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Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)], we study the
dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that
Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of
the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing
glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured
by GMFT, and indicate the need for further experimental studies of this system.
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Introduction.—Ultracold atoms loaded into optical latti-
ces [1–3] offer ideal platforms to study localization [4,5].
Examples in the noninteracting limit include fermionic band
insulators [6], and, in the presence of (quasi-) disorder,
Anderson insulators [7–12]. In clean systems, localization
can also occur because of interactions, producing Mott
insulators (MIs) [13–17]. Recent experimental studies have
explored the interplay between disorder and interactions
[18–28]. In the ground state of bosonic systems, this
interplay can generate the Bose-glass (BG) phase [29,30].
The BG, like the bosonic MI, is characterized by a vanishing
superfluid density but, unlike the MI, it is compressible. At
extensive energy densities above the ground state, the
interplay between disorder and interactions can lead to a
remarkable phenomenon known as many-body localization
(MBL) [31–33]. In the MBL phase, eigenstate thermal-
ization [34–36] does not occur [37].
Signatures of MBL were recently observed with fer-

mions [26,27] and bosons in two dimensions (2D) [28].
Our work is motivated by the latter experiment (see
Refs. [38,39] for theoretical studies inspired by the former).
In Ref. [28], a MI with one boson per site was prepared in a
harmonic trap in a deep optical lattice. All bosons in one
half of the system were then removed and the remaining
half was allowed to evolve by lowering the lattice depth,
with or without disorder. During the dynamics, the parity-
projected occupation of the lattice sites was measured using
fluorescence imaging, allowing the study of the evolution
of the imbalance I between the initially occupied and
unoccupied halves. With no or weak disorder, I vanished
within times experimentally accessible; i.e., it attained the
value expected in thermal equilibrium. But beyond a certain
disorder strength, I appeared to saturate to a nonzero value.
This saturation was taken as evidence for MBL [28].
Features of the experimental setup in Ref. [28] can lead

to a very slow equilibration of I to the point of making it
difficult to distinguish glassy behavior from the MBL
phase. First, the initial dynamics in the unoccupied half

of the trap is dominated by Anderson physics (because of
low site occupations). Second, the initial MI, before the
removal of the bosons in one half of the system, is close in
energy to the ground state after the lattice depth is lowered
but the system remains deep in the MI regime. The latter
MI, in turn, is close in energy to a BG with a site occupancy
slightly below one at the same interaction strength (if the
disorder is strong enough to generate a BG). Therefore,
the dynamics resulting from the gradual decrease of the site
occupations in the occupied half of the system, after the
removal of the bosons in the other half, can be dominated
by excitations of the BG in the remaining half.
To study the impact of glassy physics we use Gutzwiller

mean-field theory (GMFT) to model the dynamics of the
experiments in Ref. [28]. GMFT provides qualitatively
correct phase diagrams for strongly interacting clean
[40–43] and disordered [44–48] (away from the tip of
the Mott lobe) systems. It has also been used to study
nonequilibrium effects such as the dynamical generation of
molecular condensates [49] and MIs [50], dipole oscilla-
tions [51], quantum quenches [48,52,53], expansion
dynamics [54,55], and transport in the presence of disorder
[48,56]. However, since the Gutzwiller ansatz wave func-
tion is a product state, it has zero entanglement entropy for
any partitioning of the system. GMFT is therefore capable
of capturing BG dynamics but it cannot capture thermal-
ization and MBL phases [57], which after taken out of
equilibrium, e.g., using a quantum quench, exhibit a linear
[58] and logarithmic [59] growth of the entanglement
entropy, respectively, with time.
We use GMFT to study the dynamics of initial states

under the same (or similar) conditions as the experiment,
thus allowing direct comparison. We find that the GMFT
dynamics is similar but not quite the same as that in the
experiment. In particular, the GMFT state rebalances more
slowly, which motivates us to add a phenomenological
parameter to our theory to gradually remove slow particles
from the data analysis because their dynamics are not
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accurately captured by our theory. A single phenomeno-
logical parameter significantly improves the agreement
between theory and experiment.
Given the fact that GMFT cannot describe dynamics in a

MBL phase, our results raise concerns as to whether
experimental observations are the result of MBL or the
result of slow transport due to glassy dynamics. Only the
latter is captured by our GMFT treatment.
Model.—We consider bosons in a 2D square lattice

subjected to disorder and a parabolic trapping potential,
as described by the Bose-Hubbard Hamiltonian,

Ĥ ¼ −J
X

hiji
b̂†i b̂j þ

U
2

X

i

n̂iðn̂i − 1Þ þ
X

i

μin̂i; ð1Þ

where b̂†i creates a boson at site i≡ ðix; iyÞ and n̂i ¼ b̂†i b̂i is
the site occupation operator. J parametrizes the tunneling
between nearest neighbors and U is the on-site repulsive
interaction. The chemical potential (μ), harmonic trap (of
strength Ω), and disorder potential (ϵi) are in μi ¼ −μþ
Ωji − r0j2 þ ϵi, with r0 ¼ ð0; 0Þ. We focus on a lattice with
31 × 31 sites in which, for the Hamiltonian parameters used
here, the sites at the edges are always empty. We consider
two types of disorder, with uniform and Gaussian distri-
butions, whose strengths are denoted by Δu and Δg,
respectively. We set kB ¼ ℏ ¼ 1.
Methods.—We study the dynamics of zero and nonzero

temperature initial states. The density matrix within
GMFT is

ρ̂ðtÞ ¼
Y

i

ρ̂iðtÞ ¼
Y

i

� X∞
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αðiÞmnðtÞjmiiihnj
�
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where jnii is the state with n bosons at site i, and t denotes
time. This ansatz decouples Eq. (1) into single-site
Hamiltonians: ĤMF

i ¼−Jðϕ�
i b̂iþϕib̂

†
i ÞþðU=2ÞPin̂iðn̂i−

1Þþμin̂i, where ϕi ¼
P

j∈nniTrðρ̂jb̂jÞ sums over neighbor
sites to i. Substituting Eq. (2) into the von Neumann
equation, i∂tρ̂ ¼ ½Ĥ; ρ̂�, leads to the equation of motion

for αðiÞmn,
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which yields the time evolution of the site occupa-
tions: niðtÞ ¼ Trðρ̂in̂iÞ.
Following Ref. [28], we quantify the degree of locali-

zation using the imbalance,

IðtÞ ¼ NLðtÞ − NRðtÞ
NLðtÞ þ NRðtÞ

; ð4Þ

where NLðtÞ ¼
P

−lx≤ix<i0;jiyj≤lynix;iyðtÞ and NRðtÞ ¼P
i0≤ix≤lx;jiyj≤lynix;iyðtÞ, with an lx × ly central region of

interest. ly is taken to be 2 to define a window five lattice
sites wide in the y direction. We first set lx to lW ¼ 9, as in
experiment. In Ref. [28], the lattice center does not always
coincide with the center of the harmonic potential, and this
causes an imperfect preparation of the initial state domain
wall. To account for this, the line separating the left and
right sides of the system is defined using i0 ¼ 0 or i0 ¼ 1.
The imbalance is obtained by averaging the two cases.
We also compute the inverse decay length, λðtÞ [28].

To calculate λðtÞ we first compute the average,
n̄ixðtÞ ¼ ð2ly þ 1Þ−1Pjiyj≤lynix;iyðtÞ. λ is then obtained by
fitting

n̄ixðtÞ=n̄0ix ∼ e−λðtÞix ; ð5Þ

where n̄0ix is the zero disorder steady-state density and ix
denotes a least squares fit from ix ¼ 0 to lx.
For ρ̂ðt ¼ 0Þ, we take the ground state or a thermal state

of the initial Hamiltonian, such that ρ̂i ¼ Z−1
i e−βĤ

MF
i (where

β ¼ 1=T is the inverse temperature and Zi is the partition
function). Our calculations in the presence of disorder are
done for an ensemble of disorder realizations. Disorder
averaging over around 100 disorder realizations is suffi-
cient for convergence.
Within GMFT, dynamics occur only when there are

nonvanishing values of the order parameter ϕi [see Eq. (3)].
As a result, a pure MI state would exhibit no dynamics
within GMFT. We find that, as in Refs. [55,56], the small
region with a nonvanishing order parameter generated by
the harmonic trap at the edge of MI domains is sufficient to
drive dynamics. Remarkably, we see that the ensuing
dynamics measured by imbalance is slower but similar
to that in the experiments [28] at long times. We then show
that decreasing lx to phenomenologically remove particles
in the MI state significantly improves agreement with
experiment.
Quenched dynamics.—In the experiment [28] the

dynamics took place after lowering the lattice depth and
introducing a disorder potential to a MI created in a deep
lattice and to which all atoms in one half of the system were
removed. From now on, we use the hopping parameter after
the quench J ¼ U=24.4 as our energy unit. To create the
initial state, we used the experimental parameters [28]:
JI ¼ 0.244, U ¼ 24.4, Ω ¼ 0.145, and μ ¼ 10.6. After
free energy minimization, particles on the right half of the

system are manually removed [by setting αðix>0Þm;n ¼ δm;0δn;0
in Eq. (2)], leaving behind a particle number comparable
with the experiment, Nb ≈ 123. In accordance with the
experimental protocol [28], to generate disorder (at the

PRL 119, 073002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

18 AUGUST 2017

073002-2



evolution stage) we square a two-dimensional array of
uniformly distributed random numbers followed by a
convolution with a Gaussian profile of standard deviation
0.5. The disorder strength Δg is defined as the full width at
half maximum of the resulting disorder profile.
The first column in Fig. 1 depicts the evolution of the site

occupations in the absence of disorder. Here the particles
expand to reach a steady state with no imbalance. When
disorder of strength Δg ¼ 8 is introduced, the motion slows
considerably and an imbalance remains at the latest time
shown. For very strong disorder (Δg ¼ 13), the particles
remain almost entirely in the initially occupied region.
To quantitatively understand the dynamics, we plot

the imbalance against time in Fig. 2(a). For t < t�, the
imbalance barely changes. This is an artifact of GMFT for
the initial state, which is mostly a MI domain. Beyond t�, I
vanishes rapidly in the clean limit and for weak disorder.
But, as the disorder strength increases, it takes longer for I
to reach the expected I ¼ 0 steady-state value. In Fig. 2(a),
we also plot the experimental results taking t� to be the
starting time for the experiments. The GMFT and exper-
imental results exhibit good agreement for weak disorder
strength, but the latter exhibit faster relaxation as the
disorder strength is increased.
In Fig. 2(b), we plot the imbalance alongside experimental

results [28], as a function of the disorder strength. In our
theoretical results, the upturn in I versus Δg moves toward
stronger disorder strengths as t increases. A similar trend
was seen in experiments for t≲ 200, but the experimental

results appeared to saturate for 200≲ t≲ 300. For any given
selected time, the upturn in I versus Δg occurs at a smaller
value of Δg in GMFT when compared to the experiments,
which is expected given the slower dynamics of the former
seen in Fig. 2(a).
λ offers another way to quantify the degree of localiza-

tion by parametrizing the extent to which disorder sup-
presses the relaxation of site occupations. The inset in
Fig. 2(b) shows λ versus Δg for t ¼ 200 and the exper-
imental results for t ¼ 187. The behavior of λ (inset) is
similar to that of I (main panel).
There are also differences between GMFT and experi-

ments. For example, at weak disorder strengths, the
experimental data of Fig. 2(b) exhibit oscillations not
captured by GMFT. These oscillations in turn impact the
comparison of the nature of upturns of I or λ near
Δg ¼ 5.5, as they make it look sharper in the experimental
results.

n

0

0.2

0.4

0.6

0.8

1.0

FIG. 1. The site occupations for quenched dynamics at zero
temperature. Columns (rows) depict results for different disorder
strengths (different times). At time t ¼ 0 all bosons in the right
half of the system are removed and the remainder evolves for
t > 0. The t ¼ 0 state is the ground state for a very small hopping
and no disorder. For t > 0, Gaussian disorder of strength Δg is
introduced and the hopping is increased. The state evolves for
t ≥ 0 with no parameter changes.

Experiment

(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a) Time evolution of the imbalance I for various
disorder strengths at initial temperature T ¼ 0. Lines show
simulation results while points with error bars show experimental
data [28]. The vertical dashed line marks a time t� ¼ 20 below
which I barely changes within GMFT. The experimental results
are shifted to start at t�. From bottom to top the lines and symbols
correspond toΔg ¼ 0, 3, 4, 8, and 13. (b) Corresponding I for the
same parameters but at times t ¼ 200 and 300 against disorder
strength. The experimental result after an evolution time of 187 is
also plotted. The inset shows the inverse decay length [Eq. (5)]
from our calculation at t ¼ 200 and for the experiment after an
evolution time t ¼ 187. [(c) and (d)] The same as (a) and (b) but
with an analysis window resized from lW ¼ 9 [as in (a) and
(b) following Ref. [28]] to l0W ¼ 5, as shown in the schematic.
[(e) and (f)] The same as (c) and (d) but at nonzero temperature.
Here t� reduces to 8.
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A key observable in identifying localization is the time
derivative of the imbalance, _I , at long times, as used in
observations of Anderson localization with ultracold atoms
[7–12]. The vanishing of _I at long times (and in large
system sizes) is a necessary condition for localization. The
slope of I versus t obtained for the four latest experimental
times reported is −1.017ð�1.028Þ × 10−4 for the largest
disorder strength. Here we see that the experimental error is
too large to definitively show a vanishing of the slope since
the results are also consistent with just a small slope. Within
GMFT, we find a small nonzero slope: −4.433ð�0.053Þ×
10−4, for the largest disorder strength. The small nonzero
slope shows that a slow rebalancing (as expected in the
glassy state captured within GMFT) is consistent with
experiment.
To understand the robustness of our findings within

GMFT, we have also studied initial states at finite temper-
atures, different quench protocols, and dynamics in the
presence of a uniform disorder distribution. Supplemental
Material [60] shows that the latter two changes do not have
much impact on the imbalance dynamics at long times.
GMFT shows that the imbalance dynamics of a BG or MI
quenched into a disorder profile respond in nearly the
same way.
Phenomenological parameter.—To improve the com-

parison with the experiments we introduce a phenomeno-
logical parameter that excludes particles which move too
slowly within GMFT. GMFT underestimates the speed of
the MI dynamics under an applied field. The motion of the
entire trapped system is therefore slower in GMFT at
long times.
To account for the slow Mott particles we introduce a

phenomenological parameter to our GMFT analysis. The
inset of Fig. 2(d) shows a schematic of a resizing of the
window used to compute the imbalance. The rectangles in
the schematics indicate a decrease in lx in Eq. (4), from lW
to l0W . Our phenomenological parameter, lx, therefore
increases the relative rate of rebalancing because slow
moving Mott particles near the left edge of the system are
excluded from the data analysis. Decreasing μ also removes
these particles. We find that tuning either μ or lx allows us
to fit I versus t to experimental values with the same
accuracy. We choose lx as our phenomenological parameter
and vary it to obtain a best fit for the largest disorder,
Δg ¼ 13.
Figures 2(c) and 2(d) plot the same as panels (a) and (b)

but with the new window size, l0W . Here there is much better
agreement with experiment because the relative fraction of
mobile to localized particles in our GMFT is closer to the
experiment. Panels (e) and (f) include nonzero temperature.
In varying T we find little change for T < J. T ¼ 0.2J was
chosen as a best fit for the largest disorder. In Fig. 2(e) we
see that t� diminishes and the imbalance tends to level off
quicker at long times, with a slight increase in the slope
to −4.816ð�0.160Þ × 10−4.

The comparisons between theory and experiment in
Fig. 2 show that by adjusting a single phenomenological
parameter we can bring GMFT into better agreement with
experiments. We therefore conclude that the long-time
relaxation found in experiments can be interpreted within
GMFT as glassy dynamics consistent with the out of
equilibrium properties of a BG and its excitations.
Checkerboard case.—The initial expansion of bosons in

the empty half of the trap in the presence of disorder is
expected to be dominated by Anderson physics, due to
the low site occupations. In order to test how enhancing
interactions by increasing site occupations affects the
expansion, we have devised an “improved” initial state
generated by emptying sites in one half of the system
according to a checkerboard pattern. The dynamics then
proceeds by allowing the remaining bosons to evolve
without any change in the Hamiltonian parameters (no
parameter quenching). Before emptying sites, the system
was in the ground state.
Figure 3 plots the normalized imbalance for the checker-

board pattern. The pattern speeds up the decay of
IðtÞ=Ið0Þ by enhancing the effect of interactions during
the dynamics. It would be interesting to find out how
changes in the pattern used for the initial state change the
results in the experiments [28].
Discussion.—Motivated by Ref. [28], we have studied

the dynamics of bosons in 2D lattices with disorder by
GMFT. We showed that theory becomes closer to experi-
ment by including temperature and a single phenomeno-
logical parameter. We also showed that the features
observed in the experiments are robust for various initial
states: quenched MI, disordered superfluid, and BG. Since
GMFT misses the entanglement present in MBL phases,
evidence for MBL must lie in the differences between
GMFT and experiments. We find that at the present stage
with only the data from Ref. [28], it is difficult to tell if

(a) (b)

FIG. 3. The solid (dashed) lines plot the normalized imbalance
where the right half of the trap was initialized to a checkerboard
(empty) pattern as shown in the insets. (a) The normalized
imbalance against time for various disorder strengths. The pairs
of (solid/dashed) lines correspond to uniform disorderΔu ¼ 0, 13
and 20 from bottom to top. (b) The normalized imbalance at times
t ¼ 200 and 300 against disorder strength. The other parameters
are U ¼ 24.4, Ω ¼ 0.145, and μ ¼ 4.
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there is a qualitative or quantitative difference between
GMFT and experiments. Further experiments, particularly
at longer times, are needed to unambiguously show that
MBL is occurring. Avoiding macroscopic mass transport,
as done in Ref. [27], will help rule out slow dynamics due
to Anderson and BG physics.
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