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Pairing between spinless fermions can generate Majorana fermion excitations that exhibit intriguing
properties arising from nonlocal correlations. But, simple models indicate that nonlocal correlation
between Majorana fermions becomes unstable at nonzero temperatures. We address this issue by showing
that anisotropic interactions between dipolar fermions in optical lattices can be used to significantly
enhance thermal stability. We construct a model of oriented dipolar fermions in a square optical lattice.
We find that domains established by strong interactions exhibit enhanced correlation between Majorana
fermions over large distances and long times even at finite temperatures, suitable for stable redundancy
encoding of quantum information. Our approach can be generalized to a variety of configurations and

other systems, such as quantum wire arrays.
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Introduction.—The wide variety of optical lattice ge-
ometries offers unprecedented tunability in manipulating
quantum degenerate gases into complex quantum states
[1]. Recent developments in the cooling of molecules
(e.g., “*K¥Rb) [2] and magnetic atoms (e.g., '°'Dy) [3]
imply that anisotropy in dipolar interactions will soon
provide further opportunity to explore some of the most
elusive yet compelling quantum states, entangled
Majorana fermions (MFs).

Seminal lattice models demonstrate particlelike excita-
tions that behave as MFs thanks to nonlocal symmetries
[4,5]. They entangle with each other over large distances
through string operator (SO) correlations. In simple models,
SOs have straightforward definitions, e.g., fermion parity
[4], with nontrivial consequences. They signal underlying
topological order with fascinating properties that have moti-
vated proposals for topologically protected qubits [5,6]. The
crossing of SOs is responsible for unusual anyonic braid
statistics [5,7]. And, SOs connecting these excitations also
underlie theories of quantum state teleportation [8,9].

The zero-temperature properties of models hosting
topological order set the stage for work connected to
experiments. Kitaev’s two-dimensional (2D) toric code
Hamiltonian [5] motivated early proposals in optical latti-
ces [10-12]. But, the 1D Kitaev chain model [4] is one
of the simplest models supporting MF excitations.
Anticipation of nonlocal MF properties in 1D led to ex-
perimental proposals and experiments in both optical lat-
tices [13—15] and solids [4,16,17]. But, prospects for
observing the nonlocal correlation of MF pairs over long
times and distances hinge on the stability of SOs [7,18].

SOs in important lattice models are unstable at nonzero
temperatures. For example, SOs in the 2D toric code model
vanish at long times and distances because of thermal
excitations [7,18-20]. Recent work also argues that MFs
in lattice models of topological p-wave superconductors
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are sensitive to thermal fluctuations [21,22]. A general
theorem [20] sets strict criteria for nonlocal correla-
tions to remain resilient against thermal fluctuations.
Fortunately, recent calculations indicate that topological
phases can be enhanced through disorder [23] and prox-
imity coupling [24,25] to a reservoir in topological super-
conducting wires [16]. There are also proposals to go
beyond 1D wires to multichannel or 2D MF arrays [26].

We propose that dipolar interactions in optical lattices
[27] offer a powerful tool to stabilize the SOs in MF
models. We show that anisotropy in both the lattice and
dipolar interactions electrostatically copies SOs to force
excitations to form arrays of strings which we call domains
in this work. We thus propose a robust mechanism, the
formation of domains with redundant MF edges, as a route
to stabilize MFs, akin to quantum error correction schemes
using redundant qubits [28]. We pair two methods [quan-
tum Monte Carlo (QMC) calculations and mean field
theory] to solve a model of dipolar fermions to demonstrate
that domain formation in electrostatically coupled Kitaev
chains significantly enhances the stability of SOs. QMC
calculations here are unbiased and show the thermal stabil-
ity of domains, while our mean field theory (which agrees
with QMC calculations within regimes of applicability)
explicitly reveals MFs.

Model.—We first consider a Hubbard model of dipolar
fermions in an L X L optical lattice and then discuss a
specific parameter regime. In Fig. 1, fermions with dipolar
moment p can hop between nearest neighbor (NN) sites.
A large optical lattice depth along the y direction strongly
suppresses hopping in the y direction. V. (0) =
D?(1 — 3cos*6)/ry (V, = D*/r}) is the x (y) component
of the NN dipolar fermion interaction. Here, D> ~ p? and
ro is a lattice constant. We can tune 6 so that the NN
dipolar interaction is attractive along the x direction. We
construct a Hubbard model capturing the above features:
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FIG. 1 (color online). Schematic of dipolar fermions (spheres)
in a 2D optical lattice. Dipolar moments p (arrows on each
sphere) align along an applied field, at an angle 6 with the x axis.

= —Z(t al @i, T tya;f]a”ﬂ + H.c.)

+ Z[V (0)nljnl+lj + V npinij+1 — Iu’Oni,j]’ (1)
where we have an open (periodic) boundary condition in the

x (y) directions. aT ,j createsa spinless fermion at the site (i, j),

and n; ; aJr a; .t (t,) is the hopping energy between NN

sites in the x (y) dlrectlon. Mo is the chemical potential.

For a range of 6 yielding V, <0, the ground state of
Eq. (1) is stable and exhibits p-wave pairing. For 7, = 1,
functional renormalization group [29] and mean field theory
[30] calculations show a BCS paired state for long-range
dipolar interactions consistent with short-range interactions
in Eq. (1) [21]. p-wave pairing between neighbors along
X rows can be modeled by real-space attraction:
exp(i®; )IAIalHJ i; T Hc., where ®;; and |A| are the
phase and magnitude of the pairing ﬁeld within an x row.
But, for 7, < 1,, the system can be analyzed with Luttinger
liquid theory to show that weakly coupled 1D dipolar sys-
tems also possess p-wave pairing order with algebraically
decaying pairing correlations [31]. For 7, < |A[, Josephson
tunneling between paired states contributes an energy:
~ — 13 cos(®;; — ®; 1), which aligns the phase of the
pairing field between each x row ®;;, — ®;;,; — 0.
Hereafter, we assume a uniform pairing field to motivate a
thermally stable MF model. Increasing ¢, should adiabati-
cally connect the coupled 1D [31] and 2D square lattice
limits [29,30].

Effective model.—We perform a mean field decoupling
of the attractive dipolar interaction term in Eq. (1) to
establish the centerpiece of our study [32]:

. 1 1
Hp =Y Hi+ WZ("A/ - 5)("::#1 - 5)’ )
j 7

where the Hamiltonian for the jth Kitaev chain is
Hj = —tzi(azj - ai,j)(aLl,j + @iy ) — pnj. At the

Hartree-Fock level, the chemical potential renormalizes to
w = uo + 2n; )|V.(6)] — V,/2 and the hopping becomes
t=1t, — IVX(ﬁ)I(a;rHJai,j), which is our energy unit. In
Eq. (2), we tuned V, to match the pairing term with the
renormalized hopping by setting ¢, = |V, (H)I(al i jal it
ajﬂ, 4, ;). MFs can arise away from this particular point,
which is guaranteed by the presence of a gap in the energy
spectrum of Hy [33]. ¢, is energetically negligible but is
included as a second order effect by setting ®; ; = 0. We
work near half-filling (n) = 1/2, i.e., u = 0.

Equation (2) describes an array of strongly interacting
Kitaev chains, whose ground state is 2¢-fold degenerate
[32], which is not explicit in Eq. (1). Our direct QMC
simulations on Eq. (1) show the emergence of precisely
the same set of degeneracies expected from Eq. (2) for the
parameters given by the Hartree-Fock decoupling [32,34].

Mechanism for stabilizing MFs.—Equation (2) is a
highly nontrivial many-body model. It maps onto an in-
tractable quantum spin compass model [32,33]. Below, we
argue that the interchain interactions stabilize correlation
between edge y columns of MFs.

We use mean field theory to show that Eq. (2) reduces to

a MF model [32]. Consider a pair of MF operators ¢,; ; and

Cyi—1,; for each site of the lattice (i, j), where alfj

(cpi-1,; — icy; )/2 [4]. We impose a mean field decoupling
of the V, term, using a two-site unit cell along the y
direction. Each site of the unit cell corresponds to sublat-
tice A or B. We thus have H§; = ir> ;¢ 4Coiv1a T+
(ify/2)YiC2i-1.aC2ia» Where a € {A, B} denotes sub-
lattice and the renormalized chemical potential fi, =
m + iV {cpi—1 o C2iq). Furthermore, we can show [32]
that the ground state avoids strong V) by setting
(€2i-1,4C2i,0) = 0 for V,, > 4z. This leads to two columns
of localized MF states, one at each edge.

Solutions of H,, exhibit domains with MF edge states
along y columns (Fig. 2) [32]. Note that the V| term in
Eq. (2) leads to a chemical potential staggered along y
columns, which binds MFs along y but leaves them to
propagate along x. An energy penalty ~V, will result if
only one row changes its parity. The inter-row interaction
therefore increases the dimension of the MF edge state
(from a point particle to a y column) to establish the
mechanism for enhancing the stability of the nonlocal
MF state against thermal fluctuations. The entire ground
state can thus be regarded as a redundantly encoded qubit
of several MFs. Along these lines, mean field theory sug-
gests the following Gutzwiller projected wave function:
ITF-i( i i+1) Phes, Where ¢l is the BCS wave
functlon hostmg MFs in the jth x row.

Thermally stable nonlocal correlation implies that y
columns of MF pairs at i = 1 and i = L host real dipoles
in a superposition that remains robust against thermal
excitations. To establish robustness, we note that the
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FIG. 2 (color online). The thermal expectation value of SOs
from QMC calculations as a function of an applied global field
for several system sizes for V, = 4.8t and u = 0. The top
(bottom) panel shows data for a characteristic low (high) tem-
perature. The insets show schematic examples of a MF domain
that breaks up into two MF domains at high temperatures. The
+’s in the figures is fermion parity for the entire chain, and each
chain has the same parity for the one configuration drawn.
Empty dashed circles denote empty MF edge states; hatched
circles denote MF edge states occupied by one particle per row.

Hilbert space of Eq. (2) possesses a spectral gap AE above
a degenerate manifold of states for the parameters we
consider here [33]. But, the entropy gain S in the free
energy cost to create excitations AE — T'S can overwhelm
the energy gap, depending on the effective dimensionality
of excitations. Strong interactions Vy > 47 require the cre-
ation of entire domains (with a perimeter ~L, AE ~ L,
and S ~ L) to destroy nonlocal correlations, as opposed to
AE ~ O(1) and S ~ logL for V, < 4t. Favorable entropy
scaling implies that nonlocal correlation between MF y
columns in 2D is much more thermodynamically stable
than between pairs of individual MFs in 1D.

OMC test of thermal stability.—We test the robustness of
SOs of MFs with QMC simulations [35] on Eq. (2) [32].
The nonlocal correlation between edge states at i = 1 and
i = L is captured by a set of L SOs that stretch across
each x row: P; = L(=2n= (—l)zf"'?f‘, where
j=12,...,L along y. P; is equivalent to the fermion
parity for the jth row.

The expectation values of the SOs P; act as order
parameters. Unique values (P;) = *1 can be used to
define each sector and therefore indicate stability in the
nonlocal correlations between MFs. But, (P) = 0 indicates
that thermal excitations destroy any distinction between
sectors. We compute (P ;) to show spontaneous breaking of
these discrete symmetries for V), >4tz even at nonzero
temperatures. To detect such a symmetry breaking, we
perturb the above spinless fermion model with a weak

global field: H = Hp — EZJL:I P;. The global field P =
L™'¥% | P; imposes a splitting between the otherwise
degenerate states. We define 4 = hL to ensure that the
perturbing term imposes a nonzero energy splitting per
particle & between degenerate sectors even in the limit
L — o0, h >0 favors (P) = 1.

We first compute (P) in the limit V, < 4¢ using QMC
calculations. For V,, = 3.2¢, we find (P) — 0 with increas-
ing L. This indicates that the SOs in 1D x rows alone are
extremely sensitive to thermal fluctuations, as expected
from the entropy argument above, even with @, ; held
constant. Our calculations are time independent. One
may find [(P)| > 0 at short times.

We now calculate (P) in the strongly interacting case
V) = 4.8t, where we expect arrays of strings to form stable
domains. Figure 2 shows (P) at low and high temperatures.
At high T, the bottom panel shows that a large value of # is
needed to stabilize the SOs. But, at low T (top panel), we
find that very small fields tend to force all x rows to
spontaneously occupy the lowest energy state in the limit
h — 0, which indicates that y columns of MFs located at
i=1 and i=L can be prepared in a long-lasting
entangled state stretching over large distances even at finite
temperatures.

Thermal stability of domains.—The arrays of SOs defin-
ing domains are stable at low temperatures but eventually
break up at large 7. To find the critical temperature for
domain formation, we define a string-string order parame-
ter that captures the ordering strength along the y direction:
(0)y=L"? Zﬁj,:1<Pij/>. The operator O is similar to the
static structure factor S; o Zﬁj,:l exp[ —ik,(j— j) Kn;n;),
but with the replacement n;n; — P;P; and with wave
vector k, = 0.

We look for long-range order in the susceptibility of
O: xo = L*((0?) — (0)?)/T. A peak in x, versus T indi-
cates the critical temperature 7, at which the large domain
breaks up along the y direction. For V, <41, we find no
peaks in our simulations and therefore no domain forma-
tion for weakly interacting chains, i.e., T, = 0.

We observe domain formation in y, for V, > 4t. The
top panel of Fig. 3 shows y, as a function of temperature
for Vy = 4.8¢. Above T,, the y columns of MFs are no
longer ordered. The bottom panel extracts 7T, in the ther-
modynamic limit, yielding 7. = 0.275(4)¢z. Our results
agree with studies on the quantum compass model, show-
ing a thermal phase transition in the universality class of
the 2D Ising model [36].

The robustness of the ground state degeneracy also
reveals the stability of the SOs. We denote each ground
state energy sector by E(Pj, P,,...). We found that this
degeneracy was not lifted with a weak staggered chemical
potential, interchain hopping, or a uniform chemical poten-
tial shift [34]. We present representative results for the
uniform chemical potential shift. Figure 4 shows the energy
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FIG. 3 (color online). Top: The susceptibility of the string-
string correlation function O from QMC simulations for differ-
ent L’s at V, = 4.8t and u = 0. The SOs tend to order along the
y direction for T <T,. The inset shows a schematic of an
ordered domain with MFs forming columns at the ends (dashed
lines). The domains shrink for 7 > T.. Bottom: T, extrapolated
to L — oo. The solid line is a linear chi-squared fit.

splitting per particle of two different sectors of the P;
operator: SE = E(—1,—1,...) — E(1, 1, ...), as a function
of w. The flat portion for w/tf << 1 indicates a robust
degeneracy. Above u = 1.5¢, the energy splitting acquires
a size dependence, as expected for u > AE. Inset (a) shows
that the particle density has weak linear dependence for
u/t < 1, which is also captured by the mean field theory.

0.2

0.15

0.05

FIG. 4 (color online). The main panel plots the energy splitting
between two sectors defined by P; = 1 for all x rows as a
function of chemical potential for Eq. (2) at T = 0.167 and V,, =
4.8¢. Inset (a) shows a weak linear increase in density with
increasing w inside the topological phase (u =< 1.5¢). Inset
(b) shows a schematic phase diagram established by the lifting
of the degeneracy; see the horizontal arrow. The vertical arrow
indicates the thermal phase transition explored in Fig. 3. MFT
denotes the mean field theory result.

Our results are consistent with the formation of a thermally
robust topological phase, shown in inset (b) of Fig. 4.

Detection in optical lattices.—Domain formation can be
observed directly in time-of-flight measurements. Noise
correlations between shots of individual time-of-flight im-
ages relate to S; [37]. In the topological phase, we antici-
pate the formation of lines, rather than peaks, in noise
correlations because the V| term correlates the density
along just the y direction for T << T.. Observations of these
lines should therefore allow identification of 7.

Correlation between MFs could be demonstrated
through nonlocal measures similar to those proposed in
quantum wires [9]. Local spectroscopic probes [13,15]
applied at each domain edge could be adapted to detect
the response of one domain edge when dipoles are added to
alternating Kitaev chains on the opposite edge. The particle
number parity in the opposite edge should respond with
signatures of nonlocal correlations in dynamics [9]. Recent
experiments using high resolution spectroscopy to measure
particle number parity [38] and SOs [39] could be used to
explicitly measure response.

Fluctuations in pairing.—We connected a model of
oriented fermionic dipoles [Eq. (1)] to a pairing model
[Eq. (2)]. The pairing model itself demonstrates signifi-
cantly enhanced stability of the MF state via domain for-
mation at 7 > 0. But, our specific implementation still
allows fluctuations of the pairing field between x rows.
Fortunately, the long-range dipolar interaction has been
found to enhance the stability of p-wave superfluidity [30].

Coherent reservoirs can further suppress pairing field
fluctuations via the proximity effect [14,15,25]. We can
show that an optical lattice geometry allowing proximity
coupling is possible [32]. We note, however, that excitations
in the system may couple to those in the reservoir [24].

Conclusion.—We considered an effective model of ori-
ented dipolar fermions in a 2D lattice that allows hopping
along directions where the dipoles attract but suppresses
hopping along directions where dipoles repel. In the
p-wave superfluid regime, we model the system with
repulsive Kitaev chains. Each chain experiences a self-
consistently renormalized chemical potential due to its
neighbor to impose an energy penalty for excitations.
This energy penalty is the mechanism behind MF domain
formation and therefore enhances correlation between col-
umns of MFs along each domain edge. Unbiased QMC
calculations confirm that string operators defining nonlocal
MF states remain robust to thermal fluctuations.

Our approach generalizes to a variety of lattice geome-
tries and even other models with MFs, provided they take a
similar form: ) Hj, + 3, bVi“n’tb , where Hj, defines a
model with MFs, V®? creates domains with diagonal inter-

nt

actions between models a and b, and V{" does not com-
mute with H§; [20]. This class of Hamiltonians also applies
to Coulomb coupling in MF models of quantum wire arrays

or quasi-1D tubes containing topological superconductors.
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Note added.—Recently, we became aware of work on
similar nonlocal order parameters [40].
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