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An understanding of the physics of the half-filled lowest Landau level has been achieved in terms of
a Fermi sea of composite fermions, but the nature of the state at other even-denominator fractions has
remained unclear. We investigate theoretically Landau level fillings of the form n � �2n 1 1���4n 1

4�, which correspond to composite-fermion fillings n� � n 1 1�2. By considering various plausible
candidate states with complete spin polarization, we rule out the composite-fermion Fermi sea and paired
composite-fermion state at these filling factors, and predict that the system phase separates into stripes
of n and n 1 1 filled Landau levels of composite fermions.
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The Coulomb interaction between electrons in two di-
mensions confined to the lowest Landau level (LLL) ex-
presses itself most strongly through the binding of an even
number of quantum mechanical vortices on each elec-
tron and thereby creating composite fermions (CFs) [1,2].
The residual interaction between composite fermions is
weak and unimportant in many situations, in the sense
that it does not alter the nature of the state in a qualitative
manner. For example, at the odd-denominator fractions
n � n��2pn 6 1�, which correspond to integral fillings
n� � n of composite fermions carrying 2p vortices, the
intercomposite fermion (inter-CF) interaction can often be
neglected due to the presence of the effective cyclotron
gap. While the model of free composite fermions is ade-
quate for understanding the basic phenomenology of the
fractional quantum Hall effect (FQHE) [3], there has been
much interest recently in the more subtle physics arising
from the weak inter-CF interaction.

The state at n � 1�2p, obtained in the n ! ` limit
of the n � n��2pn 6 1� sequence, is well described as
the Fermi sea of composite fermions carrying 2p vortices
[4,5], called 2pCFs. However, our understanding of other
even-denominator fractions is less satisfactory. We will fo-
cus in this paper on even-denominator fractions of the form
n � �2n 1 1���4n 1 4�, which correspond to composite
fermion filling factors n� � n 1 1�2, according to the re-
lation n � n���2n� 1 1�. At these filling factors, the top-
most CF-Landau level (CF-LL) is only partially occupied,
and it is crucial to take account of the inter-CF interaction,
without which the ground state would have an enormous
degeneracy. We ask what finer structure the weak interac-
tion produces. A fully spin polarized state will be assumed
as appropriate for sufficiently high magnetic fields. The
conclusions will also apply to n � �2n 1 3���4n 1 4�
due to particle hole symmetry in the lowest LL.

Several interesting states have been considered at
electron filling factors n � n 1 1�2, which will serve as
paradigms for the discussion below. In the lowest Landau
level (n � 1�2), electrons transform into composite
fermions which condense into a 2CF Fermi sea [4,5]. In
the second LL (n � 2 1 1�2) it appears that electrons
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turn into composite fermions, which form a BCS-like state
to produce FQHE [6–9]. In yet higher Landau levels,
electrons do not capture vortices but are instead believed
to exhibit a stripe phase [10–14].

Which state actually occurs depends on the interaction
matrix elements, and it is therefore important to have a
good model for the inter-CF interaction, V CF�r�. We
proceed as follows: In order to treat the state at n� �
n 1 1�2, we start with the state with n� � n filled Lan-
dau levels of composite fermions and add two additional
composite fermions in the lowest empty CF-Landau level.
Following the standard procedure for writing the wave
functions for composite fermions [2], the wave function
for this state is given by PLLLF

2
1F11m

n , where F1 is the
wave function of one filled LL, F11m

n is the wave func-
tion of the electron state in which n LLs are fully occu-
pied, and the �n 1 1�st LL contains two electrons in a
relative angular momentum m state, and PLLL is the low-
est LL projection operator. The explicit form for the gen-
eral wave functions of this type is given in the literature, as
also are detailed tests of their validity [15]; the calculation
of energy requires the evaluation of multidimensional inte-
grals which is accomplished by the Monte Carlo method.
(The spherical geometry [16] is used in our calculations.)
This provides the pseudopotentials [16] VCF

m , which com-
pletely specify the interaction between two composite fer-
mions in the �n 1 1�st CF-LL. Similar studies have been
done previously [17], except that here VCF

m are evaluated
for fairly large systems, and are closer to the thermody-
namic limit. We then construct a real space interaction
between composite fermions; for convenience, we map the
problem of composite fermions in any arbitrary CF-LL into
a problem of fermions in the lowest LL. There is no unique
prescription for this, because many real space interactions
produce the same pseudopotentials, but we find it conve-
nient to use a potential of the form [9]

VCF�r� �

√X
j

cjr
2je2r2

1
�2n 1 1�25�2

r
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el0

#
.

(1)
© 2001 The American Physical Society 256803-1



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001
The last term gives the Coulomb interaction between two
particles of appropriate fractional charge. The distance r
is measured in units of the effective magnetic length �,
but the energies are measured in units of e2�el0, where
l0 is the magnetic length at the actual electron filling fac-
tor n, and e is the dielectric constant of the background
material. We fix the first few parameters cj by requiring
that VCF�r� produce the first 5 to 6 odd pseudopotentials
exactly. A comparison between VCF

m and the pseudopo-
tentials of VCF�r� (Fig. 1) shows that VCF�r� is a good
approximation for all distances. We have thus mapped the
problem of N composite fermions in the �n 1 1�st LL into
that of N fermions at an effective filling in the lowest LL
interacting with an effective potential. Only the compos-
ite fermions in the topmost half-filled CF-LLs will be con-
sidered explicitly; the completely occupied CF-LLs appear
only through their role in determining the inter-CF interac-
tion. We note that the interaction between composite fer-
mions is markedly different from that between electrons
in the corresponding higher LLs. In the second CF-LL,
the interaction is most strongly repulsive in the m � 3
channel, and in higher CF-LLs, the interaction is actually
attractive, with the lowest energy in the m � 1 channel.

Our conclusions below will be subject to two as-
sumptions. (i) We assume that mixing with higher
CF-LLs can be neglected, i.e., the inter-CF interac-
tion is weak compared to the effective CF-cyclotron
energy. There is evidence that this is an excellent ap-
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FIG. 1. The Haldane pseudopotentials for the intercomposite
fermion interaction in the second, third, and fourth CF Landau
levels, calculated from the microscopic wave functions (circles).
The error bars indicate the statistical error from the Monte Carlo
sampling. The crosses are the pseudopotentials for the model
interaction VCF�r� explained in the text. Ntot is the total number
of particles.
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proximation; the states containing several composite
fermions are accurately described without consider-
ing mixing between CF-LLs [18]. (ii) We further
assume that the interaction energy of many compos-
ite fermions in the �n 1 1�st CF-LL is well approxi-
mated by a sum of two-body terms. An examination of
configurations containing three composite fermions in
the second CF-LL provides some justification for this
assumption [17,19], but further work will be required to
ascertain the extent of its validity.

The first state that we look at is the Fermi sea, in which
the 2CFs capture two additional vortices to become 4CFs,
which then form a Fermi sea. (The composite fermions
in the lower, fully occupied CF-LLs remain 2CFs; this
state thus contains an admixture of two different flavors
of composite fermions.) The wave function of the Fermi
sea is

CFS � PLLLF2
1F` . (2)

The thermodynamic limit for the energy of the 4CF
sea is obtained by an extrapolation of finite system
results, as shown in Fig. 2. Since we are interested in
comparing energies obtained by different methods, it is
important to carefully define the total energy; we will
consistently take the same form for the electron-electron,
electron-background, and background-background inter-
actions in all our calculations. All energies are quoted
relative to the energy of an uncorrelated uniform state
explained below.
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FIG. 2. The energy per particle for the CF Fermi sea (squares)
and the CF paired state (circles) as a function of N , the number
of composite fermions in the �n 1 1�st CF-LL. The thermody-
namic energies are also indicated for the CF stripe and bubble
phases by filled and empty arrows on the y axis. All energies
are measured relative to the uncorrelated uniform density state,
explained in the text.
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We do not expect the ground state to be the 4CF sea
because the stability of the Fermi sea requires a strong
short range repulsion, which is not the case with compos-
ite fermions in higher CF-LLs [20]. In fact, in the third
and higher CF-LLs, the interaction between the compos-
ite fermions is attractive, which might suggest pairing of
composite fermions. The paired state of composite fermi-
ons is represented by the Pfaffian wave function of Moore
and Read [8]

CPf � F2
1 Pf�M� , (3)

where Pf�M� is the Pfaffian of the N 3 N antisymmetric
matrix M with components Mij � �uiyj 2 yiuj�21,
where uj � cos�uj�2� exp�2ifj�2� and yj �
sin�uj�2� exp�ifj�2�. Pf�M� is a real space BCS
wave function, so CPf describes a paired state of com-
posite fermions. Again, since our base particle is a 2CF,
CPf contains pairing of 4CFs. The energy of this state,
given in Fig. 2, beats the Fermi sea at n � 3�8 and 7�16,
raising the intriguing possibility of a FQHE, induced
by pairing, at certain even-denominator fractions in the
lowest Landau level.

Past studies [21] have shown that certain candidate
FQHE states can be eliminated by looking at the “excita-
tions.” We consider the density-wave mode of the Pfaffian
wave function in the single-mode approximation [22],
described by the wave function PLLLrkCPf, where rk

is the density operator at wave vector k. We calculate
the energy of this mode following Ref. [22], with the
help of the pair correlation function of CPf [23]. The
energy, shown in Fig. 3 for n � 3�8 as a function of the
wave vector, goes below the energy of the Pfaffian wave
function, indicating that the paired state is unstable.

We have also carried out [19] exact diagonalization at
the flux values corresponding to the Pfaffian wave function
in the spherical geometry, and found that the ground state
does not have orbital angular momentum L � 0, i.e., is not
a uniform density state. The fact that the instability occurs
at nonzero wave vectors in Fig. 3 also hints that the true
ground state may not be a translationally invariant liquid.
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FIG. 3. The excitation energy of the single-mode-
approximation (SMA) excitation for the Pfaffian wave
function (solid line) at n � 3�8.
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Besides pairing, another possible consequence of an at-
tractive interaction is phase separation. Because of the long
range Coulomb interaction, the phase separation is likely
to manifest itself here through the formation of stripes or
some other type of charge-density wave state. We calcu-
late the Hartree-Fock energy of the stripe state of 2CFs
following the method of Koulakov et al. [10]. The inter-
action Hamiltonian is given by

V̂ �
�2p�3

2LxLy

X
q

ṼCF�q�r�2q�r�q� , (4)

where r�q� is the density operator and ṼCF�q� is the
Fourier transform of V CF�r�. Subsequent to a Hartree-
Fock decomposition, the expectation value of the interac-
tion energy can be written as

�V̂� �
�2p�3

2LxLy

X
q

ŨHF�q�D�2q�D�q� , (5)

where D�q� � 1
2p

P
k e2ikqx�2�ay

k1
ak2

�, ŨHF�q� �

Ũ�q� 2 �2U�q�2�, Ũ�q� � V CF�q�e2 1

2
q2�2

, and k6 �
k 7 qy�2. The q � 0 term, which corresponds to the
uniform (uncorrelated) state, is treated separately: the di-
rect part is canceled by the background, and the exchange
part is taken as the reference energy, given by

E0 � 2Nn
U�0�

2
, (6)

where n � 1�2. The contribution coming from nonzero
values of q is called the coherence energy, Ecoh.

The stripe phase with period L corresponds to the choice

D�x,y� �
1

2p�2

X
q

2 sin�qLn

2 �
Lq

eiqx , (7)

where q �
2jp

L , with j � 61, 62, . . . . This gives

Ecoh �
1

2n�2

X
q

ŨHF�q�

√
2 sin� qLn

2 �
Lq

!2

. (8)

We compute it as a function of L. The lowest energy,
shown in Fig. 2, is obtained at L�l0 � 10, 28, and 34
for n � 3�8, 5�12, and 7�16, respectively. The period
is rather large compared to that for the electron stripes in
higher LLs (for which L�l0 is of order unity), which is
not surprising because the interaction between composite
fermions is rather weak, and also the difference between
the densities of the FQHE states on either side is quite
small.

We next consider the Wigner crystal of “bubbles” [10],
with each bubble containing in general several electrons.
For a hexagonal lattice with lattice constant Lb , the radius

of a bubble is R �
qp

3 n�2p Lb and

D�r� � �2�
p

3 L2
b�

X
q

R
�2q

J1�qR�eiq?r, (9)
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where q � m1e1 1 m2e2 with e1 � �4p�
p

3 Lb�ŷ, e2 �
2p

Lb
x̂ 2 �2p�

p
3 Lb�ŷ, and m1 and m2 being integers. The

coherence energy for the bubble phase is

Ecoh � �4p�
p

3 �2L2
b�

X
q

ŨHF�q�
µ

R
A�2q

J1�qR�
∂2

.

(10)

The lowest energy, shown in Fig. 2, is determined by
examining bubbles with various occupancies. The stripe
phase has lower energy than the Fermi sea, paired state,
and the bubble crystal for the filling factors consid-
ered here.

In the above, the filling factor n� � n 1 1�2 has been
viewed as half filling of CF particles on top of n filled
CF-LLs. We have also carried out [19] the complemen-
tary approach in which it is modeled as half filling of CF
holes on the background of n 1 1 filled CF-LLs. The
stripe phase has again been found to have the lowest en-
ergy, which gives us further confidence in the robustness
of our result. It should be noted, however, that the is-
sues regarding the stability of the unidirectional charge
density wave against a modulation along the length and
also against quantum fluctuations, which have been inves-
tigated in the context of electronic stripes in higher Landau
levels [12], have not been considered here.

A transport anisotropy in higher electronic Landau
levels, interpreted in terms of stripe formation, is observed
at temperatures below 	50 mK [14]. The conditions
for the CF stripes are more stringent. Estimates of the
critical temperature from the Hartree-Fock theory are not
quantitatively reliable, but noting that the effective inter-
action between composite fermions at n� � n 1 1�2 is
roughly an order of magnitude smaller than for electrons
at n � n 1 1�2, as measured by the pseudopotentials,
we expect the critical temperature to also be similarly
reduced. Also, the much larger period suggests the need
for a high degree of density homogeneity.

The work was supported in part by the National Sci-
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