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Quantum Phases of the Extended Bose-Hubbard Hamiltonian: Possibility of a Supersolid State
of Cold Atoms in Optical Lattices
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Cold atom optical lattices typically simulate zero-range Hubbard models. We discuss the theoretical
possibility of using excited states of optical lattices to generate extended range Hubbard models. We find
that bosons confined to higher bands of optical lattices allow for a rich phase diagram, including the
supersolid phase. Using Gutzwiller, mean-field theory we establish the parameter regime necessary to
maintain metastable states generated by an extended Bose-Hubbard model.
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Bose condensed cold atom systems in optical lattices [1]
are increasingly serving as beautiful (and practical) labo-
ratories for studying quantum phases and quantum phase
transitions in strongly correlated model Hamiltonians of
great intrinsic interest. In particular, the very low tempera-
ture; the absence of disorder, dirt, and defects; and (essen-
tially) complete control over the system parameters (and
therefore the applicable Hamiltonian), combine to make
cold atoms in optical lattices an ideal system to experi-
mentally test the predictions of various interacting quan-
tum Hamiltonians which originated as model (and often
rather unrealistic) descriptions for condensed matter phys-
ics problems. For example, the Mott insulating phase and
the superfluid phase of a Bose-Hubbard model have been
demonstrated in the cold atom optical lattices [2,3].

In spite of the impressive success of the cold atom
systems in studying the quantum phases of strongly corre-
lated Hamiltonians, there has been one important limita-
tion. Cold atoms in optical lattices usually represent
essentially zero-range systems where the correlation (or,
equivalently, the interparticle interaction) is effectively on
site only, being parameterized by a single interaction en-
ergy U (the so-called Hubbard U), so that the system
Hamiltonian is the Hubbard model characterized by a
single dimensionless coupling parameter t=U, where t is
the quantum tunneling or hopping strength. In this Letter
we propose a specific and practical scheme to generalize
the cold atom Hamiltonian to an extended Hubbard model,
where both on site (U) and longer range (V) interparticle
interactions compete with the kinetic energy giving rise to
a rich quantum phase diagram which should be experimen-
tally accessible. We focus, in particular, on bosonic sys-
tems, though the method described here is applicable to
spinful, fermionic systems as well. In the bosonic case, our
proposed scheme may lead to density wave and supersolid
quantum phases in addition to the ‘‘usual’’ Mott insulating
and superfluid phases. The key idea in our work, enabling
the realization of an extended Hubbard atomic system, is
that one could, by utilizing proper laser excitations of
individual cold atom states in the confining potential
[4,5], use, in principle, the excited confined states (rather
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than the lowest level in each individual optical lattice
potential minimum) to form the interacting system. Such
a system would have a natural extended Hubbard descrip-
tion rather than an on site description. We theoretically
obtain the quantum phase diagram of such a system and
predict the exciting possibility of coexisting density wave
and superfluid order, i.e., the supersolid quantum phase, in
the U-V parameter space of a realistic, extended Bose-
Hubbard model. Our proposed system should also have
important relevance to topological quantum computation
[6] in optical lattices which has been shown to be feasible
with cold atom lattices provided an extended range inter-
action (V � 0) applies.

Cold atomic gases confined to optical lattices offer the
unique opportunity to directly probe novel states of matter,
including the supersolid. In comparison, experimental evi-
dence for supersolid order in He4 now exists [7], though
conclusive identification using current experimental tech-
niques remains elusive [8]. In bosonic cold atom optical
lattices, coherence peaks in multiple matter wave interfer-
ence patterns [9] at half the reciprocal lattice vector would
provide strong evidence for supersolid order. Recent pro-
posals suggest that nearby Mott (and therefore density
wave) order may also be directly observed, but through
structure in noise correlations [10] or through Bragg spec-
troscopy [11].

We begin with the following second quantized
Hamiltonian describing bosons in an optical lattice, inter-
acting through a contact interaction:

H �
Z
d3r�y�r�

�
H0 � Vconf �

g
2
�y�r���r�

�
��r�; (1)

where g � 4	@2aS=m is the three dimensional interaction
strength between bosons of mass m and scattering length
aS. The single-particle part of the Hamiltonian defines the
motional degrees of freedom through: H0 � � @

2

2mr
2 �

Vdlat�r�, and the confinement potential: Vconf � m�!2
1�x

2 �
y2� �!2

2z
2	=2. Vconf defines the dimension, d, of the sys-

tem. For d � 1 or 2 we have !3�d 
 !d. The optical
lattice potential is V1

lat�z� � VL�1� cos�2	z=a�	=2, for
d � 1. Here the lattice constant is a � �=2, where � is
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the wavelength of the laser defining the lattice. We also
consider a square lattice for d � 2: V2

lat�x; y� � V1
lat�x� �

V1
lat�y�. With these single-particle potentials, the noninter-

acting problem separates. In the direction of strong con-
finement we, as a first approximation, assume the harmonic
oscillator ground state, separated from higher energy levels
by @!d, thereby establishing a d-dimensional problem in
the remaining coordinates. The dimensionless interaction
strength becomes �gd � �g=ER��m!d=h�

�3�d�=2�	=a�d.
The overbar indicates dimensionless units �r � 	r=a and
�H0 � H0=ER, where ER � h2=2m�2.

Along the directions of weak confinement the noninter-
acting problem defines a Bloch equation (excluding the
confinement potential). The exact solutions, �k;�, can be
written in terms of Mathieu functions with wave vector k in
band � [12]. From the Bloch functions we define the
Wannier functions wi;� � N�1=2

s �k exp��ik � �i� ��k;�� �r�,
for Ns sites at locations �i. The Wannier functions localize
in the ‘‘atomic’’ limit for large lattice depths,
�VL=ER�

1=4 ! 1, where the bands reduce to the harmonic
oscillator energy levels. In a band, energetically, near the
lattice maximum the density of two Wannier functions in
neighboring sites can have strong overlap. The inset of
Fig. 1 depicts two situations, showing the square of the
Wannier functions for d � 1 in the bands � � 0 (dotted
line) and � � 2 (solid line), plotted as a function of
distance against a host lattice with height VL � 20ER.
The large overlap between nearest neighbor basis states
suggests that atoms confined to higher bands offer the
unique possibility of generating extended range interac-
tions from an underlying, short-range interaction. In what
follows we apply this technique to construct an extended,
bosonic lattice model in the Wannier basis. A recent pro-
posal [13] suggests that extended range, Bose-Hubbard
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FIG. 1. The ratio of interaction matrix elements versus lattice
depth in the lowest (dotted line) and the third (solid line) one
dimensional bands. The inset shows the square of the Wannier
functions in the lowest (dotted line) and the third (solid line)
bands plotted as a function of distance against a confining,
sinusoidal lattice.
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models may, alternatively, be generated with condensates
of dipolar bosons in optical lattices.

We now expand the operators in Eq. (1) via: � �
�i;�wi;�bi;�, where bi;� annihilates a boson at site i in
band �. The Hamiltonian becomes: Hw � ��H

� �

����0H�;�0
. We first focus on the largest intraband terms

H� � �
X
hi;ji

t�i;j�b
y
i;�bj;� � H:c:� ���

X
i

ni;�

�U�;�
X
i

ni;��ni;� � 1� � 4
X
hi;ji

V�;�
i;j ni;�nj;�; (2)

where the chemical potential is defined to be �� � �0 �
hwi;�jH0jwi;�i, with �0 a constant dependent on confine-
ment. The number operator is given by: ni;� � byi;�bi;�.
The hopping between nearest neighbors, denoted hi; ji, is
only intraband and nondiagonal for cubic lattices: t�i;j �
�hwi;�jH0jwj;�i. It is in principle renormalized by the
interaction to include conditional hopping: t�i;j !
t�i;j � 2M;�;�;�;�

j;i;i;i �ni;� � nj;� � 1�, where M�1;�2;�3;�4
i1;i2;i3;i4

�

� �gdER=2�hwi1;�1
;wi2;�2

jwi3;�3
;wi4;�4

i are the interaction
matrix elements. In our study, we concentrate on the low
density regime,  & 1, where  is the average number of
particles per site. In this regime we find the conditional
hopping to not change our results significantly. Along these
lines we have, in Eq. (2), omitted double occupancy terms
of the form byj;�b

y
j;�bi;�bi;� which, as we have also

checked, do not contribute significantly at low densities.
The remaining two terms in Eq. (2) define the largest
contributions to the interaction through the on site,U�;�0

�

M�;�0;�;�0

i;i;i;i , and nearest neighbor, V�;�0

i;j � M�;�0;�;�0

i;j;i;j , coef-
ficients. Figure 1 plots the ratio V�;�

i;i�1=U
�;� as a function of

the lattice depth for the lowest (dotted line) and the third
(solid line) band in one dimension. In d � 2 the result
remains the same as long as we compare the (0, 0) and
(2, 2) bands. From Fig. 1 we clearly see that the ratio can be
sizable. We must therefore incorporate extended Hubbard
terms into any lattice model characterizing particles in
higher bands not in the atomic limit.

We now discuss a four stage gedanken experiment de-
signed to place bosons in a higher band of the optical
lattice. The prescription we provide here is not unique
but serves to minimize band mixing. We first consider a
partially filled lowest band in the atomic limit and with
weak interaction strength, �g
 1. As we know, from the
mean-field phase diagram [14] of the Bose-Hubbard model
[V � 0 in Eq. (2)], bosons, in this limit, form a superfluid
at all t=U.

The second step consists of adiabatically loading [5] the
atoms into a higher band, e.g., �p � �2; 2� in d � 2, by
oscillating the lattice depth at a frequency matching the
interband energy difference. We assume that a large ma-
jority of the atoms can be transferred from the lowest band
to a single, higher band. Once loaded into a higher band we
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FIG. 2. Zero temperature, mean-field phase diagram of the
extended Bose-Hubbard model, Eq. (2), as determined by the
band structure of a two-dimensional, square, lattice in the �2; 2�
band with interaction strength �g2 � 50.
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note that, in our model, there is no interband coupling for a
translationally invariant, noninteracting system in the
steady state.

In the third stage the lattice depth lowers, away from the
atomic limit, to a point where the Wannier functions have
some extension into the barriers between sites, VL � 19ER
in Fig. 1. This process may be considered adiabatic if the
time scale associated with lowering the lattice depth of a
noninteracting system is much longer than h=j�� ���p j,
where � indicates the nearest band. We find j�� ���2;2�j
to cross zero linearly as a function of VL near VL � 15:8ER
and VL � 17:5ER for � � �3; 1� and (4, 0), respectively.

In the last stage we increase �gd. Recent studies [2,3,15]
have, quite differently, reached the strongly correlated
regime, in the lowest band, by tuning the ratio t=U with
VL. We, however, require the lattice depth to remain in a
narrow regime. We assume that the interaction strength
itself can be tuned through, for example, a Feshbach reso-
nance. In what follows we study Eq. (2), in the range �gd �
100–0. We then analyze interband effects induced by large
interaction strengths.

We consider several possible ground states of Eq. (2) and
focus on the two-dimensional square lattice. The ground
states of this model contain four types of order, in the
absence of disorder and at zero temperature: Superfluid
order hbii, Mott order hnii, checkerboard density wave
order ��1��"

x
i�"

y
i ��hnii �  	, and supersolid order, where

superfluid and density wave order coexist. Nonzero super-
fluid order arises from a spontaneously broken gauge
symmetry. We note that the host lattice corrugates the
superfluid density at wave vectors corresponding to the
reciprocal lattice vector. When phase fluctuations become
strong, Mott order persists at integer densities.

The extended interaction term frustrates the Mott and
superfluid phases leading to spontaneous translational
symmetry breaking, e.g., the  � 1=2 density wave phase,
ordered at half the reciprocal lattice vector. In contrast, a
deep host lattice induces the corrugation in the Mott and
superfluid phases. The fourth phase, the supersolid, arises
from dual spontaneous symmetry breaking (both transla-
tional and gauge symmetry) inherent in coexisting density
wave and superfluid order.

We now discuss our solution of Eq. (2) in the band
�p � �2; 2�. We solve H0 exactly to obtain the matrix
elements. We use a Gutzwiller variational ansatz [2,16]
equivalent to a mean-field decoupling of H�p :  � �Q
i��

1
Ni;��0fNi;� jNi;�i	, where the variational parameters,

fNi;� , may vary over distinct sublattices and weight Fock
states withNi;� particles. We minimize Eq. (2) with respect
to fNi;� keeping enough Ni;� to ensure convergence of the
total energy. Note that ti;j; �; Vi;j, and U depend only on
VL=ER; �gd, and �0=ER. Figure 2 shows the two-
dimensional phase diagram for  & 1 in the principal
band, (2, 2), with �g2 � 50. The y axis plots the chemical
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potential and the x axis the lattice depth, both in units of
ER. The hopping and the extended Hubbard coefficients
decrease with increasing lattice depth. Accordingly, we
find Mott order at large lattice depths. Supersolid and
density wave order appear for �g2 * 40. The supersolid
phase appears upon doping of the density wave phase at
 � 1=2 and not the Mott phase, consistent with the results
of Ref. [17]. We add that in one dimension the phase
diagram is nearly identical for the same set of parameters.
However, it is by now well established [18] that fluctua-
tions destroy supersolid order in one dimension. In both
one and two dimensions (though more so in two dimen-
sions), nearby bands energetically approach the principal
band at low lattice depths.

We now study interaction induced, interband effects.
Our single-band approximation, Eq. (2), comes into ques-
tion as we lower the lattice depth. We study, for d � 2,
mixing with the two nearest bands (3, 1) and (1, 3). In
principle, mixing with nearby bands can alter the phase
diagram. However, if only a small fraction of the atoms
occupy neighboring bands we may then safely assume that
the phase diagram remains qualitatively the same. We ask
whether or not the ground states of Fig. 2 in the principal
band �p � �2; 2� favor scattering processes coupling
neighboring bands [19]. The dominant interband terms are:

H�;�0
� 4U�;�0

X
i

ni;�ni;�0 � 4
X
hi;ji

V�;�0

i;j ni;�nj;�0

�
X
i

M�0��;�0;�;�
i;i;i;i �byi;�0��b

y
i;�0bi;�bi;� � H:c:�;

(3)

where the matrix element in the last term ensures conser-
vation of band index (arising from conservation of lattice
momentum). We have � � ��2; 2� for �;�0 2
f�2; 2�; �1; 3�; �3; 1�g in two dimensions.

The last term in Eq. (3) takes two particles from
the same site in the principal band and ‘‘scatters’’
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FIG. 3. The maximum probability that two particles from the
(2, 2) band occupy the same site and scatter to the (3, 1) and (1,
3) bands versus lattice depth with � � 2:2ER and �g2 � 50.
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them to neighboring bands and vice versa, when
applied to a state initially in �p. It acts as the dominant
interband scattering mechanism [20]. We calculate
the probability of such an event through first order pertur-
bation theory. Consider two states  �p and  e�

N �1�byi;�p��=2b
y
i;�p��=2bi;�pbi;�p� �p , where N is a nor-

malization constant. In the absence of dissipation, the
probability that two particles at any one site occupy neigh-
boring bands oscillates in time, T : P�T� �
2jh ejHwj �pij

2�1� cos�ET=@�	=E2, where E �

h ejHwj ei � h �p jHwj �pi. We argue that if the proba-
bility remains small, then band mixing will be suppressed.
Note that, with a large interaction strength, E is not equal to
the single-particle, self energy difference between bands.

The probability of finding two particles at the same site
is small in all regions of Fig. 2. Ignoring fluctuations, the
 � 1 Mott and  � 1=2 density wave phases have no
double occupancy. Therefore, the superfluid and the super-
solid phases remain as the only candidate phases involving
on site, interband scattering processes. Figure 3 plots the
maximum scattering probability at T � h=2E as a function
of lattice depth for a chemical potential ��2;2� � 2:2ER and
�g2 � 50. The probability of finding two particles in nearby
bands is less than 2� 10�2. This suggests that at inter-
mediate lattice depths and low densities the single-band
ground states resist on site scattering processes into neigh-
boring bands. The energy difference, E, remained nonzero
for all VL primarily because of the strong interband, nearest
neighbor interaction in the neighboring bands.

We have shown that promoting bosons to higher bands
of optical lattices can lead to states beyond the superfluid
and Mott states present in zero-range, Bose-Hubbard mod-
els of the lowest band. We argue that the ground states of an
extended Bose-Hubbard model capture the essential phys-
ics of bosonic atoms placed in a single, isotropic band with
a minimum lying, energetically, near the top of the optical
lattice. The resulting supersolid and density wave states
add to the set of observable phases.
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Additional phases may arise outside the set of approx-
imations leading to Fig. 2. Gutzwiller, mean-field theory
should be an excellent approximation for d > 1 and affirms
results obtained from quantum Monte Carlo studies for
d � 2 [21]. However, our results overestimate the strength
of the supersolid phase because we have excluded a com-
peting phase-separated state [22]. Furthermore, strong in-
terband mixing can populate anisotropic neighboring
bands [e.g., (3,1) and (1,3)] leading to stripelike superfluid
states which coexist with the superfluid and supersolid
states in the primary band.

The states confined to band �p are, technically, meta-
stable. We require )� h=jt

�p
ij j, where ) is the lifetime of

the state. )may be affected by dissipative effects including
collective mode interband scattering. Our results for the
realizable extended Bose-Hubbard Hamiltonian, in addi-
tion to providing a rich quantum phase diagram, yields an
interesting connection to topological quantum computa-
tion [6] in cold atom optical lattices.
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