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The analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra
remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic
optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by
Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained
by the standard maximum entropy method for three representative test cases, including data taken from studies
of the two-dimensional Hubbard model. We generally find that our FESOM approach yields spectra similar to
the maximum entropy results. In particular, while the maximum entropy method yields superior results when
the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the
quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information
on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so
only for the spectral weight integrated over a finite frequency region. We therefore believe that this variant of the
stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method,
especially for data of poor quality.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods provide numer-
ically exact results for interacting quantum many-particle
systems, and thus they are widely used to study their physics.
An important drawback, however, is their inability to directly
give real frequency results, a key limitation considering the
large number of experiments that measure dynamic quantities.
From the imaginary-time QMC data, the real frequency
spectrum A(ω) has to be recovered through the process of
analytic continuation, a highly ill-posed inverse problem that
remains a key stumbling block in connecting theory with
experiment.

To address this challenge, it has proven useful to employ
a framework based on Bayesian statistical inference. The
state-of-the-art and most widely used tool based on Bayesian
statistics is the maximum entropy (MaxEnt) method [1]
pioneered by Silver, Sivia, Jarrell, and Gubernatis [2–5]
for applications in this area. It introduces an entropy-like
regularization term that measures the deviation from a default
spectrum, and then the most probable spectrum is obtained
through a deterministic optimization process. Another method
that uses explicit but adjustable regularization through the use
of consistent constraints was recently introduced by Prokof’ev
and Svistunov [6].

An alternative stochastic method was developed by Sandvik
[7], in which a fictitious temperature is introduced to define
the probability of a given spectrum by a Boltzmann weight.
This allows for efficient Monte Carlo sampling of possible
spectra from which the final spectrum is obtained as a weighted
average. A refined version of this approach, which, similar to
MaxEnt, uses a default model, was later introduced by Beach
[8] and shown to become formally equivalent to the MaxEnt
method if the fictitious system is treated at a mean-field level. In
addition, Fuchs et al. [9] showed that the fictitious temperature

introduced in this algorithm can be eliminated based on the
principles of Bayesian statistical inference in a similar fashion
as the regularization parameter of the MaxEnt approach is
removed.

Mishchenko et al. [10] used a similar idea to set up a
stochastic optimization method (SOM) that randomly samples
solutions with a certain weight but without interpretation of
the weights as a Boltzmann distribution. In this approach,
one randomly samples a large enough number of possible
solutions A(ω), each of which optimizes the deviation from
the QMC data but allows for solutions with larger deviation
to implicitly regularize the problem. One important feature of
this approach is that it uses a different and much more complex
parametrization of the spectrum that does not impose a rigid,
discrete frequency grid and allows for overlapping rectangles
from which the spectrum is composed. While this allows for
more flexibility in the solution, it leads to a complex update
algorithm and a very large search space that is difficult to
manage.

Here, we introduce a fast and efficient stochastic op-
timization method (FESOM) as an accessible variant of
Mishchenko’s original SOM that is based on the same idea,
i.e., a stochastic sampling of possible spectra. But instead
of the complex parametrization introduced by Mishchenko
et al., it uses the usual parametrization of solutions A(ω)
in terms of a discrete frequency grid, resulting in a more
manageable algorithm. We apply this approach to a number of
representative problems, and we compare the results against
those obtained from standard MaxEnt calculations. We include
two test cases of approximate spectral functions derived from
the two-dimensional Hubbard model on a square lattice. In
the following section, we review the state-of-the art MaxEnt
method that we use to benchmark our approach. We then
discuss our FESOM in Sec. IV, and we show the results of
three different numerical examples in Sec. V.
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II. ANALYTIC CONTINUATION AND
BAYESIAN STATISTICS

The analytic continuation process involves an inversion of
the integral,

G(iωn) =
∫

dω K(iωn,ω)A(ω). (1)

Here, G(iωn) is an observable such as the single-particle
Green’s function measured in a QMC calculation as a function
of discrete Matsubara frequencies ωn on the imaginary axis,
A(ω) = −1/π Im G(ω) is the spectral function and quantity
of interest, and K(iωn,ω) is the kernel. For the fermionic
Green’s function considered here, one has ωn = (2n + 1)πT

for a temperature T , and the kernel takes the form

K(iωn,ω) = 1

iωn − ω
. (2)

After discretization of the real frequency axis into L intervals,
{ωl}Ll=0, Eq. (1) is written in matrix-vector form,

Gn =
L∑

l=1

KnlAl, (3)

with Knl ≡ �ωl/(iωn − ωl), Gn ≡ G(iωn), and Al ≡ A(ωl),
and the frequency intervals �ωl = ωl+1 − ωl . The difficulty
of inverting Eq. (1) arises from the small tails in the kernel
function at large frequencies ω. In other words, the matrix Knl

is ill-conditioned, i.e., small changes or statistical errors in the
QMC data Gn cause large errors in the quantity of interest Al ,
and there are an infinite number of solutions.

Approaches that address this problem can be formulated in
terms of Bayesian statistical inference, in which one considers
the Bayesian formula

P (A|G) ∝ P (G|A)P (A). (4)

Here, P (A|G) is the posterior probability of the spectrum A

given the data G, the prior probability P (A) encodes prior
information about A, and the likelihood function P (G|A)
measures the quality of the fit between G and KA. The
problem of finding the most probable spectrum A given the
data G is thereby converted into the much easier problem of
optimizing the likelihood function and prior probability. One
can then select the most probable spectrum A that maximizes
P (A|G) as in the case of the MaxEnt method, or obtain the final
spectrum A from a weighted average over possible solutions,

Ā =
∫

dAAp(A|G), (5)

as in the case of the stochastic methods.

III. MAXIMUM ENTROPY

The MaxEnt approach [5] uses the Bayesian statistical
inference formula, Eq. (4), to find the most probable spectrum
A given the input data G. This is done by maximizing both the
likelihood function P (G|A) and the prior probability P (A).

The likelihood function P (G|A) is defined according to the
central limit theorem as

P (G|A) = e−χ2/2, (6)

where

χ2[A] = 1

N

N∑
n=1

(
Gn − ∑

l KnlAl

σn

)2

(7)

encodes the quality of the fit of the data G by the spectrum A.
Here Gn = 1/Ns

∑Ns

i=1 Gi
n is obtained as the mean value of a

number Ns of different QMC samples, with Gi
n ≡ Gi(iωn) the

ith sample, and the variance

σ 2
n = 1

Ns − 1

Ns∑
i=1

(
Gi

n − Gn

)2
. (8)

Note that this form assumes that no correlations between
different frequencies iωn are present in the QMC data Gn.
When there are correlations, the covariance matrix has to be
diagonalized, and both the data Gn and the kernel K have to
be rotated into this diagonal representation [11].

A simple minimization of χ2 with a least-squares fit of
the data G with KA leads to noisy and an infinite number
of nonunique solutions. The MaxEnt method addresses this
problem by regularization of the least-squares fit. It introduces
a prior distribution

p(A) = eαS[A], (9)

with α a positive constant, the regularization parameter, and

S[A] = −
∫

dω

[
A(ω) − D(ω) − A(ω) ln

A(ω)

D(ω)

]

= −
L∑

l=1

[
A(ωl) − D(ωl) − A(ωl) ln

A(ωl)

D(ωl)

]
�ωl

(10)

an entropy-like term defined relative to a positive-definite and
normalized function D(ω), the default model. Thus, in order
to maximize the posterior probability p(A|G), the MaxEnt
minimizes the function

Q[A] = 1
2χ2[A] − αS[A]. (11)

The Bayesian inverse optimization of the posterior probability
p(A|G) ∝ e−Q[A] hence becomes a deterministic optimization
for the regularized form 1

2χ2[A] − αS[A] as a standard opti-
mization problem. Here α mediates the competition between
the χ2 fit of the data and prior information contained in S[A].
It is the χ2[A] term that ensures that the spectral function
will give a good fit of the data, while the S[A] term avoids
overfitting of the data by guiding A(ω) toward a default
model given by D(ω). The Bayesian inference formulation
also allows us to eliminate the free parameter α by calculating
the posterior probability of α, i.e., P (α|G). One can then
perform the MaxEnt procedure for different values of α to
give estimates for the spectrum Aα and then select the most
probable Aα that corresponds to the maximum p(α|Ḡ). Here
we use Bryan’s method [12], in which one averages over all
spectra Aα weighted by the posterior probability of α, to obtain

A =
∫

dα P (α|G)Aα. (12)
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IV. FAST AND EFFICIENT STOCHASTIC
OPTIMIZATION METHOD

The stochastic inference method introduced by Sandvik [7]
and refined by Beach [8] and Fuchs et al. [9], and the stochastic
optimization method developed by Mishchenko [10], are
alternative numerical approaches to solving the analytic
continuation problem. While these approaches can outperform
the traditional MaxEnt method and yield spectra with more
features and less regularization, they can be very numerically
expensive. Fuchs et al. [9] commented that the necessity
to perform calculations for a wide range of regularization
parameters in their refined approach can lead to runtimes
of 20 processor hours. Similarly, the complexity of the
parametrization of the spectrum used in Mishchenko’s SOM
and the associated extensive search space seem comparably
expensive. Here we discuss an efficient and more accessible
variant of this stochastic optimization method that also uses
a Bayesian framework for the analytic continuation problem
with only minimal prior information on the spectrum.

In many situations, one has only minimal knowledge of the
prior probability of A, i.e., p(A). Therefore, we assume that the
prior distribution p(A) is uniform and the posterior distribution
is equivalent to the likelihood, i.e., p(A|G) = p(G|A). The
most straightforward way to construct an empirical distribution
is to use the Markov chain Monte Carlo (MCMC) sampling
method [13]. However, the dimension of the distribution is
the partition number L of the frequency ω, which is typically
large. In this case, the MCMC sampling method becomes very
inefficient, especially in simulating the statistically insignifi-
cant region due to the low acceptance rate. To overcome this
problem in MCMC-type methods, we propose an efficient
scalable numerical algorithm that constructs an empirical
distribution for p(G|A) with independent random samples.

The central idea of our algorithm is to build the target
probability distribution p(A|G) by running several parallel
optimization procedures. Toward that end, we compute J re-
alizations of optimal spectral functions A based on QMC data
G in a stochastic manner, and we use the distribution of all J

realizations of stochastically optimized spectral functions to be
a representation of the distribution for A. For each realization,
the stochastic optimization aims to minimize the χ2 error, and
the random optimal spectral function will be very noisy due
to the fact that the analytic continuation problem is ill-posed.
Also, different realizations have very different features. How-
ever, since all random samples of the spectral function have
very small χ2 error, statistically they capture the feature of the
true spectral function A, and the mean value of all the samples
will be a good estimate for the final spectral function A.

Specifically, for any given initial guess of the spectral
function A(ω), which we denote by D(ω), we introduce an
initial partition �0 of the frequency axis defined by

�0 := {ωl|a = ω0 � ω1 � ω2

� · · · � ωl � ωL−1 � ωL = b }.
Here a is the lower boundary of the test frequency region and b

is the upper boundary. In many cases, one is more interested in
resolving features in the low-frequency region. Therefore, we
let the partition step size grow exponentially with increasing
absolute value of the frequency. (For example, we chose the

step size 0.1 for the interval [−2,2], 0.2 for [−4,−2] and [2,4],
0.4 for [−6,−4] and [4,6], and so on.). Thus the frequency step
size �ωl is small for small |ω| and grows with |ω|, so that we
have better resolution in the more important low-frequency
region.

With the initial guess D(ωl) and the partition �0, we
initialize R realizations of spectral functions A, denoted by
Ãr

0, r = 1, . . . ,R, with

Ãr
0(ωl) = D(ωl), l = 0,1, . . . ,L.

Each realization is initialized with the same D(ωl), for which
we typically choose a Gaussian in the absence of external
information. For each realization starting with Ãr

0, we run an
independent stochastic optimization procedure to minimize the
χ2 error and update the simulated spectral function Ãr

i from
iteration step i to i + 1, where i = 0,1,2, . . . . We find that if
we run enough iteration steps, the final result does not depend
on the initial function D.

Suppose we have the rth realization of the simulated
spectral function at iteration step i, i.e., Ãr

i . To find an optimal
solution, we add a Gaussian process, denoted by the random
vector of length L, λr

i := (λr
i (ω1),λr

i (ω2), . . . ,λr
i (ωL)), to Ãr

i

and get a proposed spectral function

Ãr

i+ 1
2

= 1

I

(
Ãr

i + λr
i

)
. (13)

Here the constant I is chosen so that the spectrum Ãr

i+ 1
2

is

normalized, i.e., it satisfies
L∑

l=1

Ãr

i+ 1
2
(ωl)�ωl = 1. (14)

In principle, the only constraint we impose on the random
variables λr

i is that the proposal spectrum is positive-definite,
i.e., Ãr

i+ 1
2

� 0. However, in order to allow for implicit

regularization and to improve efficiency, we normally set
the Gaussian process λr

i to a multivariate Gaussian random
variable with mean zero and covariance C, which determines
the smoothness of the noise λr

i as a function of frequency
ωl . If the correlation is strong (large C), the noise we
add is smooth; for small C, the noise fluctuates strongly
between neighboring frequencies. Thus, the covariance C

may be considered a smoothing factor, which provides an
implicit regularization. Since the partition step size on the
frequency axis restricts the resolution of possible features in
the spectral function, we let the covariance function C depend
on the partition of the frequency. There are many choices of
the covariance function, including constant, linear, squared
exponential, Ornstein-Uhlenbeck, rational quadratic, or other
forms. Here, we choose an Ornstein-Uhlenbeck form, i.e.,

C
(
ωl1 ,ωl2

) = exp(−α|l1 − l2|), (15)

where α is a positive constant. A popular choice of α is
provided by the “maximum posteriori estimate,” which is
a mode of the posterior distribution [14]. Note that we let
the noise correlations depend on the number of intermediate
partition steps, |l1 − l2|, instead of the frequency directly.
This means that the effective correlation between frequencies
changes with frequency since the resolution of our frequency
grid changes. It is small in the low-frequency region where the
step size is small and the resolution is high, while the effective
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correlation is high in the larger frequency region where the
step size is large. This frequency adaptive noise correlation is
consistent with the idea that finer structures are to be resolved
in A(ω) in the more important low-frequency region, while
stronger smoothing can take place in the higher-frequency
region. In general, larger values of C will impose more
smoothing on individual realizations Ãr (ωl) and thus reduce
the number of realizations needed to obtain a smooth average
Ā(ω). Thus, the correlation parameter C may be used as a
tuning parameter to balance the gain in details in A(ω) against
an increase in computer time. Given the covariance matrix
C(ω
1 ,ω
2 ) in Eq. (8), we then generate the random vector λr

i

from the L-dimensional joint normal distribution N (0,C) with
mean 0 and covariance C.

If the proposed spectral function Ãr

i+ 1
2

fits the data better
than the previous Ãr

i , i.e., if χ2[Ãr

i+ 1
2
] < χ2[Ãr

i ], we accept

the update and set Ãr
i+1 = Ã

j

i+ 1
2
. Otherwise, the update is

rejected and Ãr
i+1 = Ãr

i . Thus, the χ2 error between the
simulated Green’s function G̃ and the QMC experimental
data G will decrease monotonically. In our implementation,
the optimization process is stopped in the j th iteration if
χ2(Ãr

j ) � ε for a fixed threshold ε. Ãr := Ãr
j then denotes

the final spectral function for realization r . From a number R

of independent stochastic optimization procedures, we obtain a
set of random optimal spectral functions, i.e., {Ãr}Rr=1, which
forms an empirical distribution for the spectral function A,
denoted by P0(Ã|G). We note that the stochastic optimizations
for different realizations are independent, which makes the
algorithm scalable in the stochastic optimization procedure.

The threshold ε is a user-defined positive constant, which
should be chosen according to the complexity of the problem.
In practice, we keep ε of the same order as the variance of
the QMC data in order to avoid overfitting of the data and
to keep the efficiency of the optimization process high. In
contrast to the SOM used by Mishchenko et al. [10], we do
not allow for updates that increase χ2. The fact that we use
a random, global process to update the spectral function,
however, provides a means to get out of local minima with
high χ2. In spite of this, the optimization process slows down
at very small χ2, because the probability of finding a better
solution is small. As we observe in practice, keeping ε of
similar size to the QMC errors ensures that the process does
not become prohibitively inefficient.

The random optimal spectral function that results from a
single realization may not capture all the important features in
the true spectral function and will be noisy due to the fact that
the problem is ill-posed. The weighted average, Eq. (5), of the
different realizations, however, will be smooth if the number of
realizations is large enough. Since we stop each optimization
when χ2 reaches the same value ε, the weights in Eq. (5) are
all identical and the final spectrum Ā(ωn) is obtained from a
simple average,

Ā(ωl) = 1

R

R∑
r=1

Ãr (ωl). (16)

Note that, in practice, we chose a maximum number S

of update steps. If a particular optimization procedure for
realization r does not reach χ2 � ε in S steps, the update

process is stopped and the spectrum in step S, Ãr
S , is used as

the final result Ãr for this realization. In this case, we still use
Eq. (16) to compute the final spectrum Ā(ωl) and assume that it
is accurate enough. For the examples we considered in Sec. V,
however, we find that χ2 always reaches ε before S updates,
so this is not an issue. We generally choose the number R of
realizations large enough to get a smooth final solution for the
spectrum. R is generally problem-specific and also depends
on the parameter α in the correlation between neighboring
frequencies, as will be discussed in Sec. V, Example 1.

It is important to point out that the original frequency
partition �0 is not informed by the data G and thus is not
adaptive to the features in the spectral function. Because
of the stochastic nature of the SOM procedure, one has a
representation for the data-informed distribution P̃0(A|G) in
addition to the approximate spectral function Ā. From the
distribution, one can get the standard deviation for every single
frequency in �0 and from that construct a confidence band for
the estimated spectral function Ā. A wide confidence band
indicates large fluctuations in the different realizations, which
may point to possible fine structure in the true spectral function
A. Based on the width of the confidence band, one can then
modify the frequency partitioning to allow the algorithm to
resolve more detail in the solution. If the confidence band is
wide in a certain frequency region, we use more partition points
in that region, and conversely, if the confidence band is narrow,
we use fewer partition points. We then rerun the stochastic
optimization procedure with the modified frequency partition.
The complete algorithm for fixed frequency partitioning is
summarized in Algorithm 1.

Algorithm 1: Stochastic optimization method

Initialize Choose partition Π0 for frequency
grid ωl, initial guess of the spectral function
D(ωl), ,sample size R, χ2 error threshold
and optimization update step number S.

for r = 1, 2, · · · , R

Let Ãr
0 = D on partition Π0

while 1 i < S do
i = i + 1
Propose Ãr

i+ 1
2

= Ãr
i + λr

i

Compute χ2(Ãr
i ) and χ2(Ãr

i+ 1
2
)

if χ2(Ãr
i+ 1

2
) χ2(Ãr

i )

Ãr
i+1 = Ãr

i

else
Ãr

i+1 = Ãr
i+ 1

2

end if
if χ2(Ãr

i+ 1
2
)

Ãr = Ãr
i+1

Break
end if

end while

end for

Approximate the empirical distribution
P (Ã)

Compute Ā from P (Ã) according to Eq. (16).
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V. NUMERICAL EXAMPLES

In this section, we discuss the results of applying our
FESOM variant to three different numerical examples to assess
its effectiveness and compare with results obtained from the
standard MaxEnt procedure. The first two examples are cases
for which the exact spectrum A(ω) is known and different
samples for the data G(iωn) are generated synthetically. The
third case is a problem for which G(iωn) is generated from
a QMC simulation of a single-band Hubbard model and the
true spectrum A(ω) is unknown. For all three examples in this
paper, we choose the FESOM regularization parameter for the
noise correlations α = 0.5.

A. Example 1

In this example, we consider a synthetic problem for which
we make up a spectrum A(ω) with features similar to those
expected for the electronic spectral function of a metallic
system with a pronounced quasiparticle peak at the Fermi
energy ω = 0 (black line in Fig. 1). From this spectrum A(ω)
we generate the input data G(iωn) using the Hilbert transform
in Eq. (1) and setting the temperature T = 0.1. We then
generate 1000 samples of G(iωn) by adding noise, i.e., the ith
sample Gi

n is obtained as Gi
n = [σnoise N (0,1) + 1]Gn, where

N (0,1) is noise drawn from a normal distribution with mean 0
and standard deviation 1, and σnoise is the noise amplitude.

We first illustrate the behavior of individual realizations of
the stochastically optimized spectral function Ã(ω) for input
data with relatively low quality, which we generated using a
noise amplitude σnoise = 0.1. We have set the χ2 threshold
ε = 0.05. In the top panel of Fig. 1, we compare the true
spectrum A(ω) (black line) with five different realizations of
Ã(ω) (blue dashed curves). As one can see, all realizations
capture the central peak in the true spectral function, but
different realizations have different features in the higher-
frequency region. The bottom panel of Fig. 1 shows 100
different realizations of the stochastic optimal spectral function
samples, again compared with the true spectral function A(ω).
Here one sees again that the center peak is well captured by
all samples with very little difference between the samples. In
addition, the plots show that statistically, the samples capture
the peak on the left as well as the fluctuations on the right.

As discussed in Sec. IV, we use a Gaussian process,
in which the added noise is correlated between adjacent
frequencies, to propose updates to the spectral function in
the stochastic optimization procedure. This leads to proposals
that are significantly smoother than what one would get if the
noise added to different frequency points was uncorrelated.
This improves the efficiency of the algorithm since fewer
realizations are needed to get a smooth average Ā(ω). This
benefit, however, comes at the cost of losing possible fine-
structure details, which are potentially flattened out by the
correlated noise.

To illustrate the effect of this implicit regularization, we
compare in Fig. 2 the simulated spectral function obtained
by using correlated noise proposals (blue dash-dotted line)
with that obtained from using noncorrelated noise proposals
(magenta dash-dotted line). We have found that in the case
of correlated noise proposals, 100 realizations are sufficient

(a)

(b)

FIG. 1. Example 1. The synthetic spectral function A(ω) (black
line) is used to generate different samples for the input data G(iωn)
using Eq. (1) and compared to the results of 5 (a) and 100 (b)
independent realizations of stochastic optimal spectral function
samples (blue dashes curves). Here we have used a χ 2 threshold
ε = 0.05.

to give a smooth final average Ā(ω), while the case of
noncorrelated noise proposals required 500 realizations. As
one can see from the green dash-dotted line, 100 realizations
are not sufficient to give a smooth result when the noise
proposals are uncorrelated. With correlated noise proposals,
however, 100 realizations provide a smooth result for Ā(ω),
which is very similar to the result with uncorrelated noise and
500 realizations as well as to the true spectrum A(ω). It is also
clear that in this case, the correlations in the noise do not result
in any loss of detail in Ā(ω).

To benchmark our FESOM variant against the state of
the art, we compare in Fig. 3 the results of our approach
with correlated noise and 100 realizations (blue dash-dotted
line) with the spectrum obtained from the MaxEnt procedure
described in Sec. III (red dash-dotted line). Here we have used
the same 1000 generated samples of the input data G(iωn) in
both FESOM and MaxEnt calculations and a Gaussian default
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FIG. 2. Example 1. Averaged spectrum Ā(ω) obtained from the
stochastic optimization with 500 realizations and noncorrelated noise
proposals (α = 0, magenta dash-dotted line) compared with the result
from 100 realizations and noncorrelated noise proposals (α = 0,
green dash-dotted line) and 100 realizations and correlated noise
proposals (α = 0.5, blue dash-dotted line). Here we have used a χ2

threshold ε = 0.05.

model for the MaxEnt. For this particular case of low-quality
data, one sees that the MaxEnt result only captures the central
peak, while the peaks at higher frequency on either side are
washed out. Due to the large σnoise of the data, the MaxEnt
underfits the data and puts more weight on the entropy term
S[A] in order to minimize the deviation from the Gaussian

−8 −6 −4 −2 0 2 4 6 8
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0.05

0.1
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)

 

 
Real spectral function

Stochastic optimization

Maximum entropy

FIG. 3. Example 1, case 1. Comparison between the true spec-
trum Ā(ω) (black solid curve) with the results of FESOM (blue
dash-dotted line), using a χ 2 threshold ε = 0.05, and MaxEnt (red
dash-dotted line) for low-quality data. Here we have used a noise
amplitude of 0.1 to generate the 1000 samples for the input data.

FIG. 4. Example 1, case 2. Comparison between the true spec-
trum Ā(ω) (black solid curve) with the results of FESOM (blue
dash-dotted line), using a χ 2 threshold ε = 0.05, and MaxEnt (red
dash-dotted line) for high-quality data. Here we have used a noise
amplitude of 0.001 to generate the 1000 samples for the input data.

default model. In contrast, the FESOM method is able to
resolve the higher-frequency structure reasonably well despite
the low quality of the data.

To study the dependence on data quality in more detail, we
have generated a second set of higher-quality input data for the
same problem by setting the noise amplitude σnoise = 0.001.
As one sees from Fig. 4, here, the MaxEnt gives a much
better result with very good resolution of the structures at
higher frequencies. The smaller σnoise forces a better χ2 fit
of the input data and less similarity with the default model.
Figure 4 also shows the FESOM result for this case, for which
we have used the same χ2 threshold ε = 0.05 as in the case
of the lower-quality data displayed in Fig. 3. One sees that
the FESOM result is almost identical to the case with lower
quality. (We have also tried to run the FESOM optimization
with a smaller threshold ε = 0.001, but we found that this leads
to prohibitively long runtimes.) We stress that the inferiority of
our FESOM result relative to the MaxEnt in the case of high-
quality data does not necessarily reflect a general disadvantage
of the traditional SOM framework, but it is likely a result of
the simplifications we introduced in our variant to make the
algorithm more efficient. Returning to the case of weak data
in Fig. 3, we conclude that for cases of low-quality data, for
which the MaxEnt procedure tends to underfit the data in the
absence of a good default model, the FESOM approach can
provide results that capture the true spectral function in much
more detail.

As noted, one strength of the stochastic optimization is
that one has information of the confidence interval for all
frequencies, while MaxEnt only allows us to determine the
uncertainty of the solution integrated over a finite frequency
interval [11]. In Fig. 5, we plot the FESOM simulated spectral
function for the low-quality input data with its 95% confidence
region. We can see from the figure that in the frequency region
[0.5,3] there are two small peaks in the true spectral function,
and neither FESOM nor MEM could resolve both peaks well.
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FIG. 5. Example 1. True spectrum Ā(ω) (black solid line),
FESOM simulated spectrum Ā(ω) (blue dash-dotted line), and 95%
confidence band in FESOM (green dash-dotted line). Here we have
used a χ 2 threshold ε = 0.05.

However, the large width of the FESOM confidence band
in this region indicates strong fluctuations in the different
realizations, which in turn could be a signal of possible fine
structure in the true solution.

B. Example 2

We now consider an example for which the true spectral
function A(ω) is known and generated from a simulation
of a microscopic model, and the input data G(iωn) are
again calculated from A(ω) through Eq. (1). Specifically, we
consider a two-dimensional Hubbard model on a square lattice
with nearest-neighbor hopping t and Coulomb repulsion U

described by the Hamiltonian

H = −t
∑
〈ij〉

c
†
iσ cjσ + U

∑
i

ni↑ni↓. (17)

Here, c
†
iσ creates and ciσ destroys an electron with spin

σ = ↑,↓ on site i, and niσ = c
†
iσ ciσ is the corresponding

number operator. We use the dynamical mean-field theory
(DMFT) [15] together with a noncrossing approximation
(NCA) [16] to obtain the local spectral function A(ω) in the
antiferromagnetic state. For the majority spin, the local spectral
function A(ω) we obtain is shown as the black line in Fig. 6.
Here we have used U = 16t and set the filling to 〈n〉 = 0.95
and temperature T = 0.29. One sees the lower and Hubbard
bands at negative and positive frequencies, respectively, as
well as the fine structure with multiple peaks in the lower
Hubbard band. These resonances reflect the bound states of a
hole propagating in an antiferromagnetic background [17].

From this A(ω), we again generated 1000 samples of the
input data G(iωn) via Eq. (1) as in the previous example by
adding noise with standard deviation 0.001. The same samples
were then used in MaxEnt and FESOM to calculate an estimate
of A(ω). The χ2 threshold we have used for the FESOM
simulation was set to ε = 0.001.

Figure 6 compares the MaxEnt result (left panel) and the
FESOM result (middle panel) with the true spectrum. Here
one sees that both approaches capture the lower and upper
Hubbard bands equally well. It is obvious that the MaxEnt
has difficulty resolving the fine structure in the lower Hubbard
band at negative frequencies. It captures the first dominant
peak at ω = 0, but it fails to reproduce the multiple peaks at
lower frequencies. In comparison, the FESOM estimate also
has the leading peak, but in addition it shows fluctuations at
lower (negative) frequencies, reminiscent to some extent of
the multipeak structure in the true A(ω). These fluctuations
are also seen in the FESOM 95% confidence band plotted in
the right panel, indicating their presence in a large fraction
of the FESOM realizations. Furthermore, the large width of
the confidence band in this region is a further sign of the fine
structure that is present in the true solution. At higher negative
frequencies, however, the FESOM algorithm finds an artificial
peak near ω = −9, while MaxEnt correctly predicts a smooth
result in this region.

C. Example 3

We now turn to a real data problem, for which the input
data G(iωn) are generated in a QMC simulation and the true
spectral function A(ω) is not known. We again solve the 2D
Hubbard model of Eq. (17), but instead of DMFT with an NCA
impurity solver we now use a dynamic cluster approximation
(DCA) QMC algorithm [18,19], which allows for the inclusion
of nonlocal correlations in addition to the local correlations
treated in the DMFT. This is accomplished by mapping the
lattice model onto an effective cluster problem embedded
in a dynamic mean-field host that is designed to represent
the rest of the system and determined self-consistently. To
solve the effective cluster problem, we use the continuous-time
auxiliary-field QMC algorithm by Gull et al. [20].

For this example, we have set the Coulomb interaction
U = 8t , the site filling 〈n〉 = 0.95, and the temperature T =
0.08t , and we have used a four-site 2 × 2 cluster for the
DCA calculation. From previous calculations, it is known
that these parameters give a local spectral function A(ω)
with a pseudogap [21]. A(ω) is partially suppressed at ω =
0, reminiscent of the normal-state pseudogap phase of the
underdoped cuprate superconductors [22].

After the mean-field host is converged, we performed one
additional iteration in which measurements of G(iωn) are
performed and partitioned into 100 bins with a bin size of
100 000 measurements each. For the MaxEnt procedure, we
diagonalized the covariance matrix and rotated the data and the
kernel into a diagonal frame. Moreover, we used the annealing
technique [11], in which the MaxEnt is performed for a set
of decreasing temperatures and the resulting spectrum is used
as a default model for the next lower temperature. The same
set of 100 samples of G(iωn) is then used in both the MaxEnt
and FESOM to determine an estimate of the spectral function
A(ω). For the FESOM analytic continuation, we have set the
χ2 threshold ε = 0.001.

In the left panel of Fig. 7, we compare the simulated spectral
function A(ω) obtained from the MaxEnt (red solid line)
with that of the FESOM calculation (blue dashed line). One
again sees the two Hubbard bands centered below and above
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(a) (b) (c)

FIG. 6. Example 2. Comparisons between the true spectrum (black solid line) and the results of MaxEnt (a) and FESOM (b), for which we
have used a χ 2 threshold ε = 0.001. Panel (c) shows the 95% confidence band obtained in the FESOM. The real spectral function is obtained
from a DMFT/NCA calculation of a 2D Hubbard model in the antiferromagnetic state with U = 16t , 〈n〉 = 0.95, and T = 0.29.

ω = 0 and split by ∼U = 8t . For this case, the MaxEnt result
clearly shows more structure in the lower Hubbard band. Both
the MaxEnt and the FESOM resolve the pseudogap feature,
manifested as the dip in A(ω) at ω = 0. But it is much better
developed in the MaxEnt than in the FESOM A(ω). In addition,
the MaxEnt result displays a shoulder at ω ∼ −4, which is not
present in the FESOM result.

The right panel of Fig. 7 displays the 95% confidence band
obtained from the FESOM simulation. The band is unusually
wide even at small |ω|, indicating large fluctuations in the
different realizations. However, once again one sees that the
confidence band follows the same trend as the mean spectrum
Ā(ω). This shows that the pseudogap feature is present in a
large fraction of the FESOM realizations and is therefore likely
a feature of the true spectral function.

We also tried the annealing technique for the FESOM
simulation. We did find faster convergence of the optimization
procedure in the last step of the annealing procedure. However,

there was no change in the resulting spectrum. Considering
that a separate optimization has to be carried out for each
temperature, the annealing method is less efficient than just
running a single optimization at the lowest temperature, and,
in contrast to the MaxEnt, it does not provide any improvement
in the solution.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have introduced, analyzed, and bench-
marked against maximum entropy a fast and efficient variant of
the stochastic optimization method introduced by Mishchenko
et al. [10], called FESOM, for the analytical continuation
of imaginary frequency QMC data G(iωn), an ill-posed
problem that remains a challenging barrier in connecting
theory with experiment. In contrast to the routinely used
maximum entropy method, which introduces a default model
to regularize the problem, the stochastic optimization method
only uses minimal prior information for the quantity of

(a) (b)

FIG. 7. Example 3. Spectral function A(ω) obtained from MaxEnt (a) and FESOM (b) (using a χ2 threshold of ε = 0.001) analytic
continuation of DCA QMC data for a 2D Hubbard model with U = 8t , 〈n〉 = 0.95, and T = 0.08t .
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interest, the spectral function A(ω), and it does not introduce
a default model. The basic idea of the SOM approach is
to use several parallel optimization procedures to obtain a
large set of equally likely estimates of the spectrum and
determine the final spectral function A(ω) as an average over
these samples. The optimization procedure minimizes the
χ2 misfit between the QMC data and the modeled data by
sequentially and randomly proposing global changes to a test
spectral function. A combination of three characteristics of
our FESOM implementation results in a more efficient and
less complex algorithm than the previous implementation: (i)
It uses a fixed frequency grid just like MaxEnt. (ii) It only
allows for proposal updates that lower χ2, and it does not
permit temporary increases. (iii) It uses a Gaussian process
to update the spectral function, in which the noise added
to adjacent frequencies is correlated. Characteristic (iii) can
be viewed as an implicit regularization that results in much
smoother individual estimates and therefore a smaller number
of realizations required to get a smooth average.

We have applied this algorithm to three representative test-
case problems and compared the results with those obtained
from MaxEnt. For two of these problems, the true spectral
function A(ω) was known and used to generate a noisy set
of input data G(iωn). For the third case, we used QMC data
for G(iωn) obtained from DCA simulations of a 2D Hubbard
model. For these problems, our FESOM algorithm generally
yielded similar spectra to those obtained from MaxEnt. For
good-quality data with weak noise, we found that the MaxEnt
procedure gives much better results than the FESOM method,
while for poor-quality data the situation is reversed. In this
case, the MaxEnt tends to underfit the data, while the FESOM

procedure gives a much better result. Generally, we found that
in contrast to MaxEnt, the quality of the FESOM depends very
little on the quality of the input data. In addition, the FESOM
provides information on the confidence of the resulting spectral
function A(ω) for each frequency ω, in contrast to MaxEnt,
which only gives this information for a finite interval in
frequency.

For the test-case problems we have studied, the stochastic
optimization required on average about 1–2 min on a single
core (2.2 GHz Intel Core i7) to optimize a single realization
and a total runtime of ∼2 core hours to produce the final
spectrum as the average of 100 realizations. While the total
runtime is about an order of magnitude longer than that
of the MaxEnt procedure with annealing, per realization
it is roughly of the same order. Trivial parallelization of
the stochastic optimization over different realizations will
therefore result in similar runtimes. We therefore believe that
our implementation of the stochastic optimization technique
provides a viable alternative to the MaxEnt procedure for the
analytic continuation of QMC data, especially for cases with
poor data quality.
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