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Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood
by neglecting the interactions between composite fermions altogether. For example, the fractional quantum
Hall effect atv=n/(2pn=1) corresponds to filled composite-fermion Landau levels, and the compressible
state atr=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interac-
tions between composite fermions will determine the nature of the ground state. In this paper, a model is
constructed for the residual interaction between composite fermions, and various possible states are considered
in a variational approach. Our study suggests the formation of composite-fermion stripes, bubble crystals, as
well as fractional quantum Hall states for appropriate situations.
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[. INTRODUCTION mobilities only the integral quantum Hall effect was seen,

. . . which is explained by neglecting the interaction between

In two dimensions, electrons subjected to a strong Maga|ectrons. As the sample quality improved and temperature
netic field avoid one another by capturing an even number 0|6wered, the FQHE was observed, which is understood in

quantized vortices and turning into composite fermibfis. terms of weakly interacting composite fermions. While the
The composite fermions interact much more weakly thanmodel in which the composite fermions are taken as nonin-
electrons. In fact, tremendous progress can be made towatdracting has been strikingly successful, one may ask if an-
understanding the dramatic behavior of this system by treawther set of structures would emerge as the experiments fur-
ing composite fermions as noninteracting. It is not that theréher improve. This question has motivated our investigation
is no interaction between the composite fermions, but it i<of the subtle physics arising from inter-CF interactions. For-

weak and often does not alter the nature of the state in prnately, there already exists a good microscopic approach
0

gualitative manner, i.e., can be treated perturbatively. In suc r investigating thL_c, issue, in the form of the wave func_tions
Co r composite fermion$.Even though these wave functions

sfltuafuons, wh|l_e the mter-compos!te-fermmﬁﬁ:l:_) mte_r ac are motivated by the physics of independent composite fer-
tion is surely important .for. guantitative considerations, 'tmions, they give an excellent description of the interaction
does not affect the qualitative phenomenology, and can bgetween the composite fermiofié? In fact, the wave func-
neglected altogether when the aim is to describe the qualitaions practically give the exact solution to the problem,
tive phenomenology. which implies that they incorporate the full interaction ef-
For example, the odd-denominator fractions n/(2pn  fects. For example, consider the low-energy branch of exci-
+1) map intov* =n of composite fermions carrying® tations, described as an exciton of composite fermions. If the
vortices. Here, the system has a gap even in the absence @mposite fermions were noninteracting, this branch would
inter-CF interactions—in stark contrast to thkectronsys- not have any dispersion. In reality, there are oscillations in

_ ; the energy as a function of the wave vector, arising from the
tem atv=n/(2pn=1) which had an enormous degeneracy_ . : : N
in the absence of interactions—and it is possible that fo esidual interaction between the CF particle and the CF hole.

- . he dispersion computed from the wave functions provides
e o e & Scciate acountof e ol The v fun
) . S ““"tions similarly obtain the energy of two CF particles or two
value. If that were the case, the inter-CF interaction is unimg 1 5jes quite accurately.
portant at a qualitative level. T_hi_s explains the fractional The inter-CF interactions are of course always relevant to
quantum Hall effect (FQHE) at filling factors v=n/(2pn  quantitative issues. However, there are two situations in
+1) in terms of the integral QHERef. 4 of composite \yhich they can also make a qualitative difference in the
fermions. physics. The first situation is when the inter-CF interaction
Another example is at fractions=1/2p, which map into  overwhelms the gap of the noninteracting CF model, thereby
composite fermions at zero effective magnetic field. If thedestroying the FQHE° It has been shown that far<1/9
interactions between composite fermion are neglected, as well as for most fractions in higher Landau levels, the
Fermi sea is obtainetlConceptually, it is more difficult to FQHE undergoes an excitonic instability, i.e., the energy of
justify the neglect of inter-CF interactions in this case, asthe exciton becomes smaller than the energy of the uniform
there is no gap for the Fermi sea. Nonetheless, at least thefiled CF Landau-levelLL) state. The CF theory thus not
is a well defined ground state for composite fermions, unlikeonly tells us where the FQHE occurs but also where it does
for noninteracting electrons at=1/2p, and various experi- not. (Recent experimentshave shown evidence for FQHE
mental studi¢shave shown that the CF Fermi sea is a goodat 1/9 atfinite temperatures. Even though this observation is
starting point for many purposes. not presently understood, it ought to be stressed that it is not
We recall that at relatively high temperatures and lowinconsistent with the earlier theoretical predictions which
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only address the zero-temperature pha&epairing instabil-  calculation. Section Ill discusses how we obtain the pseudo-
ity has also been suggested:at 5/2, i.e., at the half-filled potentials for the inter-CF interaction, and how we obtain
second LL, where the residual interaction between the comfrom it a real space interaction between composite fermions.
posite fermions is attractivé:'* The resulting instability of ~ Certain preliminary observations are made in Sec. IV. The
the CF Fermi sea causes a gap to open up here, producing,ariational wave functions are given in Sec. V, and Sec. VI
plausible scenario for the 5/2 fractional quantum Hallgiscusses the results of our calculations. In Sec. VII, we

effect™ briefly investigate the effect of finite thickness on our results.
The other situation where the inter-CF interaction is ex-

pected to be important is away from the special filling frac-

tions v=n/(2pn= 1), where the topmost CF LL is only par- Il. ASSUMPTIONS

tially occupied, and the ground state has a large degeneracy e will be studying composite fermions at fillings of the

if the inter-CF interaction were to be turned off. The degen- pe v* =n+ »* , wheren is the number of filled composite

eracy for independent composite fermions is much Sma”ef)érmion Landanu' levels and* is the filling fraction of the

than for independent electrons even here, making the form%pmost composite fermionnLandau level. In order to make

a better-defined starting point. The weak residual interaction roaress. we will make several assum tiéns

between the composite fermions will decide the nature of th&"9 ’ b :

true ground state here. The present paper deals with such The.system W.'" b‘? taken to t.)e. fully spin polarlzeq, Wh'Ch
situations is a valid approximation for sufficiently high magnetic fields.

The first possibility that comes to mind when compositeThe method can be adapted to situations for which the states

fermions partially occupy a Landau level is that of tHeirc- are only partially spin polarizetf, but here we will confine

) . . .__our attention to fully spin-polarized systems.
tional QHE. This could_happen when the composite fermion Below we will map the problem of interacting electrons

filling factor is v* =n=n/(2pn+*1), which corresponds, as intg that of interacting composite fermions only of the top-
usual, to electrons filling factors given by=v*/(2pv*  most partially filled CF Landau level. The interaction be-
+1). We will consider the special case when the base comyyeen composite fermions will be obtained by “integrating
posite fermions are carrying two vortices, denoted®F’s,  out” the composite fermions of the lower filled CF LL's.
and the*CF's in the topmost partially occupied CF LL cap- e will assume that the filled CF Landau levels can be
ture two additional vortices to become&'CF’s (composite  treated as inert and the problem can be defined solely in
fermions carrying four vorticgsand condense into an incom- terms of the composite fermions in the topmost partially
pressible state witim filled Landau levels. The full state is filled CF Landau levels. This should be qualitatively correct
then made up of two flavors of composite fermions, withbetween well defined FQHE states described by filled CF
2CF’s in the lower filled CF LL's, and*CF’s in the topmost  Landau levels. It should also be a quantitatively accurate
CF LL. Such states are quite analogous to the FQHE state ajpproximation when the CF LL separation is large compared
v=2+1/3, where electrons in the second LL convert intoto the inter-CF interaction. Indeed, for a filling factor in the
composite fermions whereas the electrons in the lowest Llrange 1/3<»<<2/5 the composite fermion theory neglecting
remain electrons. Such states have been considered in ti=-LL mixing provides a very good description of the actual
past'>and dubbed mixed flavor states of composite fer-states obtained from exact diagonalizatidr-However, this
mions. Of course, depending on the filling, it is also possibleapproximation may become worse when the effective cyclo-
that composite fermions would capture additional vortices tdron energy is not too large; here the hybridization of CF
form a Fermi sea or a paired state. Yet another possibility istates with higher CF Landau levels may become relevant.
for them to not capture any new vortices but rather to phase Given that the composite fermion system actually repre-
separate in some manner, possibly through formation ofents a strongly correlated state of matter, the interaction
stripes. Our aim in this paper is to consider these possibilitieenergy for composite fermions in general involves two-,
as quantitatively as presently possible over a range of fillinghree-, andh-body terms. The most critical assumption will
factors. be our neglect of three- and higher-body terms. Following
It should be emphasized that while these states are easiliojs and Quinn® we will assume that the interaction energy
viewed in terms of composite fermions, they are fantasticallyof the many composite fermion system can be modeled as a
complicated in terms of electrons. Consider the possibility osum of pairwise interaction. Furthermore, we will determine
pairing atv=3/8, for example® First, all electrons capture the pair interaction from the system that contains only two
vortices to turn into®CF’s atv* =1+ 1/2; then, those in the composite fermions in the partially occupied CF Landau
half filled CF LL put on two more vortices, and attempt to level (with the lower CF Landau levels fully occupiedhis
make a“CF Fermi sea; but the Fermi sea is unstable tocassumption is valid only if the three- and higher-body terms
pairing; pairing opens up a gap to produce a fractional quando not cause a phase transition.
tum Hall effect. Such a state could perhaps not be envisioned There are indications that the higher-order terms are
without the knowledge of composite fermions. small. Theexactenergy spectrum of the system with three
In an earlier short papéf,we studied composite fermion composite fermions in the second CF Lihere the only
fillings given by v* =n+1/2 by this method. The present input is the Coulomb interaction between the electydres
paper gives further details and also considers a broader randpeen compared with the energy spectrum that the pair-wise
of filling factors. The plan of the paper is as follows. In Sec.interaction predicts, and a reasonably good agreement is
II, we enumerate the various approximations that go into thebtained® The latter spectrum is obtained by diagonalizing
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the effective two-body interaction between composite fermi- - .

ons obtained by the method outlined earlier. However, no ~ H|#)=2 > VoPhle)=2 > VuPlly). (4

systematic study of the effects of multiparticle interaction B e =) m=odd

has been performed as a function of the number of particlesdere P}, projects particles andj onto a state of relative
Another limitation of our work is its variational nature, angular momentunm. This Hamiltonian is useful for exact

which makes it as good as the trial wave functions for vari-diagonalization study.

ous states. For example, for FQHE states, we will use the The pseudopotentials for composite fermions are defined

standard wave functions for composite fermiorEhese are  similarly. For the pseudopotentials in théh composite fer-

extremely accurate in the lowest Landau level, but not s@nion Landau level, we consider the state in which the lower

accurate for FQHE in higher Landau levels. Of course, it isCF Landau levels are fully occupied and the+H1)st CF

also possible that the actual ground state has some comandau levels contains two composite fermiow§’ is then

pletely new structure, not described physically by any of thejefined as the energy of the state in which the two composite

trial states considered here. _ fermions are in the relative angular momentamstate. In
These caveats are meant to stress right at the outset thgher words,

the results below are not “hard” predictions of the composite
fermion theory, but are predicated upon several assumptions.

i is the fi i (12 —lveh)
This study is the first step toward a theoretical treatment of m iy, m
the interaction between composite fermions, and it is hoped VEF= CFCF -E.., (5
that future experimental and theoretical studies will shed (P |m )

light on the reliability of our present model. where|ySF) is the wave function of composite fermions in

the relative angular momentum states. Note that the state

Ill. MODEL FOR INTERACTION of two composite fermions in then( 1)st level is a many
BETWEEN COMPOSITE FERMIONS body state of electrons. For convenience, the energy is mea-
sured relative td,, , the energy of the state in which the two
composite fermions are far separatéebr finite systems the

It is known that a two-body interaction of fermions con- value of E., is chosen in the manner explained below.

fined to some Landau level is fully characterized by its We use the spherical geometry for our calculatibhBol-
Haldane pseudopotentidlsV,,, which are the energies of lowing the standard procedure for writing the wave functions
two particles in the relative angular momentum staie  for composite fermiorfsthe wave function for the relevant
[ m): state with angular momentuinis given by

A. Pseudopotentials for CF-CF interaction

RSV [y =P P2}, 6)

V.= =
™ (nlpm) 22 iy 2me2

2/m2
rdrV(r)r2me "4 . . . .
f ") where®, is the wave function of one filled LLp, " is the

wave function of the electron state in whioH_L's are fully
_ 02 . . .
_ —q2 212 occupied and then+1)st LL contains two electrons in an
Jqdq Maye ol m(alo). @ angular momentunh. state:

Herel is the magnetic length,,, is a Laguerre polynomial,

and| ) is the two-body state of relative angular momentum ‘I);H:mzm (LM[imy;Imo)ay, 1,mlarf+ 1m,Pn- (7)

m. For fully spin polarized fermions, only the pseudopoten- 1

tials V,, with odd integer values ofn are relevant. In this Here @, is the state witn-filled LLs, a., 1m, Creates an
paper, the Fourier transformation is defined symmetrically, electron in thel,=m;, state in the g+ 1)th LL, | is the

angular momentum of a single composite fermion in the (
+1)st LL, and(LM|Imy;Im,) are Clebsch-Gordon coeffi-
cients. Because the energy depends only on the total angular
momentumL, we work with M=0, i.e., m;+m,=0. The
where Jq is a Bessel function. In the equations below, theexplicit form for the general wave functions of this kind is
interelectron interaction/(r)=e% er will be expressed in given in the literaturé. P, is the lowest LL projection
units ofe?/ el o, andr in units ofl; the interelectron interac- operator.

- 1 -
V(q)EEJ erV(r)e—'q'f:f rdrdo(qr)V(r), (2

tion then become¥(r)=1/r. The appropriate units will be In the spherical geometry,,, is defined as the energy of
put back at the end. the state with angular momentulm= 2l —m (Ref. 20:
Given the pseudoptentials we can construct the two body
interaction in the lowest LL using the following formula: CE 1
<l//2|—m|2 —|¢2—m
VEF= =1 T E ®)
~ m .
V(a)=272 Vol m(d?). (3) (W2l 951" m
m
This brings the definition of the pseudopotentials into con-

Alternatively, we can directly write the Hamiltonian as formity with the disk geometry, reproducing the disk pseudo-
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0.05 , T T T TABLE |. Pseudopotentials for CF holes in the lowest CF Lan-
004 I* i dau level. In this and the following tableg,, is the energy of the
1st GF—LL (N=19) full state, andAE,, is the Monte Carlo statistical uncertainty. The
0.03 | 1 energies are quoted in units et/ el .
0.02 -
0ol | = KKEIIE}@ m Em AE,,
, 1 —7.726 983 0.000574 4120
3 3 —7.757 470 0.000777 8533
—_ 00T 2nd CF-LL (N=42) 1 5 —7.752651 0.001 031 060 4
N@ 0.005 | 7 —7.758 716 0.0010988030
LL,Q,E Fl &3 T ® % 9 F] 9 —7.758 750 0.0012034221
0> 0r & - 1 11 —7.759422 0.0012985310
0005 . . 13 ~7.760 764 0.001 262413 4
e ' ' ' ' 15 —7.761201 0.0012929297
2 8rd GF-LL (N=40) 17 ~7.762082 0.001 654 684 3
0.005 | - 5 ] 19 —7.762933 0.001697 643 3
o} EgEE X
0005 [ ' - [ U OF s Lhierne ao
o 5 10 15 20 25 |yCF(n)|2 1<) rig | ™
S

m

* . .
FIG. 1. This figure gives the pseudopotentials for compositeVNere (=) means that the two sides are equal upto an addi-
fermion “holes” in the first, second, and third composite fermion i€ constant. Generally, the error increases as the angular
levels. These are definédp to an overall additive constaras the ~Mmomentum moves away from the sampling angular momen-
energies of two composite fermion holes in the appropriate compodlUm, and one must eventually use a different state for sam-
ite fermion Landau level, with the lower CF levels fully occupied. Pling; however, sampling with a single state works satisfac-
The systems are large enough that the pseudopotentials at the fitstry for N=<40, whereN is the total number of particles.
few m (relative angular momentumvalues are well converged. In a Monte Carlo run with composite fermions, all ele-
Circles denote the pseudopotentials computed from the microscopiments of the determinant are altered even if a single particle
wave functions, with error bars showing the Monte Carlo uncer-is moved, because of the strongly correlated nature of the
tainty, and crosses are the pseudopotentials for the real-space mogigbblem. However, in a given step, the determinants that
interaction explained in the text. The pseudopotentials for CF “parcombine to give the state with a well definkediiffer only in
ticles” in the second, third, and fourth composite fermion levelstwgo columns. Rather than calculating each determinant en-
were given in Ref. 17. tirely, we use an updating trick earlier used in Ref. 21, which
is a generalization of a method used for updating determi-
potentials in the thermodynamic liml— o, when the an- nants that differ only in one colunfi.The method is ex-
gular momentum of the lowest Landau-level shell alsoplained in the Appendix.
diverges:l— . To see this, it is helpful to note that in the  The pseudopotentials for the CF-CF interaction are shown
disk geometry, the separation between the two particles inin Fig. 1 of Ref. 17 and Fig. 1. The explicit values are given
creases witm. In the spherical geometry, the smallest sepadin Tables 1-VI.
ration is obtained when both particles are put in the shme
state, which corresponds to the largest angular momentum B. Inter-CF interaction in real space
L=2I (not bothering about the Pauli principle her&hus

the largesL corresponds to the smallest Now that the composite fermions of the fully occupied CF

The integrals are performed using Monte Carlo; we evalu—LLs have been integrated out to pr_oduce an effec_tlve Inter-
action between the composite fermions of the partially filled

ate Vi for up 10 50 parpcles. Qf partpular interest is the CF LL, only theN composite fermions in the topmost par-
short-range part of the interaction, which appears to con:

verge to the thermodynamic limit fairly quickly with the tially filled LL will be explicitly considered in what follows.

) gEarIier, the symboN was used for théotal number of com-
number of particles, as expected. The long-range part of the” ". formi but below it will b d for th b
interaction is explicitly known, as discussed below. Posite fermions, but below it will be reserved for the number

In order to minimize the computation time, we caIcuIateOf composite fermions in the partially filled CF LL.

several pseudopotentials within one Monte Carlo run b We thus have a system of fermions restricted to a certain
v pse P . CF . YcF LL, with an interaction known through its pseudopoten-
sampling with one wave functlomms(r), according to

tials. It would be most natural to feed the pseudopotentials
into an exact diagonalization routine and compute the ground
. 1 state. However, such studies are not useful for some of the
VCF= | grlyCF 22 il 9 states that we wish to consider. The system sizes accessible
o= | drluET P - ©) t we wish _
i<j Tij to exact diagonalization are too small to capture the physics
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TABLE Il. Pseudopotentials for CF particles in the second CF  TABLE IV. Pseudopotentials for CF particles in the third CF

Landau level. Landau level.

m En AE,, m En AE,,

1 —11.755 883 0.0005593626 1 —18.942 399 0.001 0950836
3 —11.741 289 0.0006092897 3 —18.932547 0.0012154270
5 —11.756 699 0.0005888317 5 —18.927 645 0.001 1055870
7 —11.754 222 0.000582 1469 7 —18.935310 0.0012656451
9 —11.754 109 0.000691 326 4 9 —18.934032 0.001 233024
11 —11.755223 0.000699 3560 11 —18.934417 0.001279504 3
13 —11.755586 0.000857 009 1 13 —18.933 864 0.0013178322
15 —11.755554 0.000554 5685 15 —18.933 060 0.001 2459279
17 —11.756 373 0.000602 1690 17 —18.935017 0.001 3152929
19 —11.756 839 0.000579602 6 19 —18.934 135 0.001 3808266
21 —11.756 438 0.000591 4016 21 —18.934 547 0.001 526548 6
23 —11.756 528 0.0006283216 23 —18.934 336 0.001248864 4
25 —11.756 233 0.0006583812

27 —11.756 788 0.000 659904 2

into that ofN fermions in thelowestLL at v . Such a map-
ping can, in principle, be carried out exactly, because the
of compressible or stripe stated@\lso, the spherical geom- problem of fermions in any given LL with one interaction is
etry often used for exact diagonalization is not particularlyequivalent to that of fermions in a different LL with another
convenient for the stripe phage. interaction, provided the Haldane pseudopotentials for the
We shall instead proceed by considering variational wavewo interactions are the same. Defining the problem in the
functions for several different kinds of states, and determinfowest LL helps us to find the energies for various composite
ing which has the lowest energy. As mentioned earlier, thisermion states, because convenient techniques exist for writ-
approach has the shortcoming that we do not know if weng the wave functions in explicit form in the lowest LL.
have missed the true ground state, and even for a given state, For some of the statgpaired state, Fermi sgthe calcu-
we may not have a sufficiently accurate wave function. Weation will be done in the spherical geometry, and the energy
will consider all of the states that have been investigated irin the thermodynamic limitl|— ) will be estimated by an
the past in the lowest and higher Landau levelglettrons  extrapolation of finite system results. For the stripe and
and hope that the actual ground state is one of them. Ultibubble phases, the calculations will be done directly for the
mately, only experiments can tell us for sure if that is thethermodynamic limit in the planar geometry. In this case, the
case. spherical geometry is used only for the determination of the
We will evaluate the energies of the some of the trialeffective interaction between composite fermions.
wave functions using the Monte Carlo method, for which we In order to map the problem of composite fermions at
will need a real space form for the interaction between comy* =n=+ »* into fermions atv’ in the lowest Landau level,
posite fermions. Furthermore, it is convenient to write vari-ywe need to find an effective interactiafy(r) which pro-
ous trial wave functions in the lowest Landau level. So wedyuces the desired pseudopotentials in the lowest Landau
will map the problem of composite fermions &t =n*wv;  level. A proper consideration of the long range part of the
interaction is important for our purposes below, especially in
TABLE IIl. Pseudopotentials for CF holes in the second CF the context of stripes, the period of which is determined by a

Landau level. competition between the short range attraction and long
m Em AEn TABLE V. Pseudopotentials for CF holes in the third CF Landau
1 —18.135544 0.000977 4497 level.

3 —18.120577 0.000966 582 2 m E, AE,,

5 —18.133069 0.0009376358

7 —18.131464 0.000 8402889 1 —17.620 082 0.000983 051

9 —18.130383 0.000907 4839 3 —17.612904 0.000917 553

11 —18.130536 0.000976 4340 5 —17.606 845 0.001 063 009

13 —18.131 314 0.000965168 3 7 —17.614 824 0.001 009 564

15 —18.130 754 0.001 0156039 9 —17.615 345 0.000978 099

17 —18.131685 0.0009203913 11 —17.614 743 0.000939712

19 —18.130 155 0.000944 2089 13 —17.614 587 0.000958 717

21 —18.131 228 0.001016996 7 15 —17.612 469 0.000891 311
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TABLE VI. Pseudopotentials for CF particles in the fourth CF TABLE VII. Parameters for our model interaction for two CF

Landau level. particles in an otherwise empty CF LL. The second, third, and
fourth CF LL's are considered. All of thg’s not shown here are set

m En AE,, equal to zero.

1 —16.691824 0.001014 85 Parameter  Second CFLL  Third CFLL  Fourth CF LL

3 —16.686 846 0.001058 39

5 —16.682 793 0.001 07136 C, —1.57357 1.75418 —10.6790

7 —16.680 260 0.001 08352 Ce 0.00817294  —0.0114760 0.079 366 5

9 —16.687 565 0.001 07323 Cio —1.720 40E-6 2.62965E-6 —2.49751E-5

11 —16.684 489 0.001 11337 Cis 4.31056E-11 —6.30827E-11  9.87564E-10

13 —16.685 492 0.001 256 16 Cig —1.80465E-16  1.96255E-16 —7.12056E-15

15 —16.685 188 0.000 958 45 C22 0.0 0.0 9.291 68E-21

range repulsion. Therefore, we treat the long distance part of The units for the effectizve potentizal defined above ought
the interaction explicitly in our calculations. Fortunately, theto be noted. If we replace®/ el by e”/€l* in Eq. 13, then
form of the interaction in this limit is known: it is given by the interaction has the natural form for a problem at the

the Coulomb interaction between particles of fractional€ffectivemagnetic field. We do our calculations with this
chargee/(2n+1), i.e., interaction potential, and then obtain the final energies by a

change of units.
Next we proceed to find values for the coefficienisso
: (1) that the pseudopotentials ¥f'f reproduce the pseudopoten-
tials VS calculated earlier from microscopic wave func-
wherer is the dimensionless distance between the compositéons. Because we are considering fully polarized states, only
fermions measured in units bf, the actual magnetic length the odd pseudopotentials are relevant. In principle, it is pos-
at v. At the effective magnetic field, i.e., the magnetic field sible to fix all of thec;’s to reproduce alV$™'s exactly, but
corresponding to the filling factor*, the natural unit for in practice, we will fix the first severaffive to six odd
length isl*. We denote the distance measured in unitsof pseudopotentials only. That is sufficient for our purposes,
by r*. The long-range part then translates into given many other approximations that go into the calcula-
tion. The energy is determined predominantly by the short-
distance part of the interaction. Of course, at long distances,
; (12 the above model interaction automatically gives the correct
behavior, thereby ensuring that it is quite accurate almost

where we have useg/I* = (2n+1) Y2 We model the full €verywhere.

interaction between composite fermions at the effective mag- The energy of two composite fermion particles evaluated
netic field B* by the following form: from microscopic wave functions receives contribution from

two sources; their self-energies and their interaction. The

(2n+1)"2[ €?

r

EIO

e? e?

€|o

(2n+1)"2 1,

r* [*

(2n+1)-52

r*

EIO

=52\ [ a2 self-energy can be identified by putting them far apart; be-
o w2 (2n+1) e o . g
veffrx)y={ > grde ™ 4 —— || — cause it is constant, it does not affect the calculation in any
i re elo way. We find it convenient to subtract it out by shifting all

(13 VEF by a constant so that the last pseudopotefitethember
that there are only a finite number of pseudopotentials in a
inite system becomes equal to the pseudopotential of the
ong-rangepart of the model interaction,

The power series, with properly chosen coefficiantstakes
care of the short-range part of the inter-CF interaction. Th

functions of the kind*2'e ™ are used because the pseudo-

potentials for such functions are analytically calculable. (2n+1)52

Many other functional choices could work equally well; the (¥m, ] f' Ym, )

mapping from pseudopotentials to a real-space interaction in E.= , (14)
the lowest LL is one-to-many, and all real-space interactions <¢mmaJ Ym0

with the same pseudopotentials are completely equivalent in _ _ )

the absence of LL mixingSlightly different functions were Where |[¢m ) is the two-body state with relative angular
chosen in Ref. 23. There the long-range Coulomb interactiomomentumm in the lowest LL. It is expected that for suffi-
was not considered explicitly, because that work dealt witrciently large systems, the contribution of the Gaussian terms
the composite fermion Fermi sea, which corresponds to thto the last pseudopotential is negligible due to their rapid
limit n—o, so the last terms vanishlt is important to  decrease with distance.

choose a real-space form for the effective interaction that We have matched the first five or six odd pseudopotentials
makes the interaction as smooth as possible; large oscilldpy adjusting the same number of coefficieats The values
tions of the interaction lead to larger errors in the Monteof c; used below are quoted in Tables VII and VIII. The
Carlo evaluation of the energy. comparison between the pseudopotentmg, calculated
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TABLE VIII. Parameters for our model interaction for two CF teger QHE of *CF’s or as the FQHE ofCF’s; they are
holes in an otherwise full CF LL. The first, second, and third CF“pure" (as opposed to “mixedy in the sense that they con-
LL's are considered. All of the;’s not shown here are set equal to {5, only a single flavor of composite fermions.

Z€ro. The CF pseudopotentials in Fig. 1 of Ref. 17 and Fig. 1 of
this paper also indicate that the assumption of treating the
interaction between many composite fermions as the sum of

Parameter First CF LL Second CF LL Third CF LL

c, 2.086 04 —0.641674 1.156 20 two body interactions is not unreasonable. In a given CF LL,
Co —0.0122001 0.00240019 —0.00699306 Fig. 1 of Ref. 17 gives the interaction between two CF par-
C1o 285410E-6 —2.15587E-7 1.385 13E-6 f[icles in. an otherwise empty CF LL, yvhereas Fig. 1 gives the
Cia —7.63371E-11 —1.27142E-12 —2.49865E-11  Interaction between two CF holes in an otherwise full CF
Cue 2 906 20E-16 1.481 18E-17 4.72082E-17 LL. The latter is a many-body state of CF particles. How-

ever, the two interactions are rather similar both in shape as
well as magnitude, which is what would be expected if only
from wave functions, and the pseudopotentials calculateévo body terms were relevant.

from the real-space model interaction are shown in Fig. 1 of

Ref. 17 and our Fig. 1, indicating that the real-space interac- V. VARIATIONAL STATES

tion provides a good representation of NA%F. The specific
choice of whichc; are taken to be non-zero in our work
(Tables VII and VII) is dictated by the smoothness of the One possibility for composite fermions in the partially
real space form of the interaction. We also note that the fornfilled *CF LL is to capture two additional vortices to turn
of Vei(r*) depends on details, and can appear rathefto 4CF’s and then form an integral quantum Hall state with
strange, with oscillations and even attractive regions, buf’ filled Landau levels, which corresponds to

proper results are guaranteed so long as it generates the cor-

A. *CF FQHE / “CF Fermi sea

!

rect pseudopotentials. S n (15
2n'*1
IV. PRELIMINARY OBSERVATIONS filling for 2CF’S, and to
A glance at the CF pseudopotentials reveals one of the
most striking features of the inter-CF interaction: it is often v*
attractive. The smallest energy is obtained at the smallest Yo v (16)

relative angular momentum, i.e., at the shortest distance.
This is true for CF particles in the third or higher CF-Landaufor electrons.
levels and for CF holes in the second and higher CF LLs. Taking ’CF’s as base particles, the wave function for
This fact already appears to suggest an answer to one impdheir FQHE state is given by
tant question: Are there any new FQHE states between the

- i PrORE P DD 1
fractionsn/(2n+1)? New FQHE states here can appear if nzn'+1) = P @ P (17)

2CF’s in a partially filled CF LL capture additional vortices whered ., is the wave function of fully filled LUs and
to form a FQHE state. However, capture of vortices require§3 pr(;jects the state onto the lowest LL. Recall only
a sufficiently strong short range repuilsion. Given that thethLeLLZCF's in the partially filled CF LL are consiaered explic-
inter-CF interaction is actually attractive, any new FQHE initly here: the filled >CF Landau levels have been integrated
the range 2/5 v<1/2 appears unlikelyfor fully polarized out in p’roducing the effective interaction. The statevat
systems, to the extent that our model for interacting com- —n+1/2 is obtained in the limif’ —s oo Where the filled

posite fermions is trustworthyThe caveat is important; for Landau-level statab ., becomes a Fermi sea. We expect
example, three body interaction could play an important role n’ y P

or when there are many composite fermions, the nature Otpese states to be energetically favorable Wvéﬁ is large

the two-body interaction might change slightly from ourcompared to _other pseudopotentials. .
model which considers only two composite fermion par- The energies of the_se states can b‘? calculated with the
I?elp of the real-space interaction, following the method out-

ticles) Nonetheless, the form of the interaction suggests th X ) . ) .
) 99 aIlned in the literature. The spherical geometry will be used in

new FQHE states in the range 2/%<<1/2 are either very lculati d the th d . Il be ob
weak or altogether absent. That is entirely consistent wittur caicu atlons', and the thermo ynamic energy will beé ob-
tained from a linear, least squares fit of the finite system

experiments. ; lotted f A N/
For composite fermions in the lowest CF Landau level€N€rgies plotted as a function o

(v<1/3), on the other hand, the interaction is strongly repul-
sive (Fig. 1, top pang| and a new FQHE is expected. That is
also consistent with experiment. THEF's capture two ad- At the half-filled Landau level, pairing of composite fer-
ditional flux quanta to becoméCF’s, which then fill Lan-  mions also becomes possible. A weak repulsion between fer-
dau levels to produce a FQHE at=n/(4n+1). There is mions is believed to lead to pairing of composite fermions at
presently experimental evidence for six members of thesaalf-filling.'?13152*The second LL Coulomb interaction be-
sequence$ These states can be interpreted either as the inween electrons falls within this class of interactions. The

B. “CF pairing
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paired state is reasonably well described by a Pfaffian wave 20 A
function®® which, in particular, has been shown to have f(r)~2> T (e (22
lower energy than the CF Fermi seaat 5/22° Numerical 4 Ty
studies on small systems have shown that this state has&e Fourier transform of the density operatqs(r)
fairly large overlap with the exact ground statealthough — ()W (r), is given by
the overlaps are not decisive, in contrast to the case for filled '
composite fermion Landau levels for which the overlaps are 1 _
in excess of 99%. p(qQ)= 2—f d?rp(r)e 'ar
We ask whether or not the interaction between CF's at ™
half-filled CF LLs favors the paired state ofCF's. 1 _
Here 2CF’s capture two vortices to turn inttCF’s and then =2—f d’r 2 z,bl(r)wkr(r)e"q"alak, . (23
form pairs. With °CF’s as base particles at a filling factor m kk'
equal to 1/2, we consider the Pfaffian wave function for thesih, the changes of variables:
paired state,

k+k'
Wip=0IPfIM], (18) ay=kK' =k, ko=—5—, ki=koT, (29

where Pf[M] is the Pfaffian of the matri with compo-  the density operator becomes
nents  M;=(z—2z) % defined as Pf[M]

«A[MsM3z,. .. ]. Pf[M] is a real space BCS wave func- 1

tion and so¥ 75 can be viewed as pwave paired quantum  p(Q)= ——>— >

Hall state of *CF’s. We calculate the energy of this state as 20 Ko

discussed in Sec. lll.

Xf dxef(1/2|S)(x+k+lg)27(l/2|g)(x+k,lg)zfiqxxal+ak7
C. 2CF stripes and bubble crystals (25)
For an attractive interaction, phase separation is a likely
possibility, which, from our experience with higher Landau- 1 1., . 2| 1
level physics, would lead to the formation of stripes or o kE exp — 7 Ao+ ikoOxloag, ax - (26)
0

bubble crystals. In this case, the base partich&F, do not
capture any additional vortices. We calculate the energies %efine the interaction operats#:
these states closely following the Hartree-Fock formulation '
used earlié®?® for electrons in higher Landau levels; the 1
only difference is the form of the interaction. We give herea  y= _f d2rd2r'V(r,r")p(r)p(r’)
brief outline of the calculation for completeness, which 2

closely follows Ref. 24. (2m)3
Consider fermions in the plane of sizg XL,. In the =— 2 V(g)p(—q)p(q)
lowest LL the eigenstates are 2L,Ly g
a ~
1 222 =2 2 V@
l//k(X,Y): e|kye—(1/20)(><+klo) (19) x=y 4 kOxk(,)
Ly|0’7T12

1
xexg — =q22+i(ky—ko)qu2lal ap al a, .
where ke (27/L,) X (integer). Define the operato¥ (r) ;{ 2 0 loH (ko= Ko)Glo|ay A ay_a,

=3 (r)a, where g, is the annihilation operator corre- (27)
sponding to the statpy,). With the Fourier transform de-
fined as In the Hartree-FockHF) approximation, the energy of the
system is given by
~ 1 :
- 2 —ig-r
f(q) 27der f(r)e (20 ()= T > ’\“/(q)e*(1/2)q2|c2)+i(k6*ko)qx|§
LLy ako.Kg
and t i T N
><[(ak;akgxak_ak)_<akr+ak+><ak_akg>]-
1 )
_ = 24 F iq-r (28
f(r) wad q f(qe™, (21 2
In terms of the operatoA (q)=(1/2m)S,e *No(a} a ),
we have which represents the density of orbit centers, the energy is
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. (271_)3 ~ ) ) 0.00
(V=51 2 [D@-15U(alp)]A(-a)A(9)
x=y 4
v=1-% v=1%
1 1 [|r=r'| 00T &
=—f d?rd?r’| U(|r—r'|)— =0 A(H)A(r"), T
2 13 13
° ° -0.02 |
(29 -
_ B oo0s |
where U (q)=V(q)e~ @296 and U(r) is its Fourier trans- o 0005
form. It is convenient to defin@y:(q)=U(q)—13U(ql3) 6 ————— - -
where the first term corresponds to the direct interaction and g 0000y v'=2-% v=3%
the second to the exchange interacti¢W) in the above % r
equation gives the CF-CF interaction energy, to which the W -0.005
CF-background and background-background interaction en-
ergies must be added to obtain a finite result. Following Ref. 0.005 |
24 we define the cohesive energy as the energy difference
measured from theniform Hartree-Fock state 0.000 |
1 (2m)3 - _0.005 T
> [O(a)-13U(ald)]A(-a)A(g). %0 004 008 o012

Econmg 57—
NN 2L,Ly 70 1N
FIG. 2. The cohesive energy per particle for the CF Fermi sea
We can now calculate the cohesive energies of the stripésquaresand the CF paired stateircles as a function ofN, the
and bubble phases. In the stripe phase with the periodigumber of CF “holes” in the topmost CF level. The thermodynamic

length of stripeA, the orbit-center density is written as energies are also shown for the CF stripe and bubble phases by a
dash () and cross K) on they axis, respectively. All energies are

qAv measured relative to the uncorrelated uniform density state, ex-
25ir< )

(30

plained in the text. The corresponding results for CF “particles” at
v*=1+1/2, v*=2+1/2, and v* =3+1/2, corresponding ta
=3/8, 5/12, and 7/16, were given in Ref. 17.

eiqx

1
A(X,y)= > (31)

23 °q Aq

bubble to the stripe phase occursyat=0.4, wherer,, is the
electron filling in the 6+ 1)st Landau level. Somewhat sur-
prisingly, we also find a transition at;~0.4 in all of our
calculations.

2
where{q}= wa{ ...,—3,-2,-1,1,2,3...}. So the co-

hesive energy is
[qAv 2
25|r< > )

Epon=— > Une(a) (32)
coh 21}'% 5 HFq Aq

In the bubble phase with the lattice constantfor the hex-

agonal lattice, radius of the bubbR=V \/51//277Ab and
area of a celA=(1/3/2)A2, the orbit-center density is

1 R .
A=z 2 7 (aRe, (33

0

where q=ne;+me,, e=4n/\3A,y, and e,=2m/AX
—(27/\3A)y. This gives the cohesive energy

2
. (39

Eeorm S Une(@)| —— 31(aR
coh \/§|SA§ 5 HF q AI(Z) 1 q

With our effective interaction the sums in stripe and
bubble calculations converge quickly as we increase the cut - _ _
off for g. Reference 24, which deals with electrons in the 0 2
higher electronic LLs, finds that the transition from the

As far as the comparison of stripe and bubble phases is
concerned, it is sufficient to know the cohesive energy; the
energy of the reference, uniform HF state need not be evalu-
ated. However, to compare with the Fermi sea, the FQHE
state, or the paired state, we also need to know the energy of
the uniform HF state, which must be subtracted from the full
energy to obtain the cohesive energy.

To calculate the energy of the uniform HF state we as-
sume that the CF-CF, background-background, and CF-
background interactions are all of the same form, character-
ized by VS . Since the direct interaction terms cancel each
other the only remaining part is the exchange term of the
CF-CF interaction. Thus the energy of the uniform stgeés

u(0)

=" —Ff XV

0= 5 (35

For example in the case of the Coulomb interaction,

u(0) ;J

T

dqet2 ¢ x = —
0

X,

(36)
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1/N 1/N 0.0 04 02 03 04 05 01 02 03 04 05 ’

v v
FIG. 3. The cohesive energy per particle for composite fermions " "
at v*=n=1/3, which correspond to electron filling factons FIG. 4. The cohesive energies of stripedashed ling and
=(3nx1)/(6n+3*2) for the FQHE state as a function Nf the bubbles(solid line) as a function of the CF filling factor in various
number of composite fermions in the partially filed composite fer- CF Landau levels. The striped state has lower energy in the vicinity
mion Landau level. This energy is shown by squares. The dashof v*=n+1/2.
(—) and cross X) on they axis show the cohesive energies of the

stripe and bubble phases, respectively. noted, however, that the issues regarding the stability of the

unidirectional charge-density wave against a modulation

L . ) ) along the length and also against quantum fluctuations,
which is a familiar result. For other interactions, we evaluate,hich have been investigated in the context of electronic

Eo numerically. stripes in higher Landau levet8 have not been considered
here.
The lowest energy for stripes is obtained for peribd
VI. RESULTS AND DISCUSSION =10, 28, and 34 fow=23/8, 5/12, and 7/16. The period is

. . - ather large compared to that for the electron stripes in higher
The energies of various states are shown in Fig. 2 of Rer{'_Ls (for which A/l is of order unity, which is not surpris-

17, and Fl'gs. 2and 3 of the present paper. The Iowest'energmg because the interaction between composite fermions is
for the stripe or bubble states are determined by varying thg,iher weak, and also the difference between the densities of
period. We draw the following conclusior(subject to the 4 FQHE states on either side is quite small.

validity of the mode). 5 A transport anisotropy in higher electronic Landau levels,

(i) FQHE: Within the lowest“CF Landau level, CF holes interpreted in terms of stripe formation, is observed at tem-
capture two more vortices to becomf€F’s. They show peratures below~50 mKZ’ The conditions for the CF
quantum Hall effect a; =1/3, which corresponds to%CF  stripes are more stringent. Estimates of the critical tempera-
filing factor of »*=1-3, and an electron filling factor of tyre from the Hartree-Fock theory are not quantitatively re-
v=2. At v} =1/2, which corresponds to=1/4, the Fermi liable, but noting that the effective interaction between com-
sea has the lowest energy. These results are consistent witbsite fermions atv*=n+1/2 is roughly an order of
the observation of FQHE at 2/7 and CF Fermi sea at 1/4. magnitude smaller than for electronsiatn+1/2, as mea-

(i) Stripes At v*=n+3, which corresponds to=(2n  sured by the pseudopotentials, we expect the critical tem-
+1)/[2(2n+2)], the stripe phase has the lowest endifgy ~ perature to also be similarly reduced. Also, the much larger
n=1). The stripe phase is obtained independently of whetheperiod suggests the need for a high degree of density homo-
we modelv* =n+3 as 1/2 filling of CF particles on the geneity.
background ofn-filled 2CF Landau levels, or as 1/2 filling (iii) Bubbles At v* =n=+31 with n=1, the bubble phase
of CF holes on the background oft+1 filled 2CF Landau has the lowest energy. We remind the reader, however, that
levels, which suggests that the result is robust. It should beur trial wave functions for FQHE states that work very well
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FIG. 5. Phase diagram of various CF states, with bubisielid FIG. 7. Same as in Fig. 3 for the modified interaction.

dotg, CF stripes(shaded region and CF FQHE(solid line) as a

function of the CF fillingv* =n-+ v* . fermions, shown schematically in Fig. 5, is remarkably simi-

lar to that for electrons. For electror{g), the FQHE occurs in

in the lowest Landau level are not so good in higher Landadihe lowest Landau levelji) stripes are believed to be rel-
levels, which makes our calculation somewhat biased againgvant in the vicinity ofv=n+1/2 forn=2, and(iii) bubble
the FQHE. or Wigner crystal takes over in higher Landau levels for

To estimate at what filling a transition occurs from the =n+v’ with »'<0.4. The behavior for’CF's is quite
bubble crystal to the stripe phase, we have determined the@nalogous.
energies as a function of the filling factor, shown in Fig. 4.
The stripes are found to be stable approximately in the re-
gion 0.4&<v*<0.6, outside of which bubbles take over. ) )
Overall, the phase diagram for various states of composite We have assumed until now that the electron layer width

VII. FINITE THICKNESS

-11.77

-11.78 |

-11.79 |

-11.80

Quantum Well Width 15 nm(N=29)

V_[e/el]

-11.86 |

-11.87 |

-11.88
0

30

is zero. In actual experiments, the electron wave function has
a finite extent in the transverse direction, which modifies the
interaction pseudopotentials. The modified interaction has
been obtained in a local-density approximatfér® To esti-
mate how finite thickness affects the results presented above,
we have calculated the pseudopotentials for composite fer-
mions in the second CF LL and fourtBig. 6) that the value
V5, which is the largest pseudopotential, is reduced as we
increase the density of the electrons. However, the change is
not large enough to alter the previous results. As seen in Fig.
7, at v=4/11, where the composite fermion filling is*
=4/3, the bubble crystal phase continues to be most favor-
able among the ones studied.

VIIl. CONCLUSION

In summary, we have considered theoretically the ques-
tion of what states of composite fermions are feasible as a
result of the residual interaction between composite fermi-
ons. For this purpose, we have constructed a model for the
CF-CF interaction, and studied various plausible states
within a variational scheme. Our results suggest that the frac-
tional quantum Hall effect, the stripe phase, as well as the
bubble crystal of composite fermions can all occur at various
filling factors.
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APPENDIX

One of the most time consuming aspects of our Monte

PHYSICAL REVIEW B6, 085336 (2002

This gives a simple relation between the determinants of
A’ andA:

Carlo calculation is the evaluation of determinants. Wher\(z) Updating of two columns:

two matrices have many common colun{insws), the deter-

minant of one can be related to the other, which amounts to
substantial saving of computation time in Monte Carlo. Here

we describe a general method for it.

Consider twon X n matricesA andA’, which differ only
inthe (i1,i,, ...,iyth columns, where &m=n. Our aim
is to obtain the determinant &’ with minimum computa-
tion.

The determinant oA’ can be written as

defA’]=defAldefATIA"]. (A1)

SinceA’ differs from A only at (i4,i5, ...,y th columns,
[ATIA"],, is equal tos,, whenl & (iq,ip, ... .im).

Define C; (j=1,2,...m) to be nXn matrices whose
components are same as thoseAoét jth column and zero
elsewhere. Further, define anXm matrix B such that
[Blab=[AT'Cy]; i, wherea,be{1,2,... m}. Then the fol-
lowing is true.

defA~!A’]=def{B]. (A2)

defA’]=defA]de{B]. (A3)
Consider some examples:
(1) Updating of one column:
de[A’]=de(A]de(B]=de{A][A—1c1]ilil. (Ad)
defA’]=defA]de{B]
=defAl([AT'C]i,[AT'Cs]i,,
—[ATCL;,i, [ATICoii,)- (A5)

(3) Updating of three columns:
defA']=defAlde{B]
=defAJ([ATIC] i, [AT'Coli,i, [A'Caliy,
+[AT'CL;, [ATICoi [ATIC)
+[ATIC i, [ATICH) i [ATICH)
X[ATIC];,i [ATICy),i [ATICs ],
—[A_lci]i3i1[A_1Cé]i2i2[A_lCé]ili3

~[ATICL i, [ATICH [ATICE ). (A6)
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