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Chiral topological phases in optical lattices without synthetic fields
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Synthetic fields applied to ultracold quantum gases can realize topological phases that transcend conventional
Bose and Fermi-liquid paradigms. Raman laser beams in particular are under scrutiny as a route to create synthetic
fields in neutral gases to mimic ordinary magnetic and electric fields acting on charged matter. Yet external
laser beams can impose heating and losses that make cooling into many-body topological phases challenging.
We propose that atomic or molecular dipoles placed in optical lattices can realize a topological phase without
synthetic fields by placing them in certain frustrated lattices. We use numerical modeling on a specific example
to show that the interactions between dipolar fermions placed in a kagome optical lattice spontaneously break
time-reversal symmetry to lead to a topological Mott insulator, a chiral topological phase generated entirely by
interactions. We estimate realistic entropy and trapping parameters to argue that this intriguing phase of matter
can be probed with quantum gases using a combination of recently implemented technologies.
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I. INTRODUCTION

Condensates of neutral atoms and molecules offer consider-
able opportunities for realizing quantum many-body states of
matter [1]. But conventional wisdom asserts that because they
are not charged, these condensates must be manipulated by
synthetic fields, instead of ordinary electromagnetic fields, to
engineer quantum states beyond conventional Bose and Fermi
liquids [2–7]. Methods to implement synthetic fields include
external Raman lasers to yield effective magnetic fields or
spin-orbit coupling.

Strong synthetic fields can generate topological states in
quantum degenerate gases. A strong magnetic field leads to
the integer quantum Hall effect by explicitly breaking time-
reversal symmetry to allow chiral edge modes with suppressed
backscattering that surround the otherwise insulating integer
quantum Hall state [8]. Similarly, strong spin-orbit coupling
can lead to topological insulators with suppressed backscat-
tering in edge modes [9,10]. In both cases, the synthetic
field could, if realized, encode a topological invariant (an
integer Chern number for the quantum Hall state or a Z2

invariant for the topological insulator) in the single-particle
band structure that manifests in quantization of edge-mode
observables. In spite of recent progress in realizing synthetic
fields in ultracold atomic gases [11–28], there has been concern
that light-induced synthetic fields will ultimately suffer from
heating and losses [29] (particularly in strongly interacting
regimes of interest [30,31]), thus complicating the realization
of topological states.

Topological phases, with quantized observables, can be
realized even without synthetic fields. For example, work in
the context of chiral spin liquids [32,33] pointed out that strong
interactions can spontaneously break time-reversal symmetry,
thus allowing a state with chiral edge modes and a nonzero
Chern number even in the absence of an external magnetic field.
A subsequent mean-field theory (MFT) work [34] on spinless
fermions hopping in a honeycomb lattice (fermions with a

linearly crossing band structure) suggested that interactions
lead to a similar state: a topological Mott insulator phase
(TMIP), with a quantum anomalous Hall (QAH) effect that
arises solely from interaction effects. The exciting possibility
of finding materials with a QAH effect spurned more rigorous
numerical studies that unfortunately suggest that the TMIP in
honeycomb-lattice models is barely stable against competing
charge density wave (CDW) order, if at all [35–37].

Recent works show that interacting models favor a TMIP
in certain frustrated lattices with a quadratic band crossing
point (QBCP) [39–42] rather than a linear crossing point as in
the honeycomb lattice. QBCPs arise in several frustrated two-
dimensional lattices, including the kagome, diamond, Lieb,
and decorated honeycomb lattices. MFT modeling of short-
range interacting fermions on the kagome lattice shows evi-
dence for a TMIP [41]. Density matrix renormalization-group
studies on a kagome lattice with an inverted band structure
(positive tunneling energy between sites rather than the usual
negative tunneling energy found in optical lattices) also show
strong evidence for a TMIP for short-range interactions [43].
While these theory works are promising, it is still unclear
how electronic matter can be coaxed into the TMIP since
the electrons need to be fully polarized and the role of the
long-range part of the electron-electron interaction remains an
open issue.

We propose that quantum degenerate gases of atomic or
molecular dipoles [44–60] placed in a kagome optical lattice
(Fig. 1) can be tuned to regimes that realize a topological
Mott insulator with an observable QAH effect. We com-
bine complimentary methods [MFT and exact diagonalization
(ED)] to show that the dipolar interaction supports a TMIP
in a physically realistic tight-binding model of dipoles in
a kagome optical lattice. Our proposal avoids the need for
synthetic fields and instead relies on technology recently
implemented in experiments that have, separately, realized
a kagome optical lattice [38] and cooled dipolar gases to
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FIG. 1. Plot of a kagome optical lattice potential [38] (see Ap-
pendix A for the explicit formula) as a function of position in the x-y
plane. The two particles represent schematics of dipoles separated
in the plane by |r − r ′| with moments oriented perpendicular to the
plane to ensure mutual repulsion.

quantum degeneracy, e.g., 161Dy [47]. We estimate that the
entropy required to reach the topological phase is ∼0.15kB

per particle, potentially within reach of cooling capabilities
with atomic gas microscopes [61]. Our work therefore shows
that a combination of recently implemented technologies with
atomic and molecular condensates can be used to realize and
observe a topological Mott insulator.

This paper is organized as follows. In Sec. II, we set
up the problem and describe our ED and MFT methods. In
Sec. III, we present the results of our analysis, demonstrating
the emergence of the TMIP under suitable conditions. Finally,
in Sec. IV, we summarize our findings with a discussion of
prospects for experimentally realizing the TMIP with ultracold
atoms in optical lattices. The appendices discuss the explicit
formula of the optical lattice potential, the effects of finite
spread of Wannier functions on the dipolar interaction, and
the role of finite-size effects in the calculation of current.

II. MODEL AND METHODS

We consider an optical lattice defined by three bichromatic
laser beams intersecting at 120◦ to define a kagome pattern
[38] (Fig. 1). For a sufficiently deep optical lattice, we may
safely assume that all particles reside in the lowest three Bloch
bands. If the optical lattice is loaded with fermionic dipoles
(with their dipolar moment aligned perpendicular to the plane),
we may model the dipoles with the following tight-binding
Hamiltonian:

H = −t
∑
〈r,r ′〉

(c†rcr ′ + H.c.) + V1

2

∑
r �=r ′

nrnr ′

|r − r ′|3 , (1)

where cr (c†r ) annihilates (creates) a spinless fermion at the
site r and nr = c

†
rcr . The first term is the single-particle

tunneling between neighboring sites. In the following, we work
in units with t = kB = 1. We also set the nearest-neighbor
lattice spacing to unity.

The last term in Eq. (1) approximates the dipolar interaction.
The prefactor V1 is the interaction energy between nearest

FIG. 2. (a) Single-particle energies as a function of wave vector on
a kagome lattice with only nearest-neighbor tunneling. At a density of
2/3, the bands marked with solid (dashed) lines are filled (empty), and
the red arrow shows where the Fermi surface touches the empty band
at the quadratic band crossing point. The inset shows the definition
of various high-symmetry points in the first Brillouin zone. (b) The
charge density wave pattern obtained from Eq. (1) with V1 = 2. The
sizes of the dots are proportional to the average occupation number.
(c) The chiral current pattern in a topological Mott insulator phase
with a quantum anomalous Hall effect obtained from Eq. (1) with
V1 = 1.8. Exact diagonalization and mean-field theory obtained the
same patterns found in both (b) and (c).

neighbors. The interaction is written in the limit of infinitely
narrow Wannier functions. Corrections to this interaction
derived from the finite spatial extent of the Wannier functions
are discussed in Appendix B. We find that realistic corrections
to the interaction term do not significantly impact our findings.

To numerically study Eq. (1), we truncate the interaction
when the interaction strength becomes weak so that the
truncation does not significantly impact our results. In our
mean-field results carried out in the thermodynamic limit,
the interaction includes all pairs of sites with |r − r ′| < 5.
In our finite-size studies (where we compare MFT and ED),
the interaction includes pairs only up to |r − r ′| < 2 to avoid
finite-size effects.

The noninteracting part of Eq. (1) can be solved for the
energy eigenvalues. For physically realistic negative tunneling
energies (i.e., t > 0), there are three bands, as shown in
Fig. 2(a). The highest band is flat (dashed line). At a density
of 2/3, we fill the lowest two bands (solid lines). Here the
noninteracting Fermi surface touches the empty flat band at a
QBCP [red arrow in Fig. 2(a)]. We will see that the dipolar
interaction opens a gap at the QBCP.

To construct the phase diagram of Eq. (1) with V1 > 0, we
use two complementary methods: MFT and ED. ED includes
all quantum fluctuations but applies only to small system sizes.
Specifically, we use the Krylov-Schur algorithm [62] which
allows us to handle degenerate eigenvalues. This method is
essentially exact because it is unbiased and gives the same
results as other unbiased methods on small lattices. With ED,
we work on a finite system size, 27 sites (3 × 3 unit cells)
and N = 18 fermions, with periodic boundaries to obtain the
lowest-energy states.

The MFT we use, in contrast, applies to either finite or
infinite system sizes. It excludes quantum fluctuations due to
our choice for decoupling of the interactions. The following
Hartree-Fock decoupling turns out to be surprisingly accurate
in comparison to ED:

nrnr ′ → n̄rnr ′ + nr n̄r ′ − n̄r n̄r ′

−ψr ′,rc
†
rcr ′ − ψr,r ′c

†
r ′cr + |ψr ′,r |2, (2)
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where the fields that capture circulating currents and density
oscillations are ψr ′,r ≡ 〈c†r ′cr〉 and n̄r ≡ 〈nr〉, respectively.

The decoupling of the interaction in Eq. (1) leads to a
quadratic Hamiltonian, which we solve self-consistently. We
then obtain the finite-temperature phase diagram from the free
energy at temperature T :

F = −T
∑
k,m

ln[1 + e(μ−Ekm )/T ] + μN

+ V1

2

∑
r �=r ′

|ψr ′,r |2 − n̄r n̄r ′

|r − r ′|3 , (3)

where Ekm are the single-particle eigenvalues of the mean-field
quadratic terms in the decoupled Hamiltonian in the mth band
at wave vector k. The chemical potential μ is determined
by requiring ∂F/∂μ = N . We find the lowest free energy
by starting with random initial guesses for the fields ψr ′,r
and n̄r and self-consistently iterating. With the truncation
of |r − r ′| < 5, each site interacts with 62 neighbors, and
hence there are three independent real values of n̄r and 93
independent complex values of ψr ′,r which have to be solved
self-consistently. From these solutions, we obtain the finite-
temperature phase diagram as well as other thermodynamic
functions, such as the entropy per particle, s = −N−1∂F/∂T .

III. RESULTS

Our analysis of Eq. (1) finds two competing orders in
MFT. At large interaction strengths, we expect the long-range
dipolar interaction to establish a CDW. We characterize a
CDW by long-range oscillations in the density such that
δn = maxr (n̄r ) − minr (n̄r ) is nonzero. Figure 2(b) shows the
stripe-CDW pattern that we find in MFT.

We also expect that the frustrated lattice will penalize CDWs
and allow competition from uniform phases (δn = 0). We find
that interactions generate a uniform TMIP that spontaneously
breaks time-reversal symmetry to generate loop currents,

I ≡ 2 max
r,r ′ |Imψr ′ r |. (4)

Here, I > 0 indicates a phase with nonzero bond current.
Figure 2(c) shows the current pattern we find in the TMIP.
Here we see that the outside edge maintains a chiral current.
The direction of edge flow is spontaneously chosen. The bulk
gap and edge chiral currents establish a quantized Hall effect
in the absence of an applied field, i.e., a QAH effect.

Quantum fluctuations excluded in MFT may favor the CDW
over the TMIP. To test the stability of the TMIP against
quantum fluctuations, we employ ED on finite system sizes
and compare with MFT. We find that ED and MFT produce
nearly the same low-energy manifold with precisely the same
configurations of order parameters, as shown in Figs. 2(b) and
2(c). We also compare the transition between TMIP and CDW
found from both methods. Figure 3(a) plots the current versus
nearest-neighbor interaction strength for both MFT and ED
for 27 sites. Here we see that MFT and ED are exactly the
same for the noninteracting case, as expected. The nonzero I

at V1 = 0 arises because of a finite-size effect (see Appendix
C). Figure 3(a) also shows that the TMIP transitions to a CDW
at large interactions in both methods. The agreement shows

(a) (b)

(c)

FIG. 3. (a) Current plotted against the nearest-neighbor interac-
tion strength at zero temperature on a 27-site kagome lattice, obtained
from exact diagonalization (dots) and mean-field theory (line) applied
to Eq. (1). Nonzero current implies a topological Mott insulator with a
quantum anomalous Hall effect. Here finite-size effects (see Appendix
C) lead to a nonzero current at V1 = 0. Both methods capture the
transition from the topological Mott insulator (small V1) to a charge
density wave (large V1). (b) Current plotted against the interaction
strength at zero temperature on an infinite system using mean-field
theory on Eq. (1), showing the absence of current at V1 = 0 and the
same transition as in (a). (c) The same as (b), but plotting the maximum
attainable entropy per particle.

the remarkable accuracy of MFT in predicting the structure
and magnitude of the order parameters, low-energy Hilbert
space, and location of phase transitions.

Figure 3(b) plots the same as Fig. 3(a), but in the thermo-
dynamic limit using MFT. Here we see that the chiral current
is zero in the absence of interactions in the thermodynamic
limit. Interaction strengths of the order of the tunneling trigger
spontaneous chiral currents in the TMIP.

We now turn to the thermodynamics of the TMIP. In the ab-
sence of heat and particle-number reservoirs, the temperature
of atomic and molecular gases placed in optical lattices is set
by the entropy. Figure 3(c) plots the entropy needed to cool into
the TMIP obtained by MFT. Here we see that the TMIP is most
stable near V1 ≈ 1.3, where the gap is the largest, establishing
the highest critical entropy per particle to be sc ≈ 0.15.

Thermal fluctuations drive transitions out of the TMIP.
Figure 4(a) plots the full finite-temperature phase diagram of
Eq. (1) obtained from MFT. With increasing temperature, we
see two types of thermal phase transitions. The TMIP either
undergoes a second-order phase transition to the normal phase
(for V1 � 1.33) or a first-order transition to the CDW phase
(for 1.33 � V1 � 1.9). Here the normal phase is define by an
absence of order. The highest critical temperature of the TMIP
is Tc ≈ 0.12, indicating that the bicritical point (between the
normal, TMIP, and CDW phases) is at (V1c, Tc ) ≈ (1.33, 0.12).

The phase diagram shows that lower entropies will improve
stability and observability of the QAH effect. The current I is
a key observable that becomes enhanced at low temperatures.
Figure 4(b) plots both the current and entropy as a function
of temperature for the interaction strength where the TMIP
is the strongest, V1 = 1.33. Here we see that the current is
essentially zero for entropies per particle above ≈0.15. But at
lower entropies the current becomes observable, thus signaling
the TMIP.
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FIG. 4. (a) The mean-field phase diagram of Eq. (1) obtained
by plotting the magnitude of the current against temperature and
interaction strength. The white line uses the density difference be-
tween sites, δn, to plot the boundary between the charge density wave
(δn > 0) and the normal phase (an absence of order with δn = 0).
(b) Current and entropy per particle plotted against temperature where
the quantum anomalous Hall effect is strongest, V1 = 1.33. The kink
in the entropy shows a first-order phase transition from the topological
Mott insulator to a charge density wave.

IV. DISCUSSION

We propose that the TMIP in the kagome optical lattice
arises from just dipolar interactions. We argue that even in
the absence of applied fields, it should display a QAH effect
as a result of spontaneous time-reversal symmetry breaking.
Prospects for realizing the TMIP therefore offer a key advan-
tage over other proposals to realize topological phases based
on applied synthetic fields because the TMIP will not have as
much heating or losses due to these additional fields. Further-
more, the crucial ingredients to realizing TMIP have already
been experimentally implemented: a dipolar interaction and
a deep kagome optical lattice. Yet there are other potential
experimental challenges. The small gap of the TMIP leaves it
somewhat sensitive to trapping and heating. Using MFT, we
can estimate the impact of these realistic effects.

We must first estimate the gap in a realistic setting to
establish the overall stability of the TMIP. In the grand-
canonical ensemble, the chemical potential may then vary
within the gap while preserving the QAH effect. The gap is in
turn set by the ratio of the tunneling and interaction strength.

To estimate the gap, we first model the optical lattice poten-
tial to accurately obtain the Wannier functions and the tunnel-
ing. For a kagome lattice generated by three pairs of long- and
short-wavelength lasers [38] with lattice length 355 nm and
depth (defined in Appendix A) 7.8ER , the nearest-neighbor
tunneling can be estimated using a Gaussian approximation for
the Wannier functions. We find t ∼ 0.009ER . We have verified
the Gaussian approximation at these lattice depths by comput-
ing the band dispersion through a plane-wave expansion and
comparing with the bandwidth of a tight-binding model on a
kagome lattice with only nearest-neighbor tunneling.

To estimate the nearest-neighbor interaction, we consider
an example atom with a strong dipolar moment which has
already been cooled to quantum degeneracy: 161Dy [47]. At
the lattice length of 355 nm, we find V1 ≈ 0.012ER , assuming
perfectly localized Wannier functions (the correction due to
the finite spreads of Wannier functions is small; see Appendix
B). Therefore, the lattice depth of 7.8ER gives V1/t ∼ 1.3,
which is the optimal point for the TMIP in the mean-field phase

diagram since the TMIP has the highest gap here. Using MFT,
we find a gap of � ≈ 0.46t at these lattice depths.

The gap determines the robustness against perturbations
such as confinement. Assuming parabolic confinement, of
strength M (ωr )2/2, where ω is the trapping frequency and
M is the mass of 161Dy, we can estimate the spatial extent of
the TMIP by assuming that the TMIP survives until the trap
strength equals the gap, i.e., M (ωr )2/2 = �. A gap � ≈ 0.46t

with trap strength ω ∼ 2π × 10 Hz leaves a TMIP about 20
sites in diameter.

The size of the gap also sets the thermal stability of the
TMIP. Conventional evaporative cooling in a harmonic trap
can cool to entropies per particle as low as ≈0.25 (≈0.75)
for bosons (fermions) or possibly lower [63,64], whereas
more recent results with atomic gas microscopes cooling into
the antiferromagnetic phase of the two-dimensional Hubbard
model have reached entropies per particle lower than 0.75
for fermions [61]. The entropies per particle required to
reach the TMIP (≈0.15) with dipolar fermions are therefore
potentially within reach of current experiments with atomic gas
microscopes. Nonetheless, careful preparation of a reservoir
[61] will be needed to reach these low entropies.

Once prepared, the topological phase can be detected by
its chiral edge currents. A number of proposals have been put
forth for the direct detection of topological properties [7,65–
71] with several successful experimental implementations
[18,24,25,27,72–74]. For example, recent experiments with
atomic gas microscopes have been able to directly observe
chiral edge states in a Hofstadter band, thus offering a direct
route to detecting the QAH effect derived from the TMIP [27].
Once established, a TMIP would set the stage for possible
detection of anyons in fractional TMIPs [75].
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APPENDIX A: KAGOME OPTICAL LATTICE POTENTIAL

We use the kagome optical lattice potential implemented in
Ref. [38]. The potential experienced by atoms is given by

VL(r) = V0

3∑
n=1

[
sin2

(
2π√

3a
r · dn

)
− sin2

(
π√
3a

r · dn

)]
,

(A1)

where a is the distance between adjacent sites, dn =
cos 2nπ

3 x̂ + sin 2nπ
3 ŷ, and V0 is the lattice depth.

APPENDIX B: DIPOLAR INTERACTION

The model Hamiltonian, given by Eq. (1) of the main text,
implies that the interaction strength decays with respect to
distance r as r−3. This is not strictly true for a realistic system
at short range since the Wannier functions have a finite spread.
For the lattice depth of 2.3ER , as discussed in the main text,
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TABLE I. Table of ratios of real Vn and estimated Vn, for a number
of n.

n-nearest neighbor Real Vn/estimated V

1 1.200
2 1.045
3 1.030

we use a Gaussian approximation to find the Wannier functions
and thereby compute the real interaction strengths Vn for the
nth-nearest neighbor. Their ratios to those estimated from
simplistic 1/r3 are given in Table I.

We have checked that the results presented in the main text
are consistent with these revised values for the interaction.
For example, we find that perturbing the interaction to the
values in Table I leads to less than one-percent shift in the
critical temperature of the TMIP in the mean-field approach.
We therefore conclude that the TMIP gap leaves it robust
enough to use the approximate interaction discussed in Eq. (1).

APPENDIX C: NONZERO CURRENT IN THE
NONINTERACTING LIMIT IN A FINITE-SIZE SYSTEM

Figure 3 of the main text shows a nonzero current in
the noninteracting limit in a finite-size system. This can be
understood as a finite-size effect within the noninteracting
band structure. With reference to Fig. 2(a), in the absence of
interactions the ground state can be considered as filling the
single-particle levels up to the Fermi level. At the filling ratio
of 2/3, the last particle has the freedom to occupy either the �

point of the second band [red arrow of Fig. 2(a)] or any state in
the topmost flat band, all with the same energy. Infinitesimal
interaction, however, favors a finite-momentum state of the
topmost state to be occupied, and thus we find finite current in
the limit V1 → 0.

The current contributed from the last particle is appre-
ciable in the finite-size systems only. Since the current is
computed as 〈I 〉 = N−1 ∑

i 〈i|Î |i〉 (where |i〉 are the oc-
cupied states), in the thermodynamic limit the current at
V1 = 0, contributed from the last particle alone, is suppressed
by N−1.
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