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Artificial spin-orbit coupling in optical lattices can be engineered to tune band structure into extreme regimes
where the single-particle band flattens leaving only interparticle interactions to define many-body states of matter.
Lin et al. [F. Lin, C. Zhang, and V. W. Scarola, Phys. Rev. Lett. 112, 110404 (2014)] showed that under such
conditions interactions lead to a Wigner crystal of fermionic atoms under approximate conditions: no bandwidth
or band mixing. The excitations were shown to possess emergent kinetics with fractionalized charge derived
entirely from interactions. In this work we use numerical exact diagonalization to study a more realistic model
with nonzero bandwidth and band mixing. We map out the stability phase diagram of the Wigner crystal. We find
that emergent properties of the Wigner crystal excitations remain stable for realistic experimental parameters.
Our results validate the approximations made by Lin et al. and define parameter regimes where strong interaction
effects generate emergent kinetics in optical lattices.
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I. INTRODUCTION

Precise control over the band structure of ultracold atoms
and molecules placed in optical lattices enables access to
strongly correlated states [1–3]. Recent work shows that
optical lattices allow further exploration of extreme regimes
of strong correlation where the single-particle dispersion can
be flattened to emphasize interactions, much like the lowest
Landau level in the fractional quantum Hall regime [4]. Exam-
ples in the optical lattice context include flat single-particle
bands in triangular [5,6], honeycomb [7–9], and kagome
[5,10,11] optical lattices. Another example includes flat bands
generated from artificial spin-orbit coupling (SOC) [12–18] in
one-dimensional chains [19] and the two-dimensional square
lattice [20]. In all of these cases, there is an opportunity for
emphasized interaction effects to lead to emergent physics
wherein interactions operating within the flat band generate en-
tanglement, as in the fractional quantum Hall regime [21–23].

In general, interacting flat band models are captured by two
distinct classes of Hamiltonian that lead to either quantum or
classical states [20]. Classical flat band models are defined
by only diagonal interaction terms in a site basis. They are
trivial and exhibit only classical (unentangled) configurations
of particles in the absence of kinetics because the single-
particle basis states are highly localized and cannot overlap
via interactions. Examples of classical flat band problems
include basic Hubbard models [1] of atoms in very deep
optical lattices without applied fields. However, in quantum flat
band models, interactions are off-diagonal in a site basis and
entangle particles even in the absence of any dispersive single-
particle bands because the single-particle basis states are only
quasilocalized and can effectively overlap via interactions.
Recent work showed that flat SOC bands in optical lattices
define quantum flat bands [20,24].

Recent work [24] modeling fermions in one-dimensional
optical lattices with a quantum flat band defined by SOC
shows that they can be described with an emergent Luttinger
liquid theory [5,24] that contrasts with ordinary Luttinger
liquid theory [25–28]. In an emergent Luttinger liquid the
fermions experience an effective band (generated entirely by
interactions) in which Luttinger liquidlike properties appear

from the interaction alone. The emergent Luttinger liquid
theory (and numerical diagonalization) showed that the ground
state of the system is a Wigner crystal of spinors. The
low-energy excitations of the crystal displayed emergent
kinetics and fractionalized charge. The ground and excited
states stemmed from just the s-wave interaction that was
effectively extended in range because the single-particle basis
states (Wannier functions) were elongated.

In this work we build on the results of Ref. [24] to model
a more realistic Hamiltonian to test the robustness of the
emergent Luttinger liquid properties. Lin et al. [24] made a
flat band approximation which assumed zero single-particle
bandwidth. It was argued that a small dispersion would not
impact the essential properties of the states found in Ref. [24].
Furthermore, a single band was assumed, thereby explicitly
ruling out the possibility that band mixing would qualitatively
change the nature of the states found. The realistic model we
consider here systematically includes both effects (nonzero
bandwidth and band mixing from a second band) to explore
the robustness of the Wigner crystal with emergent kinetics.

Figure 1 schematically summarizes our findings. Figure 1
plots the single-particle band gap, �s , versus the single-
particle bandwidth, W , for a one-dimensional optical lattice in
the presence of SOC. The slope of a straight line in this plane
quantifies the band flatness ratio [19] (F = �s/W ). The lobe
in Fig. 1 plots the regime where we find, in this work, that the
Wigner crystal is stable and can be described by an emergent
Luttinger liquid theory. In the far right part of the graph,
the highly dispersive band favors particles nesting in band
minima. Here a conventional Luttinger liquid theory applies.
In the upper left corner of the diagram, the Wigner crystal
destabilizes because the single-particle basis states do not
overlap and the nearest-neighbor interaction stemming from
overlapping Wannier functions vanishes. Here the interactions
cannot lift the degeneracy of the lowest flat band.

We find that the spinor Wigner crystal with emergent
kinetics survives realistic effects expected in an optical lattice
experiment: a nonzero bandwidth and band mixing. Studying
spectra within the lobe reveals that emergent dispersive states
are adiabatically connected to states found in the approxi-
mate model studied in Ref. [24]. We use numerical exact
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FIG. 1. Schematic plotting the stability of the Wigner crystal
phase (lobe) in the parameter space of the single-particle band
gap versus the bandwidth. F defines the flatness ratio. Increasing
the single-particle bandwidth makes the single-particle band more
dispersive, whereas increasing the single-particle band gap suppresses
band mixing between the partially filled lower band and the upper
band. W → 0 corresponds to a perfectly flat band and �s → ∞
leads to a single band at low filling, a limit discussed in Ref. [24].
The work presented here considers a more physical model with
experimentally realistic numbers for W and �s . The lobe shows
that the Wigner crystal with emergent Luttinger liquid properties
found in the approximate model of Ref. [24] remains stable and is
adiabatically connected to the Wigner crystal in the physical model
considered here.

diagonalization to map out the phase diagram and rigorously
quantify the location of the lobe for various flatness ratios.
We also find that (within the lobe) band mixing lowers the
gap of the Wigner crystal making it less stable than predicted
in Ref. [24]. We verify that realistic trapping parameters for
a common example atom, 40K, still allow a Wigner crystal
near the trap center even without assuming that a Feshbach
resonance can increase the interaction strength.

The outline of the paper is as follows: In Sec. II we construct
the full physical model and relate it to the flat-band projected
model studied previously in Ref. [24]. We analytically solve
the single-particle part of the Hamiltonian to construct the
basis in which we represent the full interacting Hamiltonian.
In Sec. III we study the impact of nonzero bandwidth and
band mixing by diagonalizing an interacting model that
extrapolates between the single-band projected model and
the full physical model. In Sec. IV we map out the phase
diagram by numerically diagonalizing the full physical model.
We find a sizable region of stability for the Wigner crystal. We
summarize in Sec. V.

II. MODEL

In this section we derive a tight-binding model of N

fermions in a one-dimensional optical lattice with an equal
population of two hyperfine states. We incorporate the lowest
(nearly flat) band and the second band. We solve the single-
particle tight-binding limit analytically to obtain the band gap
and the bandwidth. We then derive the tight-binding form of
the s-wave interaction term. We include all intra- and interband
interaction terms. The full model constructed in this section
is then diagonalized in later sections to compare with results
reported previously [24] on the projected flat band model.

We start with a first-quantized noninteracting Hamiltonian
that adds SOC to the optical lattice potential [19,24]:

Hs
0 = p2

x

2m
− sER cos2(kLx) +

(
�kR

m

)
pxσz + �σx,

where px is the momentum of particles of mass m, the second
term is the optical lattice potential created by counterprop-
agating lasers with wave vector kL, and the lattice depth is
sER , where ER = �

2k2
L/2m is the recoil energy. The third

term describes spin-orbit coupling created by Raman lasers
with the wave vector kR , and σ = (σx,σy,σz) are the Pauli spin
matrices. In the last term, � is the Rabi frequency which acts as
the Zeeman field strength. In the following, we choose a lattice
spacing, π/kL, as the length unit. In these units, kR = π/2
implies kR = kL/2.

Here we have assumed a quasi-one-dimensional limit
derived from strong trapping along the perpendicular (y and
z) directions. The particles are only allowed to propagate
along x. The primary effect is to renormalize the s-wave
scattering length. We incorporate the effect of trapping
along perpendicular directions when we estimate experimental
parameters in the last section.

To pass to the tight-binding limit we rewrite the Hamilto-
nian in second quantized form [24]:

H0 = −2t
∑
k,σ

cos(k + kRσ )c†kσ ckσ + �
∑

k,σ �=σ̄

c
†
kσ ckσ̄ , (1)

where c
†
k,σ creates a fermion at wave vector k in one of two

hyperfine states with pseudospin indices σ = ↑,↓, and t is
the nearest-neighbor hopping matrix element. We set kRσ =
±kR for σ = ↑,↓, respectively. We have checked, by directly
solving the continuum model, that the tight-binding model
presented here reproduces the band energies of the continuum
model to within 5% for the parameters we study.

Equation (1) can be solved analytically by passing to the
band basis, labeled by α = + and −. The appendix shows that
a unitary transformation leads to a diagonal form,

H0 =
∑
k,α

Eα(k)χ †
kαχkα, (2)

with the eigenvalues

E±(k) = −2t cos k cos kR ±
√

�2 + 4t2 sin2 k sin2 kR. (3)

The eigenvectors are χkα = ∑
σ v∗

kα,σ ckσ , with
coefficients vk+ = [cos (θk/2) sin (θk/2)]T and vk− =
[sin (θk/2) − cos (θk/2)]T , where cos(θk) = 2t sin(k) sin(kR)/
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FIG. 2. Single-particle energies as a function of wavevector for
the two bands, α = ±. The solid lines plot Eq. (3) for � = 2.5t and
kR = kL/2 which lead to a flatness ratio F ≈ 7. The dashed lines plot
the same but for Eqs. (7) and (8) with the dimensionless parameters
ε = 0.6 and η = 0.9 introduced to tune the single-particle bandwidth
and the band gap, respectively.

√
�2 + 4t2 sin2 k sin2 kR . The basis states χkα define spinors

with a magnetic moment orientation that depends on θk .
Figure 2 plots the band structure defined by Eq. (3) in

the case of maximal spin-orbital coupling kR = kL/2. Here
we see that the lowest of the two bands is very flat, F ≈ 7.
We quantify the band flatness ratio here using the single-
particle bandwidth

W =
√

�2 + 4t2 − |�|
and the single-particle band gap

�s = 2|�|.
We now use the single-particle basis to represent the

interatom interaction term. We consider s-wave scattering
between atoms. The interaction in the basis before the
application of spin-orbit coupling leads to the usual Hubbard
interaction between atoms:

Hint = U

2

∑
i,σ �=σ̄

c
†
iσ c

†
iσ̄ ciσ̄ ciσ .

This interaction is purely on-site because of the local nature
of the Wannier functions (before the application of spin-orbit
coupling). After a Fourier transform to momentum space the
Hubbard interaction becomes

Hint =
∑

{k},σ �=σ̄

V{k}c
†
k4σ

c
†
k3σ̄

ck2σ̄
ck1σ

,

where V{k} = (U/2L)δ
′
k4+k3=k2+k1

,δ′ indicates momentum con-
servation up to multiples of the reciprocal lattice vector, and
L is the number of sites.

The application of spin-orbit coupling has a drastic effect on
the single-particle basis states. The basis states can, for low to
intermediate F , elongate in real space and overlap between
nearest neighbors. We incorporate spin-orbit coupling by
rewriting the interaction in terms of single-particle eigenstates

of Eq. (1):

Hint =
∑
{k,α}

Ṽ{kα}χ
†
k4α4

χ
†
k3α3

χk2α2
χk1α1

, (4)

where the interaction matrix elements, Ṽ{k,α} =
(U/2L)

∑
σ �=σ̄ v∗

k4α4,σ
v∗

k3α3,σ̄
vk2α2,σ̄ vk1α1,σ δ′

k4+k3=k2+k1
,

incorporate both the interaction and spin-orbit coupling.
Passing back to Wannier functions in real space one can see

that, for low to intermediate F , the Wannier functions have
been considerably elongated by spin-orbit coupling [24] to
overlap in neighboring sites. To see the impact of elongation on
the tight-binding parameters for interaction terms, Fig. 3 plots
the lowest-band coefficients for the nearest-neighbor density-
density interaction (V1), the next-nearest-neighbor density-
assisted tunneling (t1), and the next-next-nearest-neighbor
density-assisted tunneling (t2) as a function of the band
width and the single-particle band gap. Here we see that, for
intermediate �s and W , the nearest-neighbor interaction can
become sizable. We must therefore include nearest-neighbor
interaction terms when writing the interaction in the χ basis.

Including interactions, the total Hamiltonian becomes

H = H0 + Hint, (5)

where H0 is diagonal in the χ basis, Eq. (2). The interaction
term is off-diagonal and, for certain parameters, yields a
formidable nonperturbative problem because the lowest band
becomes nearly degenerate. The study of H forms the focus
of the rest of the paper.

Reference [24] used a flat band approximation to study
Eq. (5) for N/L = 1/2. In the flat band approximation,
two limits were taken. First, all particles are projected onto
the lowest band, α = −. At partial filling, the lowest band
projection can be thought of as setting �s → ∞. Second, the
single-particle dispersion was assumed to be irrelevant and H0

was dropped. In this approximation, the projected Hamiltonian
becomes

HP =
∑
{k}

V P
{k}χ

†
k4−χ

†
k3−χk2−χk1−, (6)

where V P
{k} = (U/L)v∗

k4−,↑v∗
k3−,↓vk2−,↓vk1−,↑δ′

k4+k3=k2+k1
.

We see explicitly that HP defines a nonperturbative prob-
lem because there are no other terms in the model. The flat band
approximation assumes that inclusion of single-particle terms
(H0) will merely perturb the physics found by diagonalizing
Eq. (6) while the low-energy eigenstates remain in the same
universality class. We test the flat band approximation by
comparing solutions to Eqs. (5) and (6). Nonzero bandwidth
and mixing due to interaction effects should perturb the
low-energy eigenstates. We consider the impact of both finite
bandwidth and interband mixing in the following.

III. BAND DISPERSION AND BAND MIXING

In this section we use exact diagonalization to study the
impact of finite bandwidth and band mixing separately. We
introduce tuning parameters to H so we can extrapolate
between H and HP to thus allow separate analyses of each
effect. By examining the spectrum and computing eigenstate
overlaps we find that band mixing alone lowers the gap
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FIG. 3. Strength of leading interaction matrix elements in the
Wannier basis plotted as a function of both the single-particle band
gap �s and the bandwidth W . The top, middle, and bottom panels
correspond to coefficients of the nearest-neighbor density-density in-
teraction V1χ

†
i,−χi,−χ

†
i+1,−χi+1,−, the next-nearest-neighbor density-

assisted tunneling −t1χ
†
i+2,−χ

†
i+1,−χi+1,−χi,−, and the next-next-

nearest-neighbor density-assisted tunneling t2χ
†
i+3,−χ

†
i,−χi,−χi+1,−,

respectively. The size of the coefficients in the centers of the panels
(intermediate �s and W ) shows that here we expect nearest-neighbor
correlations to be relevant in a nearly flat band.

between the ground state and the first excited state by a factor of
at least ≈20. When we include both band mixing and nonzero
bandwidth we also find that the many-body dispersion shifts
in the wave vector.

We start by inserting tuning parameters into the single-
particle energy to allow a separation of effects. For the lowest
band we tune the width of the lowest band using an artificial
tuning parameter, ε:

E−(ε,k) ≡ −� + [E−(k) + �]ε, (7)

while for the second band we tune the band gap with η:

E+(η,k) ≡ E+(k)/η. (8)

The dashed lines in Fig. 2 show the effect of the parameters ε

and η. For ε = 0 we recover the flat band limit and for η = 0
we set the band gap to infinity to recover the single band limit.
The limit ε = η = 1 returns us to the physical single-particle
energy, Eq. (3).

By adding interactions we construct a model that allows us
to tune between different limits:

Hε,η =
∑

k

[E−(ε,k)χ †
k−χk− + E+(η,k)χ †

k+χk+] + Hint. (9)

For ε → 0 and η → 0 we have, at partial filling, the flat
single-band limit lim

ε,η→0
Hε,η = HP , and for ε = η = 1 we have

the full physical model Hε=1,η=1 = H . We stress that ε and
η are unphysical tuning parameters that are designed to test
eigenstate adiabaticity between two physical limits: ε = η = 1
and ε = η = 0.

We diagonalize Eq. (9) in different limits to explore the
impact of single-particle band effects on interaction-driven
physics. Figure 4 shows the results of diagonalizing Eq. (9) in
four different limits. Figure 4(a) reproduces the results found in
Ref. [24] for the flat single-band model, HP . Here we see that
the lowest-energy state is twofold degenerate and corresponds
to a Wigner crystal of spinors that can be generated by just the
diagonal density-density interaction term in Eq. (6). The two
degenerate states arise because of the sublattice degeneracy
for the two ways of placing the crystal on the one-dimensional
lattice. There is a gap to the lowest band of excitations. Lin et al.
[24] pointed out that these states show emergent kinetics due to
the finite many-body bandwidth driven entirely by off-diagonal
terms in Eq. (6). The focus of our work here is to probe the
stability of this low-energy structure as we introduce a second
band and allow nonzero bandwidth.

Figures 4(b) and 4(c) show the result of adding finite
bandwidth (ε = 1) and band mixing (η = 1), respectively.
Here we see that setting ε = 1 does very little to the many-body
spectrum at low energies. For F = 7 the band is so flat that
the small but finite single-particle dispersion does not perturb
the large interaction much. But for ε = 0 and η = 1 we
see that bringing two flat bands relatively near each other
causes the many-body gap, �m, to decrease by a factor of
≈20 while keeping the structure of the low-energy states
qualitatively the same.

Figure 4(d) shows the spectrum for the full model, H . Here
we see that including both finite bandwidth and band mixing
not only lowers the gap appreciably but the many-body excited
states are shifted in K space so that the many-body dispersion
has a minimum at K = 0 instead of K = ±π/2. Here the
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(c) (d)

FIG. 4. Many-body energies versus total wave vector obtained
from diagonalizing Eq. (9) in four distinct limits of the parameters ε

and η. The energy zero is the ground-state energy, Eg . The projected
model, Eq. (6), is retrieved for ε = η = 0 (a). A nonzero bandwidth
is introduced for ε = 1 and η = 0 (b) while a second flat band is
introduced for η = 1 and ε = 0 (c). The full physical model, Eq. (5), is
retrieved for ε = η = 1 (d). The ground state remains a Wigner crystal
with twofold sublattice degeneracy in all four panels and we have
checked that the ground-state energy and ground-state wave functions
are adiabatically connected between the four limits. Comparing the
η = 0 to η = 1 cases shows that band mixing lowers the many-body
band gap, �m, by a factor of ≈20. We have used the following
parameters: N = 6, L = 12, t = 0.01U , � = 0.025U , kR = kL/2,
i.e., �s = 0.05U , and W = 0.007U . This corresponds to F ≈ 7.

nonzero single-particle dispersion mixed the lowest-energy
many-body excited states. Otherwise the qualitative features
of the low-energy states remain the same as we go from ε =
η = 0 to ε = η = 1.

Figure 5(a) shows the decrease in the many-body gap
as the single-particle band gap is lowered. Here we keep a
nonzero single-particle dispersion (ε = 1) but we tune the
single-particle gap from infinity to �s . The gap never drops
to zero, thus signaling that the low-energy states in the full
Hamiltonian, H , are adiabatically connected to the those of
the projected Hamiltonian, HP .

The mixing of the many-body excited states drives the
lowering of the gap. To see this we plot the overlap of the lowest
two many-body states in Fig. 5(b). Here we see that the ground
state remains unperturbed but the mixing of the excited states
somewhat lowers the overlaps from the single-band (η = 0)
limit. Nonetheless we see that the overlap remains large and
does not show any cusps. There are therefore no transitions as
we lower the band gap for F = 7. In the following sections we
vary F to find transitions (where the many-body gap vanishes).

We have checked that our results presented here do not
change as we increase particle number and are therefore

un
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of

(a)

(b)

FIG. 5. The many-body gap (a) and many-body wave function
overlap (b) obtained from diagonalizing Eq. (9) as a function of the
dimensionless parameter η. Here we see that the many-body gap is
significantly lowered as we introduce a second single-particle band
by increasing η. Panel (b) plots the overlap between the η = 0 wave
function and the wave function for η � 0 for both the ground state
(n = 0) and the first excited state (n = 1) to show that the second
single-particle band alters the nature of just the first excited state. The
parameters are the same as those in Fig. 4 but for ε = 1.

valid in the thermodynamic limit. Figure 6 shows data collapse
in the spectrum. The low-energy states fall on one another
indicating a consistency in scaling to the thermodynamic limit.
This was also found for HP in Ref. [24], further showing that
the low-energy eigenstates of both H and HP are in the same
universality class.

un
it

s 
of

FIG. 6. The same as Fig. 4 but for the full physical model, Eq. (5),
where the squares (diamonds) are for N = 6 (N = 8) particles on
L = 12 (L = 16) sites. The data collapse shows that the ground and
first excited states are already in the thermodynamic limit.
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FIG. 7. The many-body energy gap plotted as function of band-
width. The parameters are the same as those in Fig. 4 but for
the full physical model, Eq. (5), with the band gap held constant,
�s = 0.08U . Here we see that at zero bandwidth the single-particle
basis states have no spread and, as a result, the interaction remains
on-site and cannot lift the degeneracy. But as the bandwidth increases,
the nearest-neighbor interaction terms lift the degeneracy to reveal
the Wigner crystal ground state and open a gap to a set of emergent
excitations captured by an effective Luttinger liquid theory. But as
the bandwidth increases further the gap closes as the Wigner crystal
transitions to a conventional Luttinger liquid regime.

IV. PHASE DIAGRAM AND STABILITY

We now map out the stability phase diagram of the
interaction-only spinor Wigner crystal phase of Eq. (5).
Instabilities arise as we increase the single-particle bandwidth.
For large W the particles gain in energy by nesting in the single-
particle band minima. There is therefore a transition from the
interaction-dominated regime (with emergent kinetics) to a
weakly interacting state (a conventional Luttinger liquid) as
the bandwidth is increased. Increasing the single-particle band
gap also drives a transition. At first we expect that increasing
�s might favor the approximation that led to emergent kinetics.
But note that large F implies that the lowest-band Wannier
functions have little overlap between nearest-neighbor sites
[24]. As a result, increasing F decreases density-assisted
hopping terms between neighbors (see Fig. 3) and therefore
suppresses emergent kinetics. We thus expect a transition to a
gapless regime as �s and therefore F are increased.

We increase W and diagonalize Eq. (5) to find the
lowest-energy eigenstates. Note that increasing W impacts
H0 directly and Hint indirectly through the change in basis
states χkα . Figure 7 plots the many-body gap as a function
of the bandwidth. We see that the many-body gap starts from
zero at W = 0. For W → 0 we have F → ∞ and Eq. (6)
is a good approximation to Eq. (5). But in this limit there
are essentially no nearest-neighbor terms to lift the massive
degeneracy of spinless particles in the lowest flat band.
Here the flat band remains gapless. As we increase W , the
nearest-neighbor interaction terms (not single-particle terms)
drive the formation of a spinor Wigner crystal with emergent
kinetics and the many-body gap opens.

(a) (b)

FIG. 8. Characteristic many-body spectrum of Eq. (5) computed
for a weakly interacting case [panel (a), U = t/2] and the nonin-
teracting case [panel (b), U = 0]. We have also set N = 6, L = 12,
� = 2.5t , and kR = kL/2. These parameters lead to a flatness ratio
used in the other figures as well, F ≈ 7. A comparison of both panels
shows that the spectra are qualitatively similar; i.e., states occur at the
same wave vectors and nearly the same energies. We can therefore
think of the ground state in both cases as a partially filled band of
weakly interacting fermions. The weakly interacting case conforms
to conventional Luttinger liquid theory.

Upon increasing W further the many-body gap closes and a
new state arises in Fig. 7. Here the Wigner crystal destabilizes
to a more conventional state where H0 and interactions
compete in Eq. (5). Conventional Luttinger liquid theory
can be used to show that the particles tend to sit about the
single-particle band minimum. The ground state in the large-W
regime can be understood by filling the lowest single-particle
band with weakly interacting fermions. Characteristic spectra
that arise for large W are shown in the Fig. 8(a). Figure 8(b)
shows that noninteracting spectra give nearly the same results.
In both panels the gaps are due to finite-size effects and
there is no ground-state degeneracy since filling of the lowest
single-particle band leads to a unique K . We can therefore
understand the large-W limit in a weakly interacting picture
of band filling of spinless fermions.

We culminate our findings in a phase diagram that plots
the stability of the Wigner crystal and its emergent kinetics.
The shading in Fig. 9 plots the size of the many-body gap as
a function of both the single-particle bandwidth and the band
gap. The circles denote critical points where the many-body
gap closes and the ground-state degeneracy changes from 2
(Wigner crystal with emergent kinetics) to 1 (conventional
Luttinger liquid regime). Inside the lobe nearest-neighbor
interactions establish the many-body gap but outside the lobe
the gap is, for our finite-size simulations, set by the finite size
of the system.

The parameters needed to reach the central part of the lobe
are accessible with current experiments. We assume 40K atoms
with two hyperfine levels populated to define the pseudospin.
To compute the tight-binding parameters we solve the periodic
Schrödinger equation using Mathieu functions and compute
the Wannier functions in the usual way [1,20]. We find that,
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FIG. 9. Stability phase diagram of the Wigner crystal with
emergent kinetics plotted as a function of both the single-particle
band gap and the bandwidth. The color coding plots the size of
the many-body gap obtained from diagonalization of Eq. (5) for
N = 6, L = 12, and kR = kL/2. The circles plot the points where
the many-body gap vanishes and the line is a guide to the eye. The
Wigner crystal is stable within the lobe. Outside the lobe we have a
conventional Luttinger liquid with a gap set by finite-size effects.

for a perpendicular confinement of 60ER , a lattice depth of
s ≈ 13, and a bare scattering length of as = 104a0 (where a0

is the Bohr radius), we can achieve t = 0.01U , where t ≈
0.01ER and U ≈ ER . The Zeeman field can then be chosen
to be � ≈ 0.025ER with kR = kL/2. This leads to F ≈ 7 and
corresponds to a central part of the lobe in Fig. 9, with �s/U =
0.05 and W/U = 0.007.

The parabolic trapping potential competes with the many-
body gap to limit the size of the Wigner crystal near the trap
center. We can estimate the size of the Wigner crystal by equat-
ing the energy cost required to overcome �m with the trapping
potential energy. The trapping potential is mω2

trx/2, where ωtr

is the trapping frequency. We estimate the position xmax where
the crystal no longer exists using �m = mω2

trxmax/2. For 40K
on a lattice formed by lasers with a wavelength of 826 nm and a
realistic trapping strength of ωtr = 40–70 Hz, we find a crystal
size of 2xmax ≈ 20–34 lattice sites. This size was estimated
using �m from the full Hamiltonian, Eq. (5). xmax is smaller
than the size estimated using the single-band projected model
(We find ≈100 sites with Eq. (6) [24]) because the band mixing
lowered �m. Nonetheless we find that band mixing and finite
bandwidth in H still allow a Wigner crystal with emergent ki-
netics in a small region near the center of the trap. The strength
of the crystal can be increased by increasing the strength of
the interaction (and therefore U ) using a Feshbach resonance.

V. SUMMARY

We have studied a model of two-component fermionic
atoms in a one-dimensional optical lattice in the presence of
SOC. We have mapped out the stability phase diagram of a
spinor Wigner crystal with emergent kinetics in its low-energy
excitation-state space. Our results demonstrate the parameter
regime of validity of the approximations made in Ref. [24]

by showing that the projected approximate model, Eq. (6),
captures the essential properties of the low-energy states of the
full model, Eq. (5). We find that band mixing lowers the gap
of the Wigner crystal by at least a factor of ≈20. Band mixing
and a finite bandwidth also shift the low-energy momenta of
the emergent many-body models from a total momentum of
K = ±π/2 in the approximate case, Eq. (6), to K = 0 in the
full model, Eq. (5). Nonetheless, the Wigner crystal and its
emergent modes show sufficient stability to occupy the central
region of a trapped optical lattice experiment. We estimate
≈30 sites for the bare interaction between 40K atoms in a trap.
A Feshbach resonance can be used to increase the strength of
the states discussed here.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with C. Zhang and
support from AFOSR (Grant No. FA9550-15-1-0445) and
ARO (Grant No. W911NF-16-1-0182).

APPENDIX: MAPPING BETWEEN SPIN AND BAND
OPERATORS

In this section we detail the mapping between fermions in
the spin basis [Eq. (1) in terms of ckσ ] and fermions in the
band basis [Eq. (2) in terms of χkα]. We start by rewriting the
single-particle tight-binding model, Eq. (1), in matrix form:

H0 = −2t
∑
k,σ

cos(k + kRσ )c†kσ ckσ + �
∑

k,σ �=σ̄

c
†
kσ ckσ̄

= C
†
k[h0(k)I + h(k) · σ ]Ck,

where I is the identity matrix, Ck = (ck↑ ck↓)T , h0(k) =
−2t cos k cos kR , and h(k) = (�,0,2t sin k sin kR). We can
rewrite h(k) in spherical coordinates:

h(k) = hk(sin θk cos φk, sin θk sin φk, cos θk),

where hk is the magnitude, θk is the polar angle, and φk is
the azimuthal angle. In the case studied here we have cos θk =
2t sin k sin kR/hk and φk = 0.

We can now diagonalize the eigenvalues H0 to obtain the
eigenvalues E±(k) and the eigenvectors vk± using a unitary
transformation:

U †(k)[h0(k)I + h(k) · σ ]U (k) = diag{E+(k),E−(k)},
where we find

E±(k) = h0(k) ± |h(k)|,
with

U (k) = (
vk+ vk−

) =
(

cos(θk/2) sin(θk/2)
sin(θk/2) − cos(θk/2)

)
.

We can then use the unitary transform to define the band
operators χk±:

Ck = U (k)Xk,
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where Xk = (χk+ χk−,)T , so that

H0 =
∑

k

[E−(k)χ †
k−χk− + E+(k)χ †

k+χk+].

This shows that the single-particle tight-binding model,
Eq. (1), in the spin basis can be diagonalized by rewriting
the model in the band basis, Eq. (2).
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