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Dynamics of Hubbard-band quasiparticles in disordered optical lattices
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Quantum degenerate gases trapped in optical lattices are ideal test beds for fundamental physics because
these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be
introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms
such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport
of degenerate Fermi gases in optical lattices [S. S. Kondov et al., Phys. Rev. Lett. 114, 083002 (2015)] to probe
extreme regimes. These experiments find evidence for an intriguing insulating phase where quantum diffusion
is completely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open
problem that requires inclusion of nonzero entropy, strong interaction, and trapping in an Anderson-Hubbard
model. We argue that the suppression of transport can be thought of as localization of Hubbard-band quasiparticles.
We construct a theory of dynamics of Hubbard-band quasiparticles tailored to trapped optical lattice experiments.
We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting
parameters. The close agreement between theory and experiments shows that the suppression of transport is
only partly due to finite-entropy effects. We argue that the complete suppression of transport is consistent with
short-time, finite-size precursors of Anderson localization of Hubbard-band quasiparticles. The combination of
our theoretical framework and optical lattice experiments offers an important platform for studying localization
in isolated many-body quantum systems.
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I. INTRODUCTION

Understanding the motion of a quantum particle in an
otherwise isolated lattice under the influence of an applied field
is central to our understanding of conductivity in electronic
solids. The theory of Anderson localization [1,2] predicts
that quantum diffusion of a single particle can fail in a
disordered lattice. Above a critical disorder strength, for which
the mobility edge encompasses all states participating in
transport [3,4], strong interference forbids quantum diffusion.
Anderson’s mechanism of localization was first discussed
in the context of a simplified model designed to treat the
propagation of highly excited states of nuclear spin systems,
but it has since been applied to a wide variety of other
systems [2], including quantum degenerate atomic gases
[5–10]. Disorder-induced localization is also believed to play
a key role in metal-insulator transitions in a wide range of
materials [2–4].

Subsequent theoretical studies of Anderson localization
found that inclusion of realistic effects, specifically interpar-
ticle interactions and nonzero temperature [2,11–15], poses
prominent problems. The competition between Anderson
localization and strong-interaction effects has been studied
with a variety of methods, e.g., quantum Monte Carlo [16],
dynamical mean-field theory [14,17,18], and related quantum
cluster methods [19]. References [14] and [18], for example,
found a correlated Anderson insulator ground state for large
disorder strengths, indicating that Anderson localization per-
sists in a strongly interacting limit. Other recent work has
studied Anderson localization of Bogoliubov quasiparticles in
bosonic models [20,21]. A more complete understanding of
the interplay of strong interparticle interactions and disorder
is urgently needed to enhance our knowledge of strongly cor-
related materials such as high-temperature superconductors.

Related work by Basko et al. [22] has triggered considerable
interest in the interplay between interactions, temperature, and
Anderson localization. Their work indicates that a correlated
Anderson insulator is stable at nonzero temperatures and
corresponds to a many-body localized state. This is surprising
because one might expect that interactions lead to dephasing
effects that mimic the effects of heat and particle number
reservoirs [23,24] that are known to lead to conduction via
variable range hopping in certain solids [4]. Interactions would
be expected to lead to effective reservoirs even in the absence
of an explicit reservoir. But Ref. [22] argues, surprisingly, that
interactions allow a correlated Anderson insulator to survive up
to a characteristic temperature. More recent work (see Ref. [24]
for a review) points out that the very notion of temperature
should give way to the more general concept of energy density
in a many-body localized phase in an isolated quantum system.

Quantum degenerate gases of atoms trapped in optical
lattices offer a controlled arena to study the interplay of
interactions, disorder, and thermal effects [25–28] because
they are, to an excellent approximation, isolated. The entropy
per particle, controlled via cooling in a parabolic trap,
determines an equilibrium temperature when the lattice is
turned on since atomic gases thermalize through interparticle
interactions [29–31]. As a result of their isolation, quantum
degenerate Fermi gases in optical lattices exhibit quantum
diffusion (see, e.g., Ref [32]), even though their temperatures
are a significant fraction of the Fermi energy. This offers
a useful regime to study because isolated systems can, in
principle, exhibit many-body localization even at high energy
densities [33]. Furthermore, optical lattice experiments are
well characterized [27,34]: interaction strength, lattice depth,
entropy, density, and other parameters are all known and
tunable. The impact of disorder can therefore be studied
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FIG. 1. (Color online) Schematic showing disordered lattice sites
in a parabolic trapping potential. The site coloring represents a dense
core that gives way to zero density at the edges. The system studied
here can be thought of as a strongly interacting high-temperature
paramagnet with a density less than 1 at the center. An applied shift
of the external trapping potential along the x direction for a time
τ = τP forces center-of-mass motion along the x direction only if the
atoms are mobile. τP is chosen to be short on the time scale of the
inverse trapping frequency.

independently of conventional dephasing phenomena arising
from contact with reservoirs [35–42].

Recent experimental work [43] has investigated interacting
fermions confined in a cubic optical lattice to study the
influence of quenched speckle disorder on center-of-mass
transport (Fig. 1). This system is accurately described using the
Anderson-Hubbard model, and transport in these experiments
is understood to imply the short-time response of the entire
system to an applied field [43]. The fact that the entire system
responds, and not just states near the Fermi surface, implies
an absence of a sharp transition. Nonetheless, the experiments
find intriguing insulating behavior above a critical disorder
strength that agrees qualitatively with the predictions for
many-body localization in the weakly interacting regime [22].

Control over the lattice potential depth and disorder strength
was shown to lead to a regime where known types of insulating
behavior can be excluded. For example, it was demonstrated
that the insulating regime occurs for disorder strengths well
below the classical percolation threshold [43]. Furthermore,
the system was made dilute enough to avoid forming Mott
[44–46] and band insulators. The regime [43] explored, can
be thought of as a strongly interacting Hubbard paramagnet
with a temperature well below the bandwidth. The insulating
behavior of the isolated strongly interacting particles in these
experiments [43] is therefore a highly nontrivial probe of
localization in many-body quantum states.

In this article, we provide a perspective on disorder-induced
localization in the Anderson-Hubbard model and the measure-
ments in Ref. [43]. We establish a connection to Hubbard-band
quasiparticles that are very robust because they are stabilized
up to energy scales on the order of the interaction energy (as
opposed to conventional Landau-Fermi-liquid quasiparticles
near Fermi surfaces that set in at a much lower energy scale).
We make a direct comparison between theory and experiment
with no fitting parameters. This approach enables us to treat
the strongly interacting limit, which was not possible using

the perturbation theory employed in Ref. [22]. We derive the
equations of motion for the Anderson-Hubbard model in the
paramagnetic regime while taking into account all important
experimental aspects, particularly trapping and finite-entropy
effects. We show that the equations of motion derived here to
include a trap reduce to the Hubbard-I [47] approximation
normally considered in the translationally invariant limit.
This demonstrates that our equations of motion quantitatively
capture the dynamics of Hubbard-band quasiparticles in a trap.

We use parameters taken from Ref. [43] to effectively
replicate the experiment numerically and find evidence of
a quasiparticle mobility edge. We find that at low disorder
strengths the Hubbard-band quasiparticles propagate in the
lattice under an applied force; that is, they have nonzero
mobility. We also study the result of increasing disorder.
At large disorder strengths we identify a transition to an
insulator through the absence of center-of-mass motion. A
direct comparison between theory and experiment shows good
agreement. We argue that the insulating behavior observed in
Ref. [43] is consistent with short-time, finite-size precursors
of Anderson localization of Hubbard-band quasiparticles. To
our knowledge, disorder-induced localization in the Hubbard
model has not been previously understood using this approach,
which is complementary to other methods, e.g., perturbative
theory [22] and dynamical mean-field theory [14,17,18].

We begin in Sec. II by defining the model used to simulate
the experiments of Ref. [43] and all necessary parameters.
Here we also define the center-of-mass velocity as the key
observable. In Sec. III we then derive the equations of motion
in the paramagnetic regime. Section IV then shows that the
equations of motion reduce to the Hubbard-I approximation
[47] that was originally used to define Hubbard-band quasi-
particles. Here we also show that, in a strongly interacting
limit, Hubbard-band quasiparticles obey an effective Anderson
model of noninteracting quasiparticles. Section V then defines
the approximations used in constructing the initial state that
is propagated using the equations of motion. Section VI
points out an important feature of the initial states used
in these experiments. We find that increasing disorder at
fixed entropy effectively raises the system temperature to
at most B/3, where B is the bandwidth. Even though this
heating keeps the temperature well below the bandwidth, it is
nonetheless an important aspect of these experiments that must
be included to make a quantitative comparison with theory.
Section VII presents our central results. Here we directly
compare numerical solutions of the equations of motion with
experiments. We find that low disorder allows the Hubbard-
band quasiparticles to propagate in the trap. But we find a
critical disorder strength above which center-of-mass motion
is suppressed. We conclude in Sec. VIII by interpreting the
results presented here as evidence of the Anderson localization
of Hubbard-band quasiparticles.

II. MODEL AND PARAMETER REGIMES

We study the dynamics of an equal population of two-
component fermions in a cubic optical lattice in the presence
of spatial disorder. For deep lattices we assume that all
N particles reside in the lowest Bloch band. In this limit
the single-band Anderson-Hubbard model is an excellent
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approximation [27,43]:

HAH =
∑
j,j ′,σ

Tj,j ′c
†
j,σ cj ′,σ + U

∑
j

nj,↑nj,↓ +
∑

j

μjnj . (1)

Here c
†
j,σ creates a fermion of spin σ ∈ ↑,↓ at a site Rj , U > 0

derives from atomic s-wave scattering, and nj = nj,↑ + nj,↓ is
the number operator. The matrix elements Tj,j ′ ≡ −tδRj ,Rj ′ +δ

are written in terms of a Kronecker delta that enforces a
hopping energy t between nearest-neighbor sites (δ is a
nearest-neighbor bond vector.)

The last term in Eq. (1) includes spatially inhomogeneous
perturbations to the chemical potential. We define

μj = −μ0 + mω2a2R2
j

2
+ εj + VP Rj · x̂, (2)

where μ0 is the average chemical potential, m is the atomic
mass, ω is the trapping frequency that parameterizes the
external confinement, a is the lattice spacing determined by the
optical lattice laser wavelength, εj denotes spatially random
disorder, and VP is a pulse strength that is switched on for a
time τ = τP to effectively shift the trap center.

VP acts as the analog of a weak electric field used to drive
motion along the x direction (see Fig. 1). At long times a
single particle with no disorder will oscillate in the trap. But
we consider pulse times that are short with respect to the
inverse trapping frequency to focus on the regime probed in
Ref. [43]. At these short times, the center-of-mass velocity
is unidirectional and, in the absence of disorder, increases
linearly with VP .

We consider two distinct distributions of site disorder. In the
experiments of Ref. [43] the speckle potential used to establish
a disordered optical lattice creates an exponential probability
distribution function for the on-site energies [34]:

PE(ε) = e−ε/�E

�E

, (3)

where �E is the strength of the exponentially distributed
disorder assuming ε > 0 (this is accurate to within 10% of
the disorder strength used in Ref. [43]). We also consider a
uniform (boxed) disorder probability distribution function for
the on-site energies εj :

PU (ε) = �(�U/2 − |ε|)
�U

, (4)

where � is the Heaviside step function and �U parameterizes
the strength of the uniformly distributed disorder. PE intro-
duces behavior that is distinct from more common models
with PU because changing �E at fixed N forces μ0 to change.
This is in contrast to changes in �U which leave μ0 constant
at fixed N .

Equation (1) quantitatively captures the essential properties
of the experiments in Ref. [43]. We ignore disorder in t and U

that was shown [34] to be narrowly Lorentzian distributed. In
what follows, we find that we are able to make a quantitative
comparison with experiment even while excluding the disorder
in t and U . We will return to this point in Sec. IV.

The experiments proceed by trapping a fixed number of
particles with a fixed entropy S. The entropy and all other
necessary model parameters were determined in Ref. [43]

TABLE I. Parameters used in the experiments of Ref. [43]. Here
the recoil energy is ER = h2/(8ma2), and the atomic species is 40K.

Lattice depth VL 6ER 7ER

Trap frequency ω 110 × 2π Hz 114 × 2π Hz
Lattice spacing a 391.1 nm 391.1 nm
Number of particles N 47 100 ± 6500 48 700 ± 1900
Entropy per particle S/N 1.51 ± 0.18kB 1.6 ± 0.17kB

Hopping t 0.0509ER 0.0395ER

Interaction U 0.304ER 0.355ER

Relative strength U/t 5.97 8.98
Disorder strength �E 0–2ER 0–2ER

Pulse time τP 2 ms 2 ms
Pulse strength VP 0.011ER 0.011ER

and are shown in Table I. We focus on the two lattice depths
with high U , where U/t ≈ 6 and U/t ≈ 9 for 6ER and 7ER ,
respectively, which allows an approximation (the Hubbard-I
approximation) that becomes exact in the atomic limit, t/U =
0. Table I leaves no fitting parameters in using approximate
solutions of Eq. (1) to compare with the experiments of
Ref. [43].

We will show that the entropies reported in Table I imply
temperatures that are well above the Néel temperature, ∼t2/U

[46,48–52]. The experimentally relevant temperature regimes
are above the hopping but below the bandwidth. Our central
set of approximations in studying Eq. (1) can be summarized
by

t 	 U, t � kBT < 12t, (5)

where the first inequality assumes that we focus on the
high-lattice-depth data of Ref. [43] and the second inequality
implies that high-temperature limits are valid approximations.
Section V shows that the initial state for the parameters
defined by Table I can be thought of as a dilute (〈n〉 < 1)
high-temperature paramagnet. We will therefore focus our
study on strongly interacting paramagnetic regimes.

To make contact with experimental results presented in
Ref. [43] we study the dynamics of the center of mass. The
time-dependent center-of-mass velocity in particular,

VC.M.(τ ) =
∑

j

Rj

·〈〈nj 〉〉D, (6)

was inferred from time-of-flight images [43]. Here 〈〈· · · 〉〉D

indicates disorder averaging of expectation values, and τ

denotes time. In the following we find that disorder averaging
over 25–50 realizations is sufficient to reach convergence in
our numerical simulations. We will use Eq. (6) to compute
the center-of-mass velocity along the direction of the applied
pulse after a time τ = τP :

VC.M. = x̂ · VC.M.(τP ). (7)

This quantity is akin to measures of mobility in solids. For
example, in the Drude model of electrical conductivity, VC.M.

is proportional to the electron mobility when measured in
equilibrium after a pulse. VC.M. will therefore offer a useful
probe to study the impact of disorder on transport of strongly
interacting atoms in optical lattices.
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III. DYNAMICS FROM EQUATIONS OF MOTION

To study the center-of-mass dynamics we derive equations
of motion for correlation functions related to observables. The
trapping potential in Eq. (1) breaks translational invariance.
We will derive the equations of motion in the site (Wannier)
basis as opposed to the more conventional k-space (Bloch)
basis to allow studies of local dynamics in trapped lattices.
We approximate the equations of motion by relying on the
strong-interaction, high-temperature limit, Eqs. (5). The next
section shows that our approximation reduces to Hubbard’s
decoupling of the equations of motion, the Hubbard-I approx-
imation [47], that introduced the concept of Hubbard-band
quasiparticles. The equations of motion derived here therefore
offer a tool to study the local dynamics of Hubbard-band
quasiparticles in the absence of translational invariance.

The exact equations of motion for the charge and spin
degrees of freedom are given by

i�
d〈ρσ

l′l〉
dτ

= 〈[
ρσ

l′l ,HAH
]〉

(8)

and

i�
d〈Sl′,l〉

dτ
= 〈[Sl′,l ,HAH]〉, (9)

respectively. Here the correlator

ρσ
l′l ≡ c

†
l′,σ cl,σ (10)

is the single-particle density matrix which is off-diagonal
in the site indices, l and l′, but measures density along the
diagonal since ρσ

l,l = nl,σ . The spin operator is Sl′,l ≡ ψ
†
l′σψl ,

where the fermion spinors are ψ
†
l = (c†l,↑,c

†
l,↓) and σ are the

Pauli matrices. The equations of motion can be generalized to
include time dependence in the Hamiltonian, but we exclude
that case here.

The high-temperature limit studied here suppresses spin
order (which emerges for kBT � t2/U ). This implies that
for an equal number of atoms in each spin state we have a
paramagnet:

〈ρ↑
l′l〉 = 〈ρ↓

l′l〉. (11)

To focus on the charge degrees of freedom deep in the
paramagnetic regime we also assume an absence of in-plane
spin order as well. This leads to〈

Sx
l′l

〉 = 〈
S

y

l′l
〉 = 〈

Sz
l′l

〉 = 0, (12)

thus allowing us to focus on approximations of only Eq. (8).
To derive the equations of motion we construct and solve

the hierarchy of coupled differential equations with Hubbard’s
decoupling. The commutator in Eq. (8) can be evaluated:

i�
d
〈
ρσ

l′l
〉

dτ
= (μl′ − μl)

〈
ρσ

l′l
〉 + U

〈
�σ

l′l
〉

+
∑

j

[
Tl,j

〈
ρσ

l′j
〉 − Tl′,j

〈
ρσ

jl

〉]
, (13)

where the U term contains a higher-order correlator:

�σ
l′l ≡ ρσ

l′l(nl,−σ − nl′,−σ ). (14)

The central aim of our protocol is to numerically solve Eq. (13)
and use the results to evaluate Eq. (6). This will require an
estimate for �σ

l′l .
To estimate �σ

l′l we derive the equations of motion
for this higher-order correlation function as well. The
operator evolves as d�σ

l′l/dτ = dρσ
l′l/dτ (nl,−σ − nl′,−σ ) +

ρσ
l′l(dnl,−σ /dτ − dnl′,−σ /dτ ). We use this relation to ap-

proximate the evolution of 〈�σ
l′l〉 by inserting Eq. (13) and

decoupling all products of �σ
l′l and ρσ

l′l :

i�
d
〈
�σ

l′l
〉

dτ
= (μl′ − μl)

〈
�σ

l′l
〉 + U

〈
�σ

l′l
〉〈nl,−σ − nl′,−σ 〉

+ 〈nl,−σ − nl′,−σ 〉
∑

j

[
Tl,j

〈
ρσ

l′j
〉 − Tl′,j

〈
ρσ

jl

〉]

+ 〈
ρσ

l′l
〉 ∑

j

[
Tl,j

〈
ρ−σ

lj − ρ−σ
jl

〉 − Tl′j
〈
ρ−σ

l′j − ρ−σ
jl′

〉]
.

(15)

The key decoupling used in deriving this equation is given by
a Hartree-Fock-like decoupling in the equations of motion of
the form

ρ−σ
lj ρσ

l′l → 〈
ρ−σ

lj

〉
ρσ

l′l ,
(16)

nl,−σ �σ
l′l → 〈nl,−σ 〉�σ

l′l .

The next section shows that this decoupling reduces to
Hubbard’s decoupling [47], which has been conventionally
implemented in a Green’s function approach [47,53].

We self-consistently solve Eqs. (13) and (15) for the
time evolution of the correlation functions. We then use the
correlation functions to evaluate the center-of-mass position
and velocity. One can, in principle, solve for the dynamics
at small τ with a linear expansion. But we perform a full
self-consistent solution to account for short time scales induced
by large disorder strengths and the trap. Large disorder
strengths in particular lead to large intersite energy differences
and therefore very short intersite tunneling times between
certain sites. Our full self-consistent treatment therefore avoids
possible problems with a small τ expansion.

The time evolution of other local correlation functions can
also be found. For example, the double occupancy 〈nl,↑nl,↓〉
can be obtained from

i�
d
〈
γ σ

l′l
〉

dτ
= (μl′ − μl)

〈
γ σ

l′l
〉 + 〈

ρσ
l′l

〉 ∑
j

Tl,j

[〈
ρ−σ

lj

〉 − 〈
ρ−σ

jl

〉]

+〈nl,−σ 〉
∑

j

[
Tl,j

〈
ρσ

l′j
〉 − Tl′,j

〈
ρσ

jl

〉]
+U

〈
γ σ

l′l
〉
(1 − 〈nl′,−σ 〉)(1 − δl,l′ ), (17)

where the off-diagonal operator

γ σ
l′l ≡ ρσ

l′lnl,−σ (18)

captures the conditional hopping of doublons.

IV. CONNECTION TO HUBBARD’S APPROXIMATION

In this section we argue that the formalism we have
constructed can be understood in a quasiparticle picture. In
strongly interacting systems we often rely on mappings to
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weakly interacting quasiparticles to gain a quantitative un-
derstanding of otherwise intractable problems. Quasiparticles
therefore offer useful tools to probe many-body localization
and related phenomena. We can then ask the following
question that parallels inquiries into many-body localization
of elementary particles: Does spatial disorder localize weakly
interacting quasiparticles at nonzero temperature? Here the
interactions between the original particles are strong, thus
allowing significant dephasing from interactions. But quasi-
particle problems are tractable and should therefore allow
detailed quantitative studies.

To connect the equations of motion to Hubbard-band
quasiparticles we will show that our formalism reduces to
Hubbard’s approximation in the translationally invariant limit.
Our formulation is a local theory designed to incorporate
spatial inhomogeneity (i.e., trapping and disorder in the
quasiparticle degrees of freedom). By assuming translational
invariance we can show that the above formalism simplifies to
the equations of motion found from Hubbard’s approximation.
We first briefly review Hubbard’s approximation.

Hubbard’s approximation applies the Hartree-Fock decou-
pling to the equations of motion for the Green’s functions.
The approximation is, unlike the ordinary Hartree-Fock ap-
proximation, exact in both the band limit, i.e., no interactions,
and the atomic limit, i.e., infinitely strong interactions. The
approximation assumes two Hubbard bands of quasiparticles
where the band parameters are renormalized by the density
and the interaction. Exact solutions of Hubbard’s equations
of motion are possible in the translationally invariant limit
[μj → −μ0 in Eq. (2)]. The quasiparticle Green’s function is

Gk,σ (E) = �

E − [ε(k) − μ0 + �σ (E)]
, (19)

where the nearest-neighbor tunneling leads to the single-
particle band dispersion:

ε(k) ≡ −2t
∑

ν∈x,y,z

cos(kνa). (20)

The self-energy is [47]

�σ (E) = U 〈n−σ 〉(E + μ0)

E + μ0 − U (1 − 〈n−σ 〉) + iξ
. (21)

Here the density is to be determined self-consistently. �σ (E)
therefore depends on temperature because the density is
temperature dependent (see Sec. V). We have also inserted
a small number, ξ , which parameterizes the quasiparticle
lifetime. Working with a purely real self-energy assumes
Hubbard-band quasiparticles with an infinite lifetime. By
taking the limit ξ → 0 it is straightforward to show that
�σ (E) satisfies the Kramers-Kronig relations. We follow
the Hubbard-I approximation [47] by setting ξ = 0 when
we consider the translationally invariant limit. Disorder,
included later in a self-consistent numerical protocol, can be
parameterized in the Green’s function by taking ξ > 0.

It is important to note that this decoupling goes beyond
conventional Hartree-Fock decouplings of the Hamiltonian
[54] (which only capture the dynamics of very weakly inter-
acting limits) to instead apply a decoupling in the equations of
motion of higher-order correlation functions. The Hubbard-I
approximation reproduces the exact correlation functions of

the Hubbard model in both the weak (t/U → ∞) and strong
(t/U → 0) interaction limits of the paramagnetic phase. But
it breaks down at intermediate interaction strengths, near the
Mott transition (half filling), and when magnetic ordering sets
in. A review of the limitations of the Hubbard-I approximation
can be found in Ref. [55].

Long-lived Hubbard-band quasiparticles are a valid approx-
imation for both the initial state and the short-time dynamics
studied here. Section V shows that the initial thermal state
produced by the Hubbard-I approximation (ξ = 0) reproduces
correlation functions obtained from the high-temperature
series which therefore shows that the Hubbard-I approximation
is valid at these temperatures. It is also reasonable to assume
that Hubbard-band quasiparticles are long-lived in the time-
propagated state on time scales of the experiment (2 ms). A
theory-experiment comparison [56] shows that the absence of
dissipation prevents the decay of Hubbard-band quasiparticles,
e.g., doublons, because energy-conserving decay processes are
higher order in t/U . References [56,57] find doublon lifetimes
on the order of 4h/t , but the transport experiments discussed
here [43] are performed on time scales that are more than two
orders of magnitude shorter. These comparisons indicate that
infinite quasiparticle lifetimes are a reasonable approximation.

We also note that relaxation times in the propagated state
are assumed to be dominated by disorder in our calculation.
We numerically solve for time-evolved correlation functions in
the Hubbard-I approximation in the disordered landscape. Our
procedure therefore implicitly imposes a disorder-dominated
relaxation time within the Hubbard-I approximation. We rely
on the close agreement between theory and experiment to
validate this assumption.

Using the self-energy, we can define a spectral density that
is useful for calculations:

Sk,σ (E) = �δ[E − ε(k) + μ0 − �σ (E)]. (22)

From the spectral density we find two (Hubbard) bands with
spectral weights that depend on the density and interaction.
The energies of each band are

Eb,σ (k) = U + ε(k)

2
+ (−1)b

√
[U − ε(k)]2

4
+ U 〈n−σ 〉ε(k),

where b = 1 (b = 2) denotes the lower (upper) Hubbard
band. In the limit of weak interaction the bands become
degenerate, and we recover the Hartree-Fock limit from
Hubbard’s approximation.

The Hubbard bands split in the strong interaction limit. To
see this we expand Eb,σ in powers of 1/U . We find

E1,σ = [1 − 〈n−σ 〉]ε(k) + O(t2/U ),
(23)

E2,σ = U + 〈n−σ 〉ε(k) + O(t2/U ).

This shows that, to lowest order, lower Hubbard-band
quasiparticles can be thought of as noninteracting particles but
with a renormalized hopping, t[1 − 〈n−σ 〉]. (Technically, the
renormalized hopping allows the Hubbard-band quasiparticles
to interact through the mean field.) The upper Hubbard band
is similar but with an energy offset U and a renormalized
hopping t〈n−σ 〉. An important aspect of Eq. (23) is that the
corrections are ∼t2/U and are therefore much smaller than the
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FIG. 2. (Color online) Plot of the energy vs wave vector for
a translationally invariant lattice. The solid (dashed) line plots
the energy of the lower (upper) Hubbard band Eb,σ (k) in one
dimension. The parameters U/t = 9 and 〈n〉 = 0.7 are chosen as
being characteristic of the center of the system for the 7ER data
in Table I (with ω = 0 and VP = 0). The dotted line plots the
noninteracting case, Eq. (20), but in one dimension, for comparison.
Here we see that the lower Hubbard band is very similar to the
noninteracting band.

temperature in most ongoing optical lattice experiments. Fig-
ure 2 plots Eb,σ (k) in comparison to ε(k) along one dimension
to show that the energetics of Hubbard-band quasiparticles in
the lowest band are close to those of free particles.

Hubbard-band quasiparticles are, for U/t � 1, fundamen-
tally different from quasiparticles near Fermi surfaces nor-
mally considered in the Fermi-liquid context. Quasiparticles
derived from Fermi surfaces are adiabatically connected to the
noninteracting limit. However, Hubbard-band quasiparticles
are nonperturbative when viewed from the noninteracting limit
because two Hubbard bands with a gap ∼U are assumed. The
Hubbard-I approximation becomes exact in the atomic limit.
Hubbard quasiparticles therefore have two separate energy
scales, a large energy gap ∼U and the energy scale for kinetics
t . The limit defined by Eqs. (5) therefore allows a relatively
large temperature while maintaining long-lived Hubbard-
band quasiparticles that can exhibit quantum diffusion in
the absence of dissipation. Conventional quasiparticles, by
contrast, decay quickly when the temperature approaches t .

We now show that the formalism presented in Eqs. (13)–
(17) reduces to Hubbard’s approximation in the translationally
invariant limit. To show this we simplify the equations of
motion for ρσ

l′l and γ σ
l′l . We can then solve the equations of

motion by Fourier transforming into energy and wave-vector
variables. We find that the resulting energies are given by
Eb,σ (k).

Equations (13) and (17) define a coupled set of equations
that can be solved analytically in the translationally invariant
limit. We note that these equations are coupled since �σ

l′l =
γ σ

l′l − γ
σ†
ll′ . We impose translational invariance by setting μl =

μl′ . The density then becomes uniform: 〈nσ 〉 = 〈nl,σ 〉. We
Fourier transform all terms in Eqs. (13) and (17). For example,
we set

ρσ
k,k′ = N−1

s

∑
l,l′

e−i(k·Rl−k′ ·Rl′ )ρσ
l′l , (24)

where Ns is the number of sites.

We can also transform the coupled set of first-order
differential equations in time to a set of coupled algebraic
equations by Fourier transforming to energy space. We then
find

− Eρσ
k,k′ = U

(
γ σ

k,k′ − γ
σ†
k′,k

) + [ε(−k) − ε(k′)]ρσ
k,k′ ,

(25)−Eγ σ
k,k′ = Uγ σ

k,k′ + 〈n−σ 〉[ε(−k) − ε(k′)]ρσ
k,k′ ,

where we have dropped higher-order terms, i.e., terms of
the form U 〈n−σ 〉γ σ

k,k′ . We have also made use of Tl,l′ =
N−1

s

∑
k ε(k)eik·(Rl−Rl′ ).

Equations (25) can be solved analytically for the eigen-
values E by setting k′ = 0 and solving for ρσ

k,0 and γ σ
k,0. We

can, without loss of generality, set ε(0) = 0 in Eq. (25) to make
contact with the Hubbard approximation. We find three distinct
modes. A trivial high-energy mode with E = U corresponds
to a nondispersive doublon mode obtained from solutions with
ρσ

k,0 = 0. But the remaining two modes we find have precisely
the same energies as those found in Hubbard’s approximation:
Eb,σ (k). We have therefore shown that the formalism presented
in Eqs. (13)–(17) reduces to Hubbard’s approximation in the
translationally invariant limit.

The reduction of the dynamics problem posed by Eq. (1) in
a high-temperature paramagnetic limit into that of dynamics of
Hubbard-band quasiparticles has two important implications.
The first is practical: We will be able to compute correlation
functions for the initial state using the spectral density. This is
discussed in Sec. V.

The second implication is phenomenological. Since the
strongly interacting limit can be thought of as nearly free
Hubbard-band quasiparticles, the addition of disorder should
show features qualitatively similar to a weakly interacting
system. We have verified that the quasiparticle picture remains
valid even for large disorder strengths, �E/t ∼ 40, by check-
ing that the Hubbard-band spectral weight is nonzero. We can
therefore construct an effective model of Hubbard-band quasi-
particles in a disordered lattice (but in the absence of a trap):

Heff =
∑

j,j ′,σ,b

T̃
b,σ
j,j ′ c̃

†
j,b,σ c̃j ′,b,σ +

∑
j,b,σ

μ̃j,b,σ ñj,b,σ , (26)

where the tilde indicates quasiparticle operators. μ̃ is the
chemical potential renormalized by the self-energy, and T̃j,j ′

indicates quasiparticle hopping with

T̃
b,σ
j,j ′ = N−1

s

∑
k

Eb,σ (k)eik·(Rl−Rl′ ). (27)

Here we have assumed that the quasiparticle energies Eb,σ (k)
depend on the Fourier transform of the randomly distributed
density.

We can get an intuition for the renormalized hopping if we
assume that the density, on average, remains uniform in the
presence of disorder. Equations (23) show that in the strongly
interacting limit this renormalized hopping reduces to T̃

1,σ
j,j ′ ≈

Tj,j ′ 〈1 − n−σ 〉 + O(t2/U ) and T̃
2,σ
j,j ′ ≈ Tj,j ′ 〈n−σ 〉 + O(t2/U )

for the lower and upper Hubbard bands, respectively. The
renormalized hopping is shown schematically in Fig. 3.

Heff is an effective theory of Hubbard-band quasiparticles
that must, in principle, be solved self-consistently. But it
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FIG. 3. (Color online) Schematic of one two-dimensional plane
of the site-disordered cubic lattice. The blue (dark gray) and red (light
gray) spheres depict spin up and down Hubbard-band quasiparticles
in the lowest Hubbard band, respectively. The highlighted nearest-
neighbor bonds between particles of opposite spin symbolize the
renormalized quasiparticle hopping in Eq. (26). The hopping is
suppressed on average. For example, a lower-band quasiparticle with
spin σ has a renormalized nearest-neighbor hopping t〈1 − n−σ 〉 for
large U .

should nonetheless reveal a mobility edge of Hubbard-band
quasiparticles because it is essentially a noninteracting An-
derson model of Hubbard-band quasiparticles. For example,
it is well known that the Anderson model in the cubic
lattice with uniform disorder exhibits a mobility edge at
�U/B = Xc, where Xc ≈ 1.6 [58]. For the lower Hubbard
band in the absence of a trap and in a paramagnetic state the
quasiparticle bandwidth becomes B = 12t(1 − 〈n〉/2). Heff

therefore qualitatively predicts a mobility edge for Hubbard-
band quasiparticles. We will return to this point in discussing
the suppression of transport in Sec. VIII.

Heff also shows that ignoring disorder in t and U is justified
in the large-U limit. Reference [34] showed that speckle
disorder leads to a narrow Lorentzian distribution of t and U .
Even though the distribution is narrow, these parameters could,
in principle, make significant contributions to dynamics due to
the tails of the distribution. But we note that the large-U limit
is dominated by dynamics of Hubbard-band quasiparticles
(not the original particles). Equations (23) and (26) explicitly
show that the effective quasiparticle hopping T̃ and chemical
potential μ̃ are implicitly disordered even if disorder in t and U

are excluded. This shows that excluding disorder in t and U still
leaves an effective model with all terms disordered. Including
disorder in t and U should therefore not qualitatively alter the
dynamics of Hubbard-band quasiparticles in the large U limit.

V. INITIAL STATE

To time evolve correlation functions we must accurately
establish the initial state. The system evolves in the absence

of a heat or particle number bath. The short-time dependence
therefore crucially depends on the initial state. We note that the
Hubbard approximation is very accurate in the limit defined by
Eqs. (5). To see this we note that the static properties of optical
lattice experiments with two-component fermions are also
accurately captured by a high-temperature series expansion
of Eq. (1) [59–61].

We have checked that the high-temperature series ex-
pansion and the Hubbard approximation agree in the limits
discussed here [Eqs. (5)]. We have computed correlation
functions important for preparing the initial state (density,
double occupancy, energy, entropy, and hopping energy)
using both the high-temperature series and the Hubbard-I
approximation. Both approximations agree in the temperature
regime of interest. Figure 4 plots an example comparison
for the density. Here we see that all orders of the high-
temperature series agree with the Hubbard-I approximation
for T � t . But the agreement breaks down for low T where
the high-temperatures series fails to provide convergent results
and we expect spin correlations to play an important role. In
preparing the initial state we have checked that we are working

FIG. 4. (Color online) The density of the uniform Hubbard
model (�U = 0, VP = 0, and ω = 0) as a function of temperature
for U/t = 9. Calculations are performed using the high-temperature
series and the Hubbard-I approximation for comparison. The high-
temperature series is a perturbative expansion of the partition function
in powers of t/kBT . Each order corresponds to the largest power in
the expansion. The top (bottom) panel shows chemical potentials
representative of the edge (center) of the trapped system for the
7ER data in Table I. In both panels we see that agreement for each
order of the series breaks down near kBT ∼ t , where the Hubbard-I
approximation begins to deviate in comparison.
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at entropies where the high-temperature series converges and
agrees with the Hubbard-I approximation.

In this high-T regime the initial state is also accurately
captured by the local-density approximation [53,60]. We
take each site as a uniform system and compute correlation
functions. In the local-density approximation we assume that
each site of the trapped system can be approximated with
parameters for a uniform system by setting μl to be the
chemical potential for the lth uniform system, and we average
over all uniform systems. Correlation functions from each
site are then combined, and the average chemical potential is
determined self-consistently to fix the particle number. In the
case of multisite correlation functions a complication arises:
the chemical potential varies from site to site. Here we find
that nearest-neighbor correlation functions are sufficient to
describe the initial state since long-range correlation functions
decay quickly at these temperatures. As a result, we are able
to approximate two-site correlation functions by setting the
chemical potential to be the average between the neighbors.

The local-density approximation was validated in Ref. [60]
using two different high-temperature series expansions. In
Ref. [60] a series expansion that included the trapping po-
tential was constructed. All terms were included for arbitrary
chemical potentials up to order (t/kBT )2. The expansion with
the trapping included was compared with a high-temperature
series expansion derived for the uniform limit but with trapping
included in the local-density approximation. All correlation
functions were found to agree for temperatures high enough
to maintain the paramagnet phase. Since the present work
examines the same temperature regimes, the local-density
approximation is appropriate.

Now that we have validated the Hubbard-I approximation
it can be used to approximate the initial state using correlation
functions computed directly from the spectral function within
the local-density approximation. The spectral theorem implies
that we can compute the initial (τ = 0) correlation function
for ρσ

l′l using

〈
ρσ

l′l
〉
(τ = 0) =

∑
k

e−i(Rl′−Rl )·k

2�Ns

∫ ∞

−∞
dEf (E)

×Sk,σ (E − μ̄), (28)

where μ̄ ≡ (μl − μl′)/2 and f (E) is the Fermi-Dirac distribu-
tion function. Here we assume 〈ρσ

l′l〉 is equal to its Hermitian
conjugate. A similar relation can be used to obtain �σ

l′l as well:

〈
ρσ

l′lnl,−σ

〉
(τ = 0) =

∑
k

e−i(Rl′−Rl )·k

2�Ns

∫ ∞

−∞
dEf (E)

×
[
E − ε(k)

U

]
Sk,σ (E − μ̄). (29)

Using these relations we are able to set the initial-state
correlation functions with a protocol discussed in Sec. VII.
The protocol allows the use of the Hubbard approximation to
compute initial-state correlation functions at fixed entropy for
a given disorder configuration. The following discusses the
temperature dependence in the initial state in the presence of
disorder.

VI. ADIABATIC HEATING DUE TO DISORDER IN THE
INITIAL STATE

The temperature in ultracold-atom experiments is deter-
mined by the entropy. The relationship between temperature
and entropy relies, in general, on the intricate interplay
between kinetics and interactions. The addition of disorder
adds another complication that alters the entropy-temperature
relation. Below we show that the addition of disorder leads
to adiabatic heating in the initial state. Specifically, we
find that, at fixed entropy, increasing disorder increases the
temperature. This observation has important consequences for
the interpretation of the data in Ref. [43] and other optical
lattice experiments because increasing disorder strengths
also increases temperature. In subsequent sections we take
adiabatic heating from disorder into account when preparing
the initial state in a trap.

We use the high-temperature series expansion to show that
the paramagnet experiences adiabatic heating due to disorder.
The solid line in Fig. 5 shows an example of the entropy per
particle versus temperature for an initial state without a trap.
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FIG. 5. (Color online) The disorder-averaged entropy per parti-
cle computed as a function of temperature for Eq. (1) in the absence
of a trapping potential or a pulse (ω = 0 and VP = 0). The horizontal
dotted line indicates a fixed entropy per particle, S/N = 1.2kB. The
solid (dashed) lines were computed using �U = 0 (�U = 20t) and
μ0/t = 3.8. The vertical lines labeled with TL and TH point to low
and high temperatures, respectively. The entropy-temperature curve
with a high disorder leads to a higher temperature.
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FIG. 6. (Color online) Disorder-averaged entropy per particle
plotted as function of both temperature and disorder strength for
Eq. (1) in the absence of a trapping potential or an applied
force (ω = 0 and VP = 0). The eighth-order high-temperature series
expansion was used within the local-density approximation. U/t = 9
and μ0/t = 3.8 were chosen as being characteristic of the center of the
system for the 7ER data in Table I. The black contour lines indicate
adiabats that reveal significant adiabatic heating due to increasing
exponential disorder.

We set μ0/t = 3.8 because it characterizes the nondisordered
limit of experiments reported in Ref [43]. We find 〈n〉 < 1.
Here we see that a fixed entropy (horizontal dotted line) sets
a low temperature, TL, in the absence of disorder. Because
optical lattice experiments take place in the absence of a heat
bath, entropy is preserved when a disordered optical lattice is
applied to a trapped gas. We then include a disorder strength
�U = 20t in a calculation of the entropy per particle. We use
the local-density approximation and integrate over disorder
configurations [see Eqs. (A3)]. The dashed line shows the
disorder-averaged results. The entropy is significantly lower.
The system therefore acquires a higher temperature, TH , at the
same entropy.

Adiabatic heating due to disorder arises because increasing
the disorder strength in a single band reduces the number of
available states. As a result the entropy (which is the logarithm
of the number of available states) decreases with increasing
disorder. The net effect is then an increase in temperature if
the entropy is required to be fixed while increasing disorder.

Adiabatic heating becomes more pronounced with expo-
nentially distributed disorder. Figure 6 plots the entropy per
particle as a function of both exponential disorder strength
and temperature. The black lines depict adiabats. The cor-
responding temperature can therefore increase by as much
as a factor of 2 at fixed entropy over the range of disorder
strengths considered here. The impact of adiabatic heating due

to disorder on center-of-mass dynamics in trapped systems is
discussed in more detail in the following sections.

VII. CENTER-OF-MASS DYNAMICS: COMPARISON
WITH EXPERIMENT

This section culminates in a direct comparison between
results from the equations of motion and experiments. We find
that small-system-size simulations can be scaled to directly
compare with experiments with no fitting parameters. The
close comparison between experiment and theory shows that
we can interpret the experiments of Ref. [43] as motion
of Hubbard-band quasiparticles. The simulations and exper-
iments are consistent with finite-size precursors of Anderson
localization of Hubbard-band quasiparticles.

We now use Eqs. (28) and (29) to compare with experiments
in Ref. [43] using experimental input parameters from Table I.
To use our formalism to compute the center-of-mass dynamics
we prepare an initial state at fixed entropy in a disordered
landscape. The system is numerically time evolved. The
center-of-mass velocity is computed at the pulse time and then
disorder averaged. These simulations are performed on system
sizes up to L = 11, with L = Lx = Ly = Lz. Finite-size
extrapolation is performed by decreasing the trap frequency
and repeating the simulation for large system sizes while
keeping μ0 fixed to values found for experimentally relevant
system parameters.

To keep the pulse time short on the time scales of the
trapping frequency (as is done experimentally [43]) we have to
rescale the pulse time used in our simulations. The pulse time at
system size L, τL, is adjusted for each trap frequency at system
size L, ωL, to maintain τL = τP

√
ω/ωL. This allows a scaling

to the trapping frequency and the pulse time found in Table I,
ω and τP , respectively. The impulse formula (Appendix A)
shows that this establishes an ω

−1/2
L scaling of VC.M.. This

scaling is expected since the center-of-mass velocity from the
impulse formula scales as V0 ∼ τL ∼ ω

−1/2
L (Appendix A). We

have checked below that our finite-size extrapolations do scale
as ω

−1/2
L , as expected.

We use the following protocol to prepare initial states: (1)
We choose an entropy per particle determined experimentally,
high trap frequency (chosen to trap the system within the
finite-size limitations of our simulations), and a small number
of particles. (2) We choose a random distribution of chemical
potentials according to Eq. (3). (3) We then self-consistently
adjust μ0 and T so that the particle number and entropy match
the values set in step 1. This is done using the high-temperature
series expansion in the local-density approximation. The
series expansion is controlled at these temperatures because
we can check higher orders [60,61]. We find that eighth
order in the expansion is sufficient for parameters considered
here. The Hubbard approximation gives identical results for
thermodynamic functions. (4) We then use Eqs. (28) and (29)
to compute the initial-state correlation functions. (5) We then
return to step 1 to repeat the process with a smaller trap
frequency.

We find that adiabatic heating in the initial state increases
the temperature by no more than a factor of 2. For all
system sizes studied we find that the temperature remains
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FIG. 7. (Color online) (top) Disorder-averaged center-of-mass
velocity as a function of the disorder strength for two different
entropies. Here the initial-state correlation functions are estimated
in the local-density approximation [using Eqs. (28) and (29) in
combination with a high-temperature series expansion] and time
evolved in the trap [using Eqs. (13) and (15)]. Model parameters
are taken from the 6ER data in Table I. The S/N = 1.5kB results
are plotted only for large disorder strengths because here adiabatic
heating allows access to temperatures high enough to be consistent
with the approximations made in preparing the initial state. (bottom)
The circles plot the same information as the top panel, and the
diamonds plot experimental data from Ref. [43] for comparison.
The lines are a guide to the eye. The error bars on the numerical
simulations are the standard error found from disorder averaging,
while the experimental error bars are the standard error in the mean
for seven to nine measurements averaged for each point.

nearly constant as a function of system size. At the largest
disorder strengths, �E ∼ 1.5ER , we still find kBT < 4t . We
conclude that adiabatic heating increases the temperature, but
the temperature is still well below the bandwidth, 12t .

Given the initial state, we numerically time evolve corre-
lation functions according to Eqs. (13) and (15), extrapolate
to the thermodynamic limit, and disorder average. Figures 7
and 8 plot VC.M. versus disorder strength for the 6ER and
the 7ER parameters, respectively. The data result from time
evolving the initial correlators, Eqs. (28) and (29). The top
panels show results for two different entropies. The larger
entropy leads to temperatures with T � t . The approximations
made here (paramagnetic order, no spin correlations, and the
local-density approximation) are therefore valid at all disorder
strengths for the higher entropy. The top panels also compare
low-entropy data that are consistent with the entropies used
in experiments (see Table I). Here adiabatic heating increases

FIG. 8. (Color online) The same as Fig. 7, but for the 7ER data
in Table I. Here the comparison between theory and experiment is
better because U/t is larger.

the temperature to T � t only for �E � 0.2ER . Below these
disorder strengths the approximations made here break down
because the temperatures are low enough to introduce poles
in thermodynamic functions using either the high-temperature
series expansion (even out to tenth order) or the Hubbard
approximation.

The top panels of Figs. 7 and 8 clearly show a suppression
of the center-of-mass velocity with disorder. The mapping
to Hubbard-band quasiparticles in the lowest Hubbard band
allows delineation of the sources of the suppression: (1)
As exponentially distributed disorder is increased, the bias
in the distribution leads to more sites with higher densi-
ties. The increase in average density slows the propagation
of the Hubbard-band quasiparticles because the renormalized
tunneling is given by t〈1 − n/2〉. This effect was implicit in
the suppression shown in Appendix A (see Fig. 9). We find
that this is a weak effect because the system is dilute, i.e.,
〈nj 〉/2 	 1 for many sites (the edges make up about 1/3
of the system). (2) Adiabatic heating due to disorder also
suppresses VC.M.. The increase in the resulting temperature
lowers the nearest-neighbor correlations, e.g., 〈ρσ

l,l+1〉, inherent
in the initial state. The initial state is therefore slower to
respond because VC.M. scales linearly with terms like t〈ρσ

l,l+1〉.
This effect was shown to dominate only at lower disorder
in Appendix B (see Fig. 10). Furthermore, we find that the
temperature is at most B/3 at the largest disorder strength,
�E ∼ 1.5ER . (3) These effects are modest and are not
sufficient to completely localize the center of mass. The final
effect derives from disorder-induced scattering. The presence
of disorder lowers the localization length so that propagation is
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impossible for �E > 0.5ER . This final effect is consistent with
a finite-size precursor of Anderson localization of Hubbard-
band quasiparticles because the critical disorder strength,
�E ≈ 0.5ER , is near the approximate location expected for
the Anderson metal-insulator transition, near B ≈ 0.47ER .

The bottom panels in Figs. 7 and 8 show a comparison
between the results obtained from our formalism and the
experimental data of Ref. [43]. The comparison is made where
possible (in the high-temperature regime). The agreement in
Fig. 8 is better because U is larger. The Hubbard approximation
becomes exact in the atomic limit. The comparison suggests
that the data from Ref. [43] can be thought of as revealing a
mobility edge of Hubbard-band quasiparticles.

VIII. DISCUSSION

We have found that two-component fermions in an optical
lattice fail to respond to a force for sufficiently strong disorder,
implying a phenomenon reminiscent of Anderson localization
in bulk systems. At strong disorder strengths the atoms fail
to move under weak perturbations. Here the suppression of
quantum diffusion indicates that the assumption of a thermal
initial state is incorrect, i.e., that the system is inherently non-
ergodic at large disorder strengths. Our comparison between
theory and experiment is therefore consistent with Anderson
localization of Hubbard-band quasiparticles at large disorder
strengths but a mobile state of Hubbard-band quasiparticles at
low disorder strengths. We interpret these results as evidence
of a mobility edge of Hubbard-band quasiparticles.

We can compare the center-of-mass velocity studied here
with conductivity studied in solids. Both measures can be used
as diagnostics of localization. The dc conductivity in solids is
typically defined in infinite system sizes while in equilibrium.
The dc conductivity therefore gives a long-time, large-length-
scale probe of the single-particle density matrix. The center-
of-mass velocity is proportional to mobility and therefore also
offers an equivalent probe of the single-particle density matrix
provided the system is infinitely large and it is allowed to
evolve indefinitely. But the center-of-mass velocity studied
here was considered on time scales inversely proportional to
the trap frequency and in finite system sizes out of equilibrium.
We therefore conclude that the results presented in Figs. 7 and 8
offer only a short-time, finite-size estimate for the conductivity.

Our work opens interesting directions for future studies
of localization physics with Hubbard-band quasiparticles.
The work presented here is consistent with quantum Monte
Carlo results [16] and dynamical mean-field theory studies of
the Anderson-Hubbard model [14,17,18]. But these methods
could be used to tackle lower temperature limits and include
spin fluctuations in a comparison with low-temperature exper-
iments.

Furthermore, future work will be needed to rigorously
establish a connection between the localized state found here
and many-body localization. The suppression of transport
discussed here is a necessary condition for many-body local-
ization. But future work should look at sufficient conditions
for many-body localization using, e.g., entanglement measures
in the Anderson-Hubbard model to make a direct comparison
with experiments.

Note added. Recently, we became aware of work in
Ref. [62] that compared the entanglement entropy with
population imbalance in incommensurate optical lattices.
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APPENDIX A: ORDER OF MAGNITUDE ESTIMATE

This appendix uses a semiclassical impulse formula for
Hubbard-band quasiparticles to estimate the center-of-mass
velocity dependence on disorder strength for very weak
disorder. This estimate shows that renormalization of the
quasiparticle hopping due to disorder can suppress the center-
of-mass velocity. It also yields the correct order of magnitude
for the center-of-mass velocity at low disorder. A simple order
of magnitude estimate for the center-of-mass velocity will
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FIG. 9. The top and middle panels plot the density and the
quasiparticle effective mass, Eq. (A1), respectively, as a function
of disorder strength for a chemical potential at the central site. The
bottom panel plots the center-of-mass velocity vs disorder strength
from a disorder-averaged impulse formula, Eq. (A2), that estimates
the velocity of Hubbard-band quasiparticles in the trap size consistent
with experiment. The local-density approximation was used to sum
over all sites. All quantities are computed using the high-temperature
series expansion at eighth order with the parameters chosen from the
7ER data in Table I but with S/N = 1.9kB . Equations (A3) were used
as rough estimates for disorder averaging.
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be useful in establishing a scaling relation to extrapolate our
finite-sized simulations to experimental system sizes.

To estimate the center-of-mass velocity we use a semi-
classical estimate of velocities in combination with the local-
density and effective-mass approximations. The quasiparticle
effective mass in the lowest Hubbard band is obtained from
the single-particle effective mass using the replacement t →
t〈1 − nj/2〉:

m∗
j = �

2

2t(1 − 〈〈nj 〉〉D/2)a2
, (A1)

where the limit 〈nj 〉 → 0 returns the single-particle effective
mass. Note that disorder averaging is implicit in this definition.

At short times, the semiclassical estimate of the center-of-
mass velocity reduces to the well-known impulse formula. We
apply the impulse formula to the dynamics of Hubbard-band
quasiparticles in the lowest band. (Note that the impulse
formula also follows from the generalized Kohn’s theorem
in an effective-mass approximation.) Averaging the velocity
of each site

·〈Rx
j 〉 leads to a total center-of-mass velocity

for one disorder configuration, N−1 ∑Ns

j 〈nj 〉
·〈Rx
j 〉. Applying

the impulse formula to Hubbard-band quasiparticles and
averaging over disorder realizations give an approximation
of the center-of-mass velocity:

V I = V0

⎡
⎣1 −

Ns∑
j

〈〈nj 〉2〉D/(2N )

⎤
⎦, (A2)

where V0 ≡ 2aVP τP t/�
2 depends linearly on τP and 〈〈nj 〉2〉D

indicates the disorder average of 〈nj 〉2.
V I gives the correct order of magnitude for the center-of-

mass velocity. To show this we use the high-temperature series
expansion to estimate the density in the initial state in the trap.
We choose the parameters for the 7ER lattice depth presented
in Table I, but we fix the entropy to be S = 1.9kB .

We use a simplified version of the protocol constructed in
the main text to get a rough estimate of V I. Once the entropy
and particle number are fixed, the approach used in the main
text then finds μ0 and T at each disorder configuration using
the high-temperature series expansion. These parameters are
then, for each disorder configuration, used to compute 〈nj 〉
within the trap. Disorder averaging proceeds by summing
the center-of-mass velocity over all disorder configurations.
But in this appendix we solve for the chemical potential and
temperature differently so that we can access experimentally
relevant system sizes without finite-size extrapolation. We
use the high-temperature series expansion to approximate
the entropy and density with integration (rather than explicit
summation) over the disorder distribution:

〈〈S〉〉D ≈
∫ ∞

0
dεPE(ε)S(ε),

(A3)

〈〈n〉〉D ≈
∫ ∞

0
dεPE(ε)〈n(ε)〉.

These approximations can be used to self-consistently solve
for T and μ0 given S and N for large system sizes. This
simplified protocol uses entropies and densities that are not
self-consistently solved for each disorder configuration but
are instead taken in a mean-field limit separately. As a

result, self-consistent solutions of these coupled formulas
offer only a rough estimate for T and μ0 because they are
assumed to decouple for each disorder configuration. We can
therefore apply these approximations only for low disorder
strengths.

The top panel of Fig. 9 plots the disorder-averaged density
of the central site in the trap as a function of disorder strength.
Here we see that the density decreases due to adiabatic
heating and a redistribution of the particles due to biased
exponential disorder. The quasiparticle effective mass (middle
panel) therefore also decreases.

The bottom panel of Fig. 9 plots the disorder-averaged
center-of-mass velocity from Eq. (A2). Here we see that the
velocity decreases due to an enhancement of the density.
The experimental data, for comparison, starts out with a
center-of-mass velocity ∼1 mm/s. The impulse formula for
Hubbard-band quasiparticles therefore gives the correct order
of magnitude and shows suppression due to a modulation of
the density due to disorder.

APPENDIX B: TEMPERATURE DEPENDENCE

In this appendix we study the temperature dependence
of the center-of-mass velocity in small trapped systems by
solving for the dynamics of correlators using Eqs. (13) and
(15). Here it is shown that temperature increases (expected
in adiabatic heating) suppress the center-of-mass velocity but
only for low disorder strengths.

We can use Eqs. (13) and (15) to compute the center-of-
mass dynamics in trapped systems on small system sizes.
We solve Eqs. (13) and (15) numerically. The initial state is
determined using Eqs. (28) and (29) within the local-density
approximation at fixed temperature. Figure 10 shows example

FIG. 10. (Color online) The disorder-averaged center-of-mass
velocity [Eq. (7)] as a function of temperature for several disorder
strengths computed from solutions of Eqs. (13) and (15). Parameters
are chosen to yield a small system-size replica of the larger system
implied by the parameters for the 7ER data in Table I (see text).
The velocities are disorder averaged using uniform disorder. Here we
see that increasing temperature suppresses the velocity only at low
disorder strengths.
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results for the center-of-mass velocity. The simulations are
carried out on a periodic cubic lattice with edges of size L =
11, where the trap zeros the density at the edges. We consider
a small-system-size replica of larger experimental parameters
by choosing a stronger trap frequency �ω/t = 0.757 but at
the same chemical potential as that found for experimental
system sizes, μ0/t = 3.8. τP = 0.514h/t is chosen by a
trap-dependent rescaling discussed in Sec. VII. The entropy is
allowed to vary, but otherwise, the remaining parameters are
chosen from the 7ER data in Table I.

Figure 10 shows that by increasing temperature, the center-
of-mass velocity can decrease at low disorder. This is the
opposite of what is expected from variable-range hopping in
common regimes, e.g., in semiconductors, where the presence

of a bath typically increases conductivity with increasing
temperature. Here we do not have an external bath. At low
disorder, increasing temperature suppresses the amplitude for
particles to tunnel between neighboring sites, e.g., t〈ρσ

l,l+1〉, in
the initial state. As a result, the center-of-mass velocity (which
scales linearly with the nearest-neighbor elements of the
single-particle density matrix) is suppressed with increasing
temperature. The high disorder limit has a different behavior.
Here the dynamics is strongly suppressed by disorder, and
the thermal suppression of tunneling has little effect. These
qualitative trends show that, when we study the experimentally
relevant fixed entropy case, adiabatic heating due to disorder
will tend to suppress the center-of-mass velocity only at low
disorder strengths.
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