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Abstract

Even though much of the dramatic physics of two-dimensional electrons in a high magnetic ®eld is explicable in terms of

weakly interacting composite fermions (CFs), the inter-CF interaction is responsible for many interesting, non-trivial phenom-

ena. Here, we discuss four examples. (i) At small ®lling factors, a softening of the roton mode destroys the fractional Hall effect,

giving way to the Wigner crystal. (ii) In higher Landau levels, the fractional Hall effect is destroyed due to a collapse of the

energy of the neutral exciton. (iii) At n � 5=2; the Fermi sea of CFs is unstable to Cooper pairing of CFs, thereby opening up a

gap and producing a fractional Hall effect. (iv) Prior to the transition into the Wigner crystal, the CF liquid exhibits the Bloch

instability into a magnetically ordered, spontaneously broken symmetry phase. q 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The two-dimensional electron system exhibits absolutely

marvelous and unexpected phenomena when exposed to a

strong magnetic ®eld [1]. Our understanding of these

phenomena relies on the transformation of the strongly

correlated liquid of electrons into a weakly interacting gas

of composite fermions (CFs) [2±6], where a CF is the bound

state of an electron and an even number of quantum

mechanical vortices of the many body wave function. The

most remarkable property of CFs is that they experience a

drastically reduced effective magnetic ®eld.

The CF theory can be summarized by three simple

equations:

Cn � PLLLF
2p
1 Fn p ; �1�

Bp � B 2 2prf0; �2�

n � np

2pnp ^ 1
: �3�

The last two can be derived from the ®rst so in fact, every-

thing stems from a single equation. Here, B is the external

magnetic ®eld, r the two-dimensional density of particles,

f0 � hc=e the fundamental quantum of ¯ux and n the ®lling

factor of electrons. The even integer 2p is the vorticity of the

CF, Bp is the magnetic ®eld experienced by CFs, and np �
r=Bf0 is the ®lling factor of CFs. Fn p is the wave function of

non-interacting electrons at n p, cn is the wave function of

interacting electrons at n , and PLLL is the lowest Landau

level projection operator. Finally, it is convenient to use as

the length scale the natural length unit in the quantum Hall

effect, called magnetic length l0 ;
��������
"c=eB
p

:

CFs carrying 2p vortices are denoted by 2pCF. The state

with n ®lled Landau levels of CFs is denoted by 2pCFn.

When the spin degree of freedom is of interest, some (say

n " ) of the 2pCF-LLs have spin up, and the rest (say n # )
have spin down; this state is denoted by 2pCFn",n#.

The interaction between the CFs is much weaker than that

between electrons, because much of the inter-electron inter-

action is screened out by the formation of CFs. It is a good

®rst approximation to neglect the interaction between the

CFs altogether. The fractional quantum Hall effect

(FQHE) is then understood straightforwardly as an integer

quantum Hall effect of CFs [2±4], and the compressible

state at the half-®lled Landau level is well described by a

Fermi sea of CFs [7±10]. The weak residual interaction

between CFs makes quantitative corrections, but often

does not lead to any qualitative changes in the nature of
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the state. The model of non-interacting CFs is qualitatively

valid in such situations.

For certain parameters, however, the inter-CF interaction

is of critical importance because it can drive phase tran-

sitions. That is the subject of the present article. We will

brie¯y review here four situations when the predictions of

the non-interacting CF model are altered qualitatively by

quantum ¯uctuations caused by the inter-CF interactions.

At small n , the FQHE is destroyed due to a rotonic insta-

bility, making way for the Wigner crystal (WC) [11±13]. In

hither LLs, the FQHE is destroyed due to an excitonic

instability [14]. At n � 5=2; a Cooper instability in the

Fermi sea of CFs signi®es the opening of a gap, a necessary

condition for FQHE at this ®lling factor [15]. Finally, at

small ®lling factors and small Zeeman energies, a spon-

taneous magnetic ordering of the CF state takes place

[16]. The instabilities are driven by the residual interaction

between the CFs and signify a dramatic breakdown of the

model of weakly interacting CFs in the parameter regimes

considered.

The theoretical approach for treating the inter-CF inter-

action employs Jain's wave functions for CFs, given by Eq.

(1). Even though these wave functions are motivated by the

model of non-interacting CFs, and are related to non-inter-

acting electron states F , they are known to be extremely

close to the exact solution of the fully interacting electron

problem; comparisons with exact diagonalization results for

small systems have shown that the energies predicted by C
are typically within 0.1% of the exact eigenenergies

[12,13,17,18]. C thus incorporates the effects of inter-CF

interaction. This is remarkable in view of the fact that C
contains no adjustable parameters. We will only give

the salient results here; the details of our calculations

can be found in the literature [11±16]. In particular, we

will not discuss Landau level mixing [19±21] or ®nite

thickness effects [22±24]. These make quantitative correc-

tions, but are not relevant for the qualitative physics con-

sidered here.

Related approaches for treating the inter-CF interaction

are the Chern±Simons theory [7,25] and Shankar±Murthy's

Hamiltonian approach [26,27]. We will discuss below only

the results from the microscopic wave function method and

refer interested readers to the literature for other approaches.

The results are in striking agreement with experiment. It

has been known that the FQHE does not occur at all odd

denominator ®lling factors. At very small ®lling factors, the

CF liquid loses to the WC. In higher Landau levels, it loses

to charge-density-wave type states. The CF theory provides

a natural explanation for the lack of FQHE at small n and in

higher LLs. At n � 5=2; a FQHE is seen even though one

would naively have expected a Fermi sea of CFs. This

appears naturally in the CF theory through a Cooper

instability of the CF Fermi sea at n � 5=2: We stress that

all of this rather subtle physics is discovered entirely within

the tightly constrained, zero-parameter framework of the CF

theory.

2. Roton instability at small n

One method for studying the feasibility of the FQHE is to

compare the energies of the variational wave functions of

the FQHE state and other candidate states. It is reliable when

good guesses exist for the various kinds of states.

The other approach is to start with the assumption of the

FQHE state, and investigate its stability. An instability

exhibits itself through the softening of certain excitations.

When this happens, we know that we started with the wrong

state.

Fig. 1 shows the energy of the CF exciton, D ex, at n � 1=9

(measured relative to the energy of the uniform FQHE state)

as a function of the wave vector k. At the lowest energy in

the dispersion, the exciton is called the roton, by analogy to
4He [28]. The roton mode has been observed for 2CFs [29],

with its energy in good agreement with theory [30,31]. The

most striking aspect is that the energy of the CF roton at n �
1=9 (but not for 1/3, 1/5 or 1/7) falls below that of the

uniform FQHE state at approximately kl < 0:85: The

FQHE is thus explicitly demonstrated to be unstable to a

spontaneous creation of CF rotons. Similar results are

expected for n , 1/9, ruling out FQHE for n # 1/9. The

fact that the wave vector of the instability is close to the

reciprocal lattice vector of the WC [32] at n � 1=9; kWCl �
�4pn= ��

3
p �1=2 < 0:898 also hints to the nature of the true

ground state.

It has been well known that the true ground state at very

small ®lling factors is a WC. In studies [33,34] comparing

the energy of C with that of a WC state of electrons, it was

predicted that a transition would occur at approximately at

n21 � 6:5 ^ 0:5: Our results demonstrate that this fact can

be discovered entirely within the theory of the FQHE. Our

results also suggest that the state at n � 1=7 is likely a FQHE
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Fig. 1. Exciton dispersion for the FQHE state at n � 1=9 for systems

with several sizes, with the electron number N shown in the ®gures.

Here l�; ��������
"c=eB
p � is known as the magnetic length. All curves

assume zero thickness. The error bars are smaller than the symbol

sizes. Taken from Jain and Kamilla [12,13].



state, consistent with preliminary experimental observations

[35].

3. Excitonic instability in higher Landau levels

There exists evidence for more than 50 fractions in the

lowest Landau level. The essential phenomenon is remark-

ably insensitive to the detailed form of the repulsive inter-

action, as manifested by the fact that it is quite robust to

perturbations arising from Landau level mixing, ®nite thick-

ness, or the nature of the transverse con®nement.

The system of electrons restricted to a higher Landau

level deviates from that in the lowest LL only through the

short-distance matrix elements of the Coulomb interaction.

Consequently, one would expect the FQHE to be not too

sensitive to the Landau level index either. From this point of

view, it is astounding that the FQHE is so rare in higher

Landau levels. The only higher Landau level fractions for

which decisive experimental evidence exists, in the form of

reasonably well quantized plateaus, are n � 1=3 and n � 1=2

(and other fractions related by symmetry) in the second LL

[36±38]. No FQHE has been observed at all in the third or

higher LLs. Mean-®eld [39±42], exact diagonalization [43],

as well as experimental [44,45] studies suggest that a bubble

crystal or a stripe phase is favored over FQHE in higher LLs.

We ask whether the instability of the FQHE can be

discovered within the CF theory. We consider ®lling factors

n � 2s 1 n0: Here, the quantity s � 0; 1;¼ denotes the

Landau level index, and the factor 2 in 2s arises due to

spin degeneracy (because a Landau level with both spin

states ®lled contributes 2 to the ®lling factor). We take the

®lled LLs to be completely inert and work only with the

electrons in the topmost partially ®lled LL. Furthermore,

these electrons will be taken to be fully spin polarized;

this is a valid approximation in the limit of high magnetic

®elds when LL mixing is negligible.

We show here results for 2CFs, corresponding to FQHE at

n � 2s 1 �n=�2n 1 1��: Fig. 2 shows the energy of the CF

exciton in the lowest LL at n � 1=3; 2=5; and 3/7; in the

second LL at n � 7=3; 12=5; and 17/7; and in the third LL

for n � 13=3; 22=5; and 31/7. A system of 66 particles was

used for the calculations. The energies are quoted in units of

e2
=el0; where l0 �

��������
"c=eB
p

is the magnetic length at n .

These dispersions demonstrate that the CF theory

captures the lack of FQHE in higher LLs through an exci-

tonic instability. All FQHE is unstable in the third �s � 2�
and higher LLs for 2CFs. In the second �s � 1� LL, all states

other than n � 7=3 are unstable for 2CFs.

What about the other ¯avors of CFs? There are theoretical

indications [46] that 4CF and 6CF states are more stable in

higher LLs than the 2CF states. In order to explore this issue

further, we have computed the dispersion of the CF exciton

for the 4CFs and 6CFs at n � 2s 1 1=5; n � 2s 1 1=7; n �
2s 1 2=9; and n � 2s 1 3=13 in the lowest three Landau

levels �s � 0; 1; 2�: No instability was found. Indeed, these

states are more stable in higher Landau levels, with 4CF

states having the largest roton gap (in units of e2
=el0) in

the second LL and the 6CF states in the third. There is an

experimental indication for the 1/7 state in the lowest LL

[35] but none yet in higher LLs. The observation of the 4CF

and 6CF states in higher LLs is complicated by their rather

small energy gaps (because, for a given density, e2/e l0 is

much smaller here than at the corresponding lowest LL

fraction), as well as their close proximity to strong integral

quantum Hall plateaus.

4. Cooper instability at n � �5=2�

We next turn to the Landau level ®lling n � 5=2 � 2 1
1=2; corresponding to a half-®lled second LL. Again, the

fully occupied LL is treated as inert and the electrons in

the partially ®lled second LL as fully spin-polarized. In

complete analogy to the half-®lled lowest LL, the model

of non-interacting CFs would predict a Fermi sea of CFs

at n � 5=2 as well. However, experiments reveal a FQHE

state here [36±38]. In fact, 5/2 is the only even-denominator
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Fig. 2. The dispersions of the CF exciton in the lowest three Landau

levels: s � 0 (dashed line), s � 1 (solid line) and s � 2 (dot-dashed

line) at n � 2s 1 n0; with n0 � 1=3; 2=5; and 3/7. The typical Monte

Carlo uncertainty is shown at the beginning of lowest curve. The

energies are given in units of e2
=el0 where e is the dielectric constant

of the background material, and l0 is the magnetic length at n . Taken

from Scarola et al. [14].



fraction to be observed in a single layer system, and its

physical origin has been a subject of debate and controversy

over the years.

We ask, in analogy to the Cooper problem for ordinary

superconductivity: If we begin by assuming a Fermi sea of

CFs both at n � 1=2 and n � 5=2 and add two CFs at the

Fermi surface, will they form a bound state? The energy of

the pair is computed as a function of the distance between

the two CFs. As shown in Fig. 3, the interaction between the

CFs is repulsive at n � 1=2; but attractive at n � 5=2; indi-

cating that the CF-Fermi sea is unstable to a pairing of CFs

at n � 5=2: The difference between the physics of 1/2 and 5/

2 is shown schematically in Fig. 4.

It is stressed that, unlike BCS theory, we do not assume

any attractive interaction, phonon-mediated or otherwise.

The only interaction in the problem is the repulsive

Coulomb interaction between electrons. However, it trans-

lates into a weak attractive interaction between CFs at n �
5=2:

The appearance of pairing may seem surprising in a

model with strong repulsive interaction. The Coulomb

repulsion is overcome through the formation of CFs,

which screens out the Coulomb interaction quite effectively,

to the extent that a total neglect of the interaction between

CFs is valid for many purposes. Furthermore, the screening

takes place in a topologically rigid manner, independent of

the interaction strength or the Landau level index, through

the binding of precisely two vortices to each electron.

Therefore, it is plausible that it may sometimes cause an

overscreening of the Coulomb interaction, producing an

effectively attractive interaction between CFs. Why is

there an attraction at n � 5=2 but not at n � 1=2? The matrix

elements for the Coulomb interaction in the second Landau

level are weaker than in the lowest LL because of the greater

spread of the electron wave function in the former,

especially at short distances. This slight softening of the

inter-electron repulsive interaction in the second LL is

suf®cient to push the inter-CF interaction into weakly nega-

tive territory.

The pairing in this system has a novel, topological origin,

and occurs in spite of strong repulsive interaction between

electrons; the repulsion is circumvented because the objects

that pair up are not electrons but CFs. We speculate that a

fundamental reorganization of the state, e.g. creation of new

quasiparticles, must happen in any system in order for

pairing to ensue starting from repulsive interactions alone.

This is indeed the case in several theoretical models of high

temperature superconductivity, where also the pairing is

believed to be caused by repulsive interactions.

There has been earlier work on pairing of CFs. Greiter et

al. [47] argued for p-wave pairing of CFs at n � 1=2 and 5/2

within a Chern±Simons formulation of CFs [25]. The

Chern±Simons method, however, is quantitatively unreli-

able for this question because of its inadequacy in describing

the energetics or the short-distance behavior. Even within

this approach, Bonesteel [48] has noted that a pair breaking
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Fig. 3. The interaction energy of a pair of CFs at zero effective ¯ux

�Bp � 0�; which, in the thermodynamic limit, corresponds to n �
1=2 in the lowest Landau level and n � 5=2 in the second Landau

level. Also shown for comparison is the energy of the analogous

electron system at B � 0: The results are shown for a system of N �
27 particles. The quantity l0 �

������
"=eB
p

is the magnetic length, r0 �
�pr�21=2 is the average interparticle separation, and e is the dielec-

tric constant of the background material. The spherical geometry is

used in the calculation. L is the total orbital angular momentum of

the pair. The distance between the two partners of the pair increases

with L, as can be deduced by the top panel which shows the

Coulomb energy of two electrons in an otherwise empty Landau

level. Taken from Scarola et al. [15].

Fig. 4. A schematic depiction of the physics of the Fermi sea of

electrons at B � 0; the Fermi sea of CFs at n � 1=2; and pairing of

CFs at n � 5=2: The CFs are shown as electrons carrying two ¯ux

quanta. DOS stands for the density of states. Taken from Scarola et

al. [15].



term not considered in Ref. [47] may potentially alter its

conclusion. Greiter et al. further suggested that the paired

CF state may be described in terms of a Pfaf®an wave

function written by Moore and Read [49]. Recent exact

diagonalization [50,51] and variational [52] studies have

provided support for the validity of a Pfaf®an-like wave

function at n � 5=2:

5. Bloch instability

The system of electrons in a uniform, positively charged

background is a widely used and studied model in

condensed matter physics. It was suggested by Bloch [53]

in 1929 that, due to exchange effects, the Fermi sea of elec-

trons is susceptible to a spontaneous polarization of the

electron spin at low densities, when the interaction becomes

strong relative to the kinetic energy. Another competing

phase at low-densities is the WC, a lattice of electrons. A

phase diagram for interacting electrons as a function of

density has been the subject of much theoretical study and

controversy. The usual perturbative approaches, e.g. the

Hartree±Fock or random-phase approximation, are not

useful at low densities; sophisticated quantum Monte

Carlo calculations [54] indicate that a transition into the

WC state occurs at rs < 37; preceded by a ferromagnetic

phase [55]. The ferromagnetic Bloch phase has not yet been

observed, though.

Motivated by these observations, we have searched for

Bloch's magnetization of CFs prior to Wigner crystalli-

zation. Of interest here is the intrinsic magnetic ordering

caused by the exchange interaction, and not the trivial

magnetization due to the Zeeman coupling of the electron

magnetic moment to the external magnetic ®eld. The

Zeeman coupling will therefore be set to zero in what

follows. Since there is experimental evidence for the WC

phase on both sides of 4CF1 (i.e. n � 1=5� [56,57], we focus

on 4CFs and evaluate the energies of 4CFn",n#.
The weakly interacting CF model works well for 2CFs,

relevant in the ®lling factor range 2/3 . n . 1/3. The theo-

retical phase diagram [58] of the spin polarization of 2CFn as

a function of the Zeeman energy computed with the help of

C is in reasonably good quantitative agreement with the

experimentally determined phase diagrams [59,60]. For
2CFs, the model of independent CFs is successful in predict-

ing various qualitative features, namely the possible spin

polarizations as well as the energy ordering of the differently

polarized states; in particular, the ground state in the

absence of the Zeeman energy is the least polarized state,

as expected for weakly interacting fermions. With a single

mass parameter (the polarization mass of the CFs [58]) the

non-interacting CF model provides a reasonable semi-quan-

titative ®t to our results over the relevant range of ®lling

factors. Further insight into the success of the free CF-model

is obtained in the Hamiltonian approach [61]. Interestingly,

there is experimental evidence [60] that the transition

between the fully polarized and unpolarized state CF states

does not occur directly but through an intermediate state

with a partial spin polarization. Murthy [62] has proposed

that this state is a Hofstadter lattice of CFs, and has half the

maximum possible polarization.

Now let us go back to the main topic of this section: 4CFs.

Because we are interested in thermodynamic phases, all

energies are obtained by a careful extrapolation to the

thermodynamic limit, N21! 0, as shown in Fig. 5 for
4CF4,0,

4CF3,1 and 4CF2,2. The principal result is that for
4CFs, the fully polarized state is the ground state even at

zero Zeeman energy. The model of independent CFs thus

fails dramatically for 4CFs at small Zeeman energies, indi-

cating that the inter-CF interaction is suf®ciently strong to
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Fig. 5. Thermodynamic extrapolations for the energies of 4CF2,2,
4CF3,1, and 4CF4,0, the variously spin-polarized states of 4CFs at 4/

17. The energies are quoted in units of e2
=el; where l � ��������

"c=eB
p

is

the magnetic length and e is the dielectric constant of the back-

ground material. The lines show the best straight line ®ts. Taken

from Park and Jain [16].

Fig. 6. Critical Zeeman splittings above which the CF state is fully

polarized. The empty and ®lled circles are predictions of theory, and

stars and squares are taken from the experiments of Du et al. [59]

and Kukushkin et al. [60]. The ®gure is taken from Park and Jain

[16].



cause a spontaneous polarization of the 4CF liquid. The

phase diagram of the spin polarization of 4CFn is contrasted

with that of 2CFn in Fig. 6, which also gives the experimental

results for 2CFs.

We thus predict that the CF liquid exhibits a broken

symmetry magnetic phase prior to a transition into the

WC. This predictions ought to be experimentally veri®able.

The transitions between QHE states of different polari-

zations have been seen in transport experiments [59], and

the polarization itself has been measured in optical lumi-

nescence studies [60] and also by NMR [63,64]. Since the

magnetization we are predicting is to be distinguished from

that caused by the Zeeman coupling, it is hoped that our

work will motivate polarization measurements under hydro-

static pressure, which can be used to tune the g factor

through zero [65±67]. Our results would imply an absence

of any transition at ®nite Zeeman energies at n=�4n 1 1�; and

a ®nite jump in the degree of polarization when the g factor

changes sign.
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