — Uy ’

where ¢ = F1 is the statistical sign for fermions and bosons,
respectively, and fe(v) = (e//#8T — €)= is either the Fermi-
Dirac or Bose-Einstein distribution, we obtain:

Z// dvidve Im Gop (P, v2)

\Jel) — fel)

w+ v — g

X0,ab q7 Zw

x Im Ga(p + q, 12

Passing to the Lehman representation for the Green’s func-
tion:

—ImGab k, V anbs V_ S(k))v

we insert a the Dirac-delta function and do the integral analyt-
ically to get:

X0,ab q, Zw Z Cabs Cbas (P+Q)
p,s,s’
fe(As(p) — fe(No (P + @)
X i+ As(p) = No(p+q) (A4

This is the bubble diagram in mixed representation. Here
Ca,s is defined in terms of (J-Matrices in Sec. A 1.

4. Calculation of the CPT Susceptibility

The momentum resolved spin susceptibility, Eq. 10, is
constructed with imaginary Matsubara frequencies; to com-
pare with experiment, we analytically continue the imagi-
nary frequencies to real frequencies. In general, this ana-
lytic continuation is numerically ill-posed. We could apply
one of the many analytic continuation algorithms, e.g. Padé
approximation”’, to Eq. 10, instead, we chose to analytically
continue each of the terms in the CPT spin susceptibility, Eq. 9
separately. Before the inversion, each term is the sum of sim-
ple poles. Therefore, the analytic continuation is straightfor-
ward and given by replacing iw — w + i1, where n > 0 is
some small parameter.

In general none of the terms in Eq. 9 have to be invert-
ible. In particular we find that x. has a zero eigenvalue for
all w’s and U’s due to being in the paramagnetic phase and
not breaking the SU(2) symmetry’>. One way to proceed is
to regularize the ill-conditioned matrix inversion by adding a
small parameter along the diagonal. Another way is to twice
apply the matrix identity:

(A'+BY)"'=A(A+B)'B,
where A, B, and C are matrices and (A+B) is assumed to be
invertible. These two methods agree provided that the regular-
ization parameter is sufficiently small. This avoids the explicit
calculation of the vertex I'. and instead calculates T', 1.
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FIG. A7. Frequency dependence of the CPT two-point vertex function I'(¢g,w) used in the Bethe-Salpeter equations (See Fig. 1d) for Hp.
The horizontal dashed lines show the RPA approximation I'(¢q,w) = U. The solid lines show the CPT approximation obtained from inverting
Eqgs. 7a with = 0.5 and Npoins = 48. Here we see that at low U, the real part of the CPT approximation at low frequencies is very close to
the RPA. The imaginary part of the CPT vertex function is also shown for comparison.

Unfortunately, this method did not produce the correct be-
havior at low U when compared with RPA-CPT. We instead
attempt to find the best I'. such that Eq. 7b is satisfied. This
is accomplished via pseudoinverses and is given by:

L. = xg..(Xe — X0.0)X4 - (A5)

Using the pseudoinverse matrices is equivalent to finding the
least squares solution. The pseudoinverse can be found with a
singular value decomposition,

A=Uxvt

for any (Ayows X Acols) matrix A. Where U and V' are uni-
tary matrices with sizes (Aows X Arows) and (Acols X Acols)
respectively. X is a diagonal (A ows X Acols) matrix with non-
negative real numbers. The pseudoinverse is given by:

AT =vEtUT,

where X7 is found by replacing the non-zero elements with
their reciprocals and transposing the resultant matrix. This

effectively ignores the problematic zero eigenvalue that occurs
in xe.

5. Causality and Bounds on 7

The CPT applied to the spin susceptibility as written in Eq.9
does not strictly respect causality (x(q,w) > 0 for w > 0 and
x(q,w) < 0 for w < 0). This is due to the minus sign on
X0.c(w)~!. While we can derive a Lehman representation for
each term in Eq.9, the poles are derived independently and
therefore differ in finite sized systems (the poles match in the
thermodynamic limit). Slight differences in the poles lead to
unphysical divergences, causality violations, and periodic nu-
merical artifacts in the CPT susceptibility as shown in Fig. A6.

By picking a large enough broadening parameter 7 we can
minimize these issues. The value of 77 needed depends on the
interaction strength U. For U < 2, this numerical issue is
the most severe except for at U = 0 where x c(w) = Xxc(w)



exactly. For larger interaction strength U > 4, xcpr is domi-
nated by X c(w) and the other terms are pushed off to higher
energies. We understand this by noting that around U ~ 0,
we have x. ~ Xo,. ~ Xo, and therefore, the slight differ-
ences between the many poles cause numerical artifacts. A
larger 17 smooths out the spectra and alleviates the unphysical
divergences and signs but still retains some of the numerical
artifacts.

Numerical artifacts in CPT applied to two-particle correla-
tion functions can be removed entirely with methods that are
beyond the scope of the present work. One approach would
be to derive a Lehmann representation of xcpr, like the one
for the Green’s function (Eq. A3) , then to combine poles until
causality is respected

6. Vertex Function Comparison

This section compares the two-point vertex function
I'(q,iw) computed with CPT against the RPA approximation
for a few values of q. We first note that only frequencies below
a certain threshold are relevant, i.e., only w < 4 is important
in Figs. 3-5, since the susceptibility vanishes for w > 4. We
are therefore interested in comparing vertex functions only for
w < 4.

We calculate T'(q,iw) by first computing x(q,iw) via
Eq. 10 and xo(q,iw) via Eq. A 1 with the Green’s function
from Eq. 3 (ignoring the site indices because yo(q, iw) is a
scalar). By inverting the two-point Bethe-Salpeter equation in
momentum space,

x(q,iw) = x0(q, iw) + x0(q, iw)I'(q, iw)x(q, iw),

we can construct a momentum resolved vertex I'(g, iw).

The solid lines in Fig. A7 plot the imaginary and real parts
of the vertex function versus frequency for several values
of U. The dashed lines plot the RPA approximation which
should compare well with CPT at low U. The RPA approxi-
mation to the vertex function is real and independent of ¢ and
w.

From Fig. A7 we see that for U = 1 and U = 2 the CPT
approximation shows reasonable agreement with RPA for the
relevant frequency ranges, w < 3 and w < 4, respectively.
The U = 4 panel shows that CPT and RPA start to deviate
significantly as expected since RPA is valid in the low U limit.
Fig. A7 also shows that for U = 0.5 we have a peak in the
vertex function. This peak is entirely numerical in origin and
derives from the pole mismatch discussed in Secs. A4 and
AS.

7. Finite-Size Scaling of the x (7, w) Gap

We define the gap in spin susceptibility A to be the fre-
quency at which x(m,w) attains a non-zero value. A corre-

11

sponds to the energy of the lowest excitation. It should scale
to zero in the thermodynamic limit since the spectrum of the
1D Hubbard model is gapless in the thermodynamic limit
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FIG. A8. Finite-size trend of the gap A. A is obtained as the fre-
quency for which (7, w) is first non-zero using CPT for U = 4
(top) and U = 8 (bottom) in H;p. Here we see a trend toward zero.
Linear fits of the last four data points show y-intercepts of 0.0255(8)
and 0.020(1) for U = 4 and U = 8, respectively.

Specifically, the x(m,w — 0) gap in Fig. 5 should go to zero
as we increase L. The precise scaling of the energy gap de-
pends on U and the boundary conditions'~. We focus on larger
values of U since the Heisenberg limit is known from analytic
arguments to scale as one over the system size”" which moti-
vates an expected 1/L scaling in our CPT study.

Fig. A8 plots the energy gap A as function of 1/L to show
a clear diminishing trend. But we find that a linear fit to the
4 data points at the largest L yield a small but non-zero gap:
Ay = 0.0255(8) for U = 4 and A, = 0.020(1) for U = 8.
The non-zero extrapolations may be due to the small system
size used, L < 16. We note that in other studies of related
two-spin correlation functions, DMRG~""" was needed to ex-
tract the correct finite size scaling from larger system sizes
(more than 70 sites) in the Heisenberg model. We conclude
that while the x(m,0) gap diminishes, our system sizes are
too small to extract a zero gap in finite-size scaling.
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