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Excitation gaps of incompressible composite fermion states: Approach to the Fermi sea
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Activation gaps are determined for fractional quantum Hall states with up to seven filled Landau levels of
composite fermions carrying two vortices, which correspond to electron filling factors of up to 7/15 along the
sequencer=n/(2n+1). Systems with as many as 100 composite fermions are studied for this purpose. The
relevance of the results to the issues of composite-fermion mass and the stability of fractional quantum Hall
effect along the sequencg(2n+1) is discussed.
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[. INTRODUCTION interest in its own right, being directly responsible for the
fractional quantum Hall effect.
The mass of the composite fermion (CF) has been In experiments, the composite-fermion mass has been
defined® by interpreting the excitation gap as the effectivemeasured by several methdts* For the sequences
cyclotron energy of composite fermiofgt the filling fac-  =n/(2n+1), all of the methods find the CF mass to be

tors v=n/(2pn=1), which correspond ton filled much larger than the electron band mass in GaAs (0,07
composite-fermion Landau leveld.L's), the gap is ex- wherem, is the electron mass in vacuynand roughly com-

pressed as parable tom, for typical experimental parameters. The
analysis of the gaps measured from transport data is some-
heB* 1 heB what complicated by the presence of disorder, which appears
Anizpn=1)= m*c = (2pn=1) m*c’ @D {0 have a significant effect, especially when the gaps are

small; nonetheless, a phenomenological treatment of
whereB is the external magnetic fiel®* =B/(2pn*=1) is disorde? in terms of a constant composite-fermion level
the effective magnetic fieldn* is the composite-fermion broadening provides a consistent picture in terms of a filling
mass, and @ is the vorticity of the composite fermion. From factor independent mass. The mass deduced from the tem-
dimensional considerations, we also know that the gap iperature dependence of the Shubnikov—de Haas oscillations
proportional to the Coulomb interaction energy, for whichshows an enhancement at 7/15, suggesting that it may have
convenient units are?/el,, wheree is the dielectric con- substantial filling factor dependence for lange
stant of the background semiconductiys= \#xc/eB is the This question also pertains to the issue of the stability of
magnetic length. This implies that, for a given filling factor, the fractional quantum Hall effe¢FQHE) along a sequence
m* depends on the magnetic field as ~/B, which is n/(2pn=*1). In the ideal situation, will FQHE occur for ar-
dictated by the fact that the mass is generated by the intepitrarily large n, or will the sequence terminate at some
action. In order for the mass to be filling factor independentPoint? (We note here that many FQHE states that can occur
(apart from theyB dependendefor composite fermions of a 1N Principle do not occur in reality for the Coulomb interac-

given vorticity (2p), the gap must satisfy tion; for example, at very small fillings or in higher Landau
levels, the FQHE states are unstable for the Coulomb

c, € interaction'>9 While it is not guaranteed by any means that
Ani2pn= 1):(2pn—+1) ?o' 2 our calculations will have the necessary accuracy to capture

such an effect, they might reveal trends indicating such a
An n-independenC, would imply a filling factor indepen- termination. In Ref. 15, it was found that the gap at 5/11 is
dent massn* z(hze)/(Cpezl o). (Of course the mass would below the prediction of Eq2); is that an indication of a real
depend on the CF vorticity2) Our aim in this paper will be trend or merely a fluctuation? Experimentally, there exists
to test Eq. (2), appearing very naturally within the evidencé’ for at least ten members of the sequené2n
composite-fermion framework, for more fractions than has+1).
been done in the past. Given that the composite-fermion Motivated by these considerations, we have undertaken a
mass is generated entirely from the Coulomb interaction, italculation of the gaps along the sequencen/(2n+1)
would not be surprising, and certainly not inconsistent withand will report results up to=7/15. The calculation uses
any fundamental principle, if it depended in some way on thevave functions for composite fermions for the ground and
filling factor. However, if the dependence on the filling factor the excited states. The ground state nafilled levels of
turns out to be too severe, the concept of the compositezomposite fermions and the excited state contains a far sepa-
fermion mass would cease to be useful. Therefore, it is ofated particle-hole pair of composite fermions. The wave
interest to investigate the filling factor dependence of the gajunctions have been tested for 1/3, 2/5, and 3/7 against exact
along the sequence of fractions for a givem ZAnother mo-  diagonalization results, and the gaps predicted from these
tivation is to see if a logarithmic divergence predicted in Ref.wave functions are accurate to within 2—388° No such
4 can be detected. Of course, the gap is also of fundamentaldependent tests exist for other fractions, but there is no
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reason to expect the wave functions to suddenly deterioratéhe centef®?* The magnitude of theB field is given by

in this context, it may be worth mentioning that the accuracy2Q ¢o/47R? where¢,=hc/e is known as the flux quantum,
of gaps at 1/3, 2/5, and 3/7 from these wave functions iR is the radius of the sphere, af@lis called the monopole
quite comparable. Nonetheless, the results below are only afrength which should be either an integer or a half-integer
accurate as the wave functions. because of Dirac’s quantization condition.

The gaps for filling factors<5/11 were reported in Ref. The interacting electron system at monopole strer@th
15 using this method, with an investigation of up to 40 par-maps into a system of weakly interacting composite fermions
ticles. The system sizes were too small for accurate estat an effective monopole strengii= Q—p(N—1). In order
mates, especially for 5/11, because the largest wave vectto write the wave functions for composite-fermion ground
achieved in the study was still in the range that is affected byand excited states & we first consider the wave functions
the CF particle-hole interactidfi.In the present work, we for noninteracting electrons ai, denoted by®. ® is in
use parallel computers to push the Monte Carlo calculatiogeneral a linear superposition of Slater-determinant basis
up to 7/15 using systems with as many as 100 compositetates made up of the monopole harmoﬁfc‘s{q;,m, given
fermions. We get more accurate numbers for the gaps redy
ported earlier, as well as gaps for new FQHE states.

The gap, anO(1) energy, is obtained as the difference

between the@©(N) energies of the ground and excited states. Y g.nm( Q) =Ngnm( = 1) 9"~ melajydrmy d=m

The calculation becomes increasingly more time consuming . _

as one goes along/(2n+1) for two reasons. First, a study % 2 (- 1)S<ﬂ 2gq+n

of large systems is required in order_ to investigate higher- ) q+F—m—s

order states; for example, 7/15 requires a minimum of 49 B

electrons in the spherical geometry. Second, the energies of X(v}*vi)”*s(u}* u;)s, (5)

the ground and excited states need to be determined with
greater accuracy both because the energies increaseNwith
and the energy difference decreases witkor 100 compos-
ite fermions, the energies at 7/15 must be determined to an

accuracy of better than 0.02% in order to get a reasonable

value for the gap. A single gap value for 100 particles re- Nqnm:(

where

(2q+2n+1) (g+n—m)!(q+n+m)!

quires on the order of faotal Monte Carlo steps, taking am nl(2g+n)!
~20000 CPU hours on a fast workstation. The results re- (6)
ported below have taken altogethed0° Monte Carlo itera- o
tions. We divide all of the Monte Carlo steps into severaln=0,1,2 ..., is the LLindex (to be differentiated from,
configurations. The error is given by the standard deviationhe number of filled Landau levels(); represents the angu-
in energies oveL configurations lar coordinates; and ¢; of the jth electron and
L L

o= \/L(L & 2 (E-ENE—E). O u;=cos 0;/2)exp —i ;/2), )

where the angular brackets denote an average over Monte 0,=Sin6,/2)exp(i 12). ®)

Carlo steps and; is the energy of théth configuration. We
place each configuration on a single node of a Beowolf class
PC cluster. One node consists of a dual 1 GHZ Pentium lliThe free electron wave functions for the ground and excited
processor. To obtain one data point, at a particMlave use ~ states withn filled LL's on the sphere are then

as many as 30 nodes repeatedly until the standard deviation

in energies is sufficiently low to produce the desired accu- d _
g y P (Dg :Del[Yq,n,m]

racy.
Il. CALCULATIONAL METHOD + _ — —
q)ex Ca+1,—(q+nt)cnt g+ nt)Del[Yq,n,m] 9
The wave functions at=n/(2pn+1) are given by
V=P DPD (4)  Wherecy, (c . annihilates(createg and electron in the
14 1

. . _ . . nth LL. Heren, is the LL index of the topmost filled LLD >

where®, is the Slater determinant of single-particle eigen-
states filling the lowest Landau leveb, is an antisymmetric Places one particle in the,+ 1 LL, at the north pole of the
wave function for free fermions at an effective filimyand  sphere, and a hole in thg LL, at the south pole.
P_ .. is the lowest Landau-level projection operator. It was shown in Refs. 15 that the Corresponding wave

We work in the spherical geometry in whidthelectrons ~ function of composite fermions a, which gives the wave
move on the surface of a sphere under the influence of finction of interacting electrons &= qr pP(N—1), is ob-
radial magnetic fieldB created by a magnetic monopole at tained from® by replacing¥  m by Yq nm defined as
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J]:H (Ujl)k_l)juk). (11) © I 1
. 0.00 —
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Here the prime denotes the conditik# j. The ground- and
excited-state CF wave functions are obtained from the corre-
sponding integral quantum Hall wave functions by the re- L 715 |
placementy — YCF. 0.04 | 1
We evaluate the energies of these wave functions for the L 0.018(11) ]
Coulomb interaction by Monte Carlo. In order to deal with 0.02 -,/”;T’i—}l‘z
the derivatives we find it convenient to write them as fol- - 1
: 0.00 : ' : '
lows: 0.00 0.01 0.02
(9 S H*S I 1/N
(m) (5) JJP:JIP[U}SV? Sl]’ (12) FIG. 1. Extrapolation of the activation gaps to the thermody-
J J namic limit for v=5/11, 6/13, and 7/15\ is the number of com-
where posite fermions. The error bars denote the Monte Carlo uncertainty
and the solid line is &? straight-line fit.
_ d v d
U]:JJ‘P_J}):pE'—k . _ _
au; K Uu—ojUc U, though this energy vanishes when the two are far away, we
explicitly subtract from our gaps-e?/[(2n+1)?2R], the
p d o , — Uy d interaction energy of a particle and hole of chargs|
Vi=J ,9_01 1= p; Ujo— v Uy + ,9_01 (13 =e/(2n+1) at the opposite poles, before we extrapolate the
- results to the M—0 limit. We have not studied corrections
For a givenn, the explicit analytical form of the derivatives to the mass due to finite thickness, disorder, or Landau-level
is used in the evaluation of the wave function. mixing here, which are presumably substantial for the states
YCF thus require evaluation of with a large number of filled composite-fermion levels. Our
B goal here is not to compare with experiment, but to ask how
Pi(s,n— S)E[Ujsv?*sl], (14)  Wwell the concept of mass works in the ideal situation when

o - these effects are absent.
where allP;(s,n—s) with s=0, .. . n will be needed for the

nth CF level. The explicit form foP;(s,n—s) is given in
the Appendix for up to the 6th CF level.

In this paper, we will be concerned with the sequence Figure 1 shows the gaps at 5/11, 6/13, and 7/15 as func-
=n/(2n+1), i.e., withp=1. The ground state here is given tion of N, N being the number of composite fermions. The
by n filled levels of composite fermions. A particle-hole pair thermodynamic limit obtained from a linegf fit is plotted
of composite fermions is obtained by exciting a compositein Fig. 2 against (2+ 1)1, also including the gaps for the
fermion from one of the filled CF-LL's to an empty CF-LL; other FQHE states, taken from the literat(see Ref. 15 and
the lowest energy is obtained when the excitation takes placeeferences therejn
from the topmost occupied CF-LL into the lowest unoccu- We note that for even with 100 particles, there are sub-
pied CF-LL. The gap measured in transport experiments istantial finite-size oscillations for higher-order fractions such
the energy required to create a far separated CF particle-hoés 7/15, presumably due to the distance dependence of the
pair. In the spherical geometry, the farthest separation is oli=F particle-hole interaction, indicating that the distance be-
tained by putting the particle and the hole at the north andween them is not large compared to their size even for 100
south poles. With the explicit wave functions, we obtain theparticles>* That, combined with the statistical uncertainty in
energies of the ground and excited states by Monte Carlo favlonte Carlo, makes an accurate estimation of the gap diffi-
the Coulomb interaction. The gap so obtained also includesult, leading to fairly large error bars, especially at 7/15.
the interaction energy of the CF particle and hole. EverNonetheless, the gaps remain positive, providing insight into

Ill. RESULTS AND DISCUSSION
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Pi(s,;n—s)=[U;V°1] (A1)
Se5 % B 8 2 .
0.12 T . . with
0.10 T _ 1% v d
: U=3P-—P=p> — —,
0.08 | - du; kK Ujpg—ojug  du;
T 006 .
N — J — Uk J
2, i Vi=J P 3P= 4+ A2
((D%- 0.04 | 1 ! ! (?Uj ! pEk Ujvg—v;Ug (7l1j (A2)
0.02 . which we evaluate by the following methdd.
0.00 - | We first define
002 L . . . | v al  _y, \A
002, 0.1 0.2 0.3 0.4 fi(a,f)=2 '( K ( X ) . (A3)
1/(2n+1) ko \Ujpk— v/ \Ujuk—vjU

FIG. 2. Thermodynamic values of the gaps plotted as a functiorﬁquations(Az) can be rewritten as
of 1/(2n+1). The best straight-line fit is given by 0.333(16)(2 o P
+1)~1-0.0052(30). Uj=pfj(1,0)+m' (A4)

i
the remarkable stability of FQHE alongn/(2n+1).
~The plot of gaps as a function of 14¢2-1), shown in V,=pf 0.0+ 9 (A5)
Fig. 2, is consistent with the straight-line behavior of E2). v
However, due to the large error bars, it is not p_ossmlt_e tOAIso, the derivatives of j(«,8) with respect tou; andv;
definitively rule out other functional dependences, in particus .
o . ! . . have the simple form
lar, a logarithmic correction to the straight line. If one fits the
gap with a straight line, the best fit is given by J
@B =—(a+B)f(a+1p),
A _| 933319 0.005230 ¢ 15 J
n/(2n*x1)— (2n+1) . Z ) GIO, ( ) g
—fi(a,B)=—(a+B)fi(a,B+1). A6
which gives an activation mass ofi* ~3(%2€/l,€2). We v i(@p)==(at pfj(eft1) (A6)
note that the intercept at=1/2 is slightly negative, which o ) — .
might imply an instability at a large; however, given the Explicit expressions folP;(s,n—s) in terms off(a,B)
uncertainty in the functional form of the fitting curve, as well for various values of arguments are given below for the low-
as large error bars, no definitive conclusions may be drawrgst six CF-Landau levefS. (For yet higher Landau levels,

In the end, we note that a recent wfthas estimated the expressions become too long to reproduce here, but can
gaps for 1/3, 2/5, 3/7, and 4/9 by exact diagonalization orPe evaluated following the same method using
systems with up to 18 particles. The gaps reported there amATHEMATICA.) Pj(n—s,s) can be obtained fronP;(s,n
10-20% lower than those calculated here and deviate from-s) by swapping the arguments of @ll(«, 8) on the right-

Eq (2) Furthel’ WO.rk will be requ|red to determin'e Whether hand Side. Therefore we W|” I|St Oanj(S,H— S) W|th S
the differences arise from finite-size effects, different eX-_ 1 _s. In the following, the subscrifiton the quantitie®

trapolatlon,l schemes, or imply logarithmic corrections to theandf will be left as implicit.
wave functions¥,, .
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APPENDIX —
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P(2,1)=p%(0,)f(1,0>—2p*f(1,0/f(1,1)
—p2f(0,1f(2,0+2pf(2,2).

P(4,1)=p>f(0,1)f(1,04—4p*f(1,0°3f(1,1)
—6p*f(0,1)f(1,0%f(2,0)
+12p3f(1,0)f(1,1)f(2,00+3p3F(0,1)f(2,0)?
+12p3f(1,0)%f(2,1) — 12p?(2,0)f(2,1)
+8p3f(0,1)f(1,0/f(3,0 —8p?f(1,1)f(3,0)
—24p?f(1,0/1(3,1)— 6p?f(0,1)f(4,0)
+24pf(4,2),

Forn=4,
P(4,00=p* f(1,0*—6 p° f(1,0? (2,0 +3 p? (2,02
+8 p? f(1,01(3,0—6 pf(4,0),
P(3,1)=p*f(0,1)f(1,03—3p3F(1,0%f(1,1)
—3p3f(0,1)f(1,0)f(2,0+3p?f(1,1)f(2,0)
+6p2f(1,01(2,1)+2p?f(0,2)(3,00—6pf(3,1),

P(2,2) = p4f(0,1)2f(1,0)2_ pgf(O,Z)f(l,O)z P(3,2) _ p5f(0’1)2f(1,0)3_ p4f(0,2)f(1,0)3

—4p3f(0,1)f(1,0f(1,1) +2p?f(1,1)?
+4p2f(1,0f(1,2 — p3f(0,1)%1(2,0)
+p?f(0,21(2,0 +4p?f(0,1)f(2,1)— 6pf(2,2).

—6p*(0,1)f(1,0%f(1,1)+6p3f(1,0f(1,1)?
+6p3f(1,0%f(1,2 — 3p*f(0,1)2f(1,0f(2,0
+3p3f(0,2f(1,0f(2,0+6p>f(0,1)f(1,1)f(2,0

Forn=5, —6pf(1,2f(2,0+12p%f(0,1)f(1,0)f(2,2)
—12p%f(1,1)f(2,1)— 18p%f (1,00 (2,2
+2p3f(0,1)%f(3,0 — 2p?f(0,2)f(3,0)

—12p?f(0,1)f(3,1) +24pf(3,2.

P(5,00=p°f(1,0)°—10p*f(1,0)3f(2,0 + 15p°f(1,0)f(2,0)?
+20p3f(1,0)%f (3,00 — 20p?f(2,0)f(3,0)
—30p%f(1,0)f(4,0)+ 24 pf(5,0),
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the dispersion is expected to be independent of the wave vector,
but, from Ref. 19, we know that even fer=2/5 and 3/7 this
does not happen up tdy~2, wherek is the wave vector. For
7/15, we expect that the effects due to particle-hole interaction
will persist up to still largerkly, because the particle and the
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hole are more spread out because of the larger effective mag-
netic length. For 98 particles at="7/15, the wave vector of the
particle-hole pair at maximum separation kdo= L nax/\Q

~2, which suggests that finite-size effects are not negligible
even for 98 particles at this filling factor.



