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Structures for interacting composite fermions: Stripes, bubbles, and fractional quantum
Hall effect
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Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood
by neglecting the interactions between composite fermions altogether. For example, the fractional quantum
Hall effect atn5n/(2pn61) corresponds to filled composite-fermion Landau levels, and the compressible
state atn51/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interac-
tions between composite fermions will determine the nature of the ground state. In this paper, a model is
constructed for the residual interaction between composite fermions, and various possible states are considered
in a variational approach. Our study suggests the formation of composite-fermion stripes, bubble crystals, as
well as fractional quantum Hall states for appropriate situations.
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I. INTRODUCTION

In two dimensions, electrons subjected to a strong m
netic field avoid one another by capturing an even numbe
quantized vortices and turning into composite fermions1,2

The composite fermions interact much more weakly th
electrons. In fact, tremendous progress can be made to
understanding the dramatic behavior of this system by tr
ing composite fermions as noninteracting. It is not that th
is no interaction between the composite fermions, but i
weak and often does not alter the nature of the state
qualitative manner, i.e., can be treated perturbatively. In s
situations, while the inter-composite-fermion~CF! interac-
tion is surely important for quantitative considerations,
does not affect the qualitative phenomenology, and can
neglected altogether when the aim is to describe the qua
tive phenomenology.

For example, the odd-denominator fractionsn5n/(2pn
61) map inton* 5n of composite fermions carrying 2p
vortices. Here, the system has a gap even in the absen
inter-CF interactions—in stark contrast to theelectronsys-
tem atn5n/(2pn61) which had an enormous degenera
in the absence of interactions—and it is possible that
many of these filling factors, the gap would not disappea
the inter-CF interaction is slowly turned on to its physic
value. If that were the case, the inter-CF interaction is un
portant at a qualitative level. This explains the fraction
quantum Hall effect3 ~FQHE! at filling factors n5n/(2pn
61) in terms of the integral QHE~Ref. 4! of composite
fermions.1

Another example is at fractionsn51/2p, which map into
composite fermions at zero effective magnetic field. If t
interactions between composite fermion are neglected
Fermi sea is obtained.5 Conceptually, it is more difficult to
justify the neglect of inter-CF interactions in this case,
there is no gap for the Fermi sea. Nonetheless, at least t
is a well defined ground state for composite fermions, unl
for noninteracting electrons atn51/2p, and various experi-
mental studies6 have shown that the CF Fermi sea is a go
starting point for many purposes.

We recall that at relatively high temperatures and l
0163-1829/2002/66~8!/085336~13!/$20.00 66 0853
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mobilities only the integral quantum Hall effect was see
which is explained by neglecting the interaction betwe
electrons. As the sample quality improved and tempera
lowered, the FQHE was observed, which is understood
terms of weakly interacting composite fermions. While t
model in which the composite fermions are taken as non
teracting has been strikingly successful, one may ask if
other set of structures would emerge as the experiments
ther improve. This question has motivated our investigat
of the subtle physics arising from inter-CF interactions. F
tunately, there already exists a good microscopic appro
for investigating this issue, in the form of the wave functio
for composite fermions.1 Even though these wave function
are motivated by the physics of independent composite
mions, they give an excellent description of the interact
between the composite fermions.2,7,8 In fact, the wave func-
tions practically give the exact solution to the proble
which implies that they incorporate the full interaction e
fects. For example, consider the low-energy branch of e
tations, described as an exciton of composite fermions. If
composite fermions were noninteracting, this branch wo
not have any dispersion. In reality, there are oscillations
the energy as a function of the wave vector, arising from
residual interaction between the CF particle and the CF h
The dispersion computed from the wave functions provid
an accurate account of the oscillations.2,7,8 The wave func-
tions similarly obtain the energy of two CF particles or tw
CF holes quite accurately.

The inter-CF interactions are of course always relevan
quantitative issues. However, there are two situations
which they can also make a qualitative difference in t
physics. The first situation is when the inter-CF interacti
overwhelms the gap of the noninteracting CF model, ther
destroying the FQHE.9,10 It has been shown that forn<1/9
as well as for most fractions in higher Landau levels, t
FQHE undergoes an excitonic instability, i.e., the energy
the exciton becomes smaller than the energy of the unifo
filled CF Landau-level~LL ! state. The CF theory thus no
only tells us where the FQHE occurs but also where it d
not. ~Recent experiments11 have shown evidence for FQHE
at 1/9 atfinite temperatures. Even though this observation
not presently understood, it ought to be stressed that it is
inconsistent with the earlier theoretical predictions whi
©2002 The American Physical Society36-1
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only address the zero-temperature phase.! A pairing instabil-
ity has also been suggested atn55/2, i.e., at the half-filled
second LL, where the residual interaction between the c
posite fermions is attractive.12,13 The resulting instability of
the CF Fermi sea causes a gap to open up here, produc
plausible scenario for the 5/2 fractional quantum H
effect.14

The other situation where the inter-CF interaction is e
pected to be important is away from the special filling fra
tionsn5n/(2pn61), where the topmost CF LL is only pa
tially occupied, and the ground state has a large degene
if the inter-CF interaction were to be turned off. The dege
eracy for independent composite fermions is much sma
than for independent electrons even here, making the for
a better-defined starting point. The weak residual interac
between the composite fermions will decide the nature of
true ground state here. The present paper deals with
situations.

The first possibility that comes to mind when compos
fermions partially occupy a Landau level is that of theirfrac-
tional QHE. This could happen when the composite ferm
filling factor is n* 5n6n̄/(2p̄n̄61), which corresponds, a
usual, to electrons filling factors given byn5n* /(2pn*
61). We will consider the special case when the base c
posite fermions are carrying two vortices, denoted by2CF’s,
and the2CF’s in the topmost partially occupied CF LL cap
ture two additional vortices to become4CF’s ~composite
fermions carrying four vortices! and condense into an incom
pressible state withn̄ filled Landau levels. The full state i
then made up of two flavors of composite fermions, w
2CF’s in the lower filled CF LL’s, and4CF’s in the topmost
CF LL. Such states are quite analogous to the FQHE sta
n5211/3, where electrons in the second LL convert in
composite fermions whereas the electrons in the lowest
remain electrons. Such states have been considered in
past,1,15,16 and dubbed mixed flavor states of composite f
mions. Of course, depending on the filling, it is also possi
that composite fermions would capture additional vortices
form a Fermi sea or a paired state. Yet another possibilit
for them to not capture any new vortices but rather to ph
separate in some manner, possibly through formation
stripes. Our aim in this paper is to consider these possibili
as quantitatively as presently possible over a range of fil
factors.

It should be emphasized that while these states are e
viewed in terms of composite fermions, they are fantastica
complicated in terms of electrons. Consider the possibility
pairing atn53/8, for example.16 First, all electrons capture
vortices to turn into2CF’s atn* 5111/2; then, those in the
half filled CF LL put on two more vortices, and attempt
make a 4CF Fermi sea; but the Fermi sea is unstable
pairing; pairing opens up a gap to produce a fractional qu
tum Hall effect. Such a state could perhaps not be envisio
without the knowledge of composite fermions.

In an earlier short paper,17 we studied composite fermio
fillings given by n* 5n11/2 by this method. The presen
paper gives further details and also considers a broader r
of filling factors. The plan of the paper is as follows. In Se
II, we enumerate the various approximations that go into
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calculation. Section III discusses how we obtain the pseu
potentials for the inter-CF interaction, and how we obta
from it a real space interaction between composite fermio
Certain preliminary observations are made in Sec. IV. T
variational wave functions are given in Sec. V, and Sec.
discusses the results of our calculations. In Sec. VII,
briefly investigate the effect of finite thickness on our resu

II. ASSUMPTIONS

We will be studying composite fermions at fillings of th
type n* 5n1nn* , wheren is the number of filled composite
fermion Landau levels andnn* is the filling fraction of the
topmost composite fermion Landau level. In order to ma
progress, we will make several assumptions.

The system will be taken to be fully spin polarized, whic
is a valid approximation for sufficiently high magnetic field
The method can be adapted to situations for which the st
are only partially spin polarized,16 but here we will confine
our attention to fully spin-polarized systems.

Below we will map the problem of interacting electron
into that of interacting composite fermions only of the to
most partially filled CF Landau level. The interaction b
tween composite fermions will be obtained by ‘‘integratin
out’’ the composite fermions of the lower filled CF LL’s.

We will assume that the filled CF Landau levels can
treated as inert and the problem can be defined solely
terms of the composite fermions in the topmost partia
filled CF Landau levels. This should be qualitatively corre
between well defined FQHE states described by filled
Landau levels. It should also be a quantitatively accur
approximation when the CF LL separation is large compa
to the inter-CF interaction. Indeed, for a filling factor in th
range 1/3,n,2/5 the composite fermion theory neglectin
CF-LL mixing provides a very good description of the actu
states obtained from exact diagonalization.7,8 However, this
approximation may become worse when the effective cyc
tron energy is not too large; here the hybridization of C
states with higher CF Landau levels may become releva

Given that the composite fermion system actually rep
sents a strongly correlated state of matter, the interac
energy for composite fermions in general involves tw
three-, andn-body terms. The most critical assumption w
be our neglect of three- and higher-body terms. Follow
Wojs and Quinn,18 we will assume that the interaction energ
of the many composite fermion system can be modeled
sum of pairwise interaction. Furthermore, we will determi
the pair interaction from the system that contains only t
composite fermions in the partially occupied CF Land
level ~with the lower CF Landau levels fully occupied!. This
assumption is valid only if the three- and higher-body ter
do not cause a phase transition.

There are indications that the higher-order terms
small. Theexactenergy spectrum of the system with thre
composite fermions in the second CF LL~where the only
input is the Coulomb interaction between the electrons! has
been compared with the energy spectrum that the pair-w
interaction predicts, and a reasonably good agreemen
obtained.18 The latter spectrum is obtained by diagonalizi
6-2
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the effective two-body interaction between composite fer
ons obtained by the method outlined earlier. However,
systematic study of the effects of multiparticle interacti
has been performed as a function of the number of partic

Another limitation of our work is its variational nature
which makes it as good as the trial wave functions for va
ous states. For example, for FQHE states, we will use
standard wave functions for composite fermions.1 These are
extremely accurate in the lowest Landau level, but not
accurate for FQHE in higher Landau levels. Of course, i
also possible that the actual ground state has some c
pletely new structure, not described physically by any of
trial states considered here.

These caveats are meant to stress right at the outset
the results below are not ‘‘hard’’ predictions of the compos
fermion theory, but are predicated upon several assumpti
This study is the first step toward a theoretical treatmen
the interaction between composite fermions, and it is ho
that future experimental and theoretical studies will sh
light on the reliability of our present model.

III. MODEL FOR INTERACTION
BETWEEN COMPOSITE FERMIONS

A. Pseudopotentials for CF-CF interaction

It is known that a two-body interaction of fermions co
fined to some Landau level is fully characterized by
Haldane pseudopotentials19 Vm , which are the energies o
two particles in the relative angular momentum statem,
ucm&:

Vm5
^cmuVucm&

^cmucm&
5

1

22m11m! l 0
2m12E rdrV~r !r 2me2r 2/4l 0

2

5E qdq Ṽ~q!e2q2l 0
2
Lm~q2l 0

2!. ~1!

Herel 0 is the magnetic length,Lm is a Laguerre polynomial
anducm& is the two-body state of relative angular momentu
m. For fully spin polarized fermions, only the pseudopote
tials Vm with odd integer values ofm are relevant. In this
paper, the Fourier transformation is defined symmetricall

Ṽ~q![
1

2pE d2rV~r !e2 iq•W rW5E rdrJ0~qr !V~r !, ~2!

whereJ0 is a Bessel function. In the equations below, t
interelectron interactionV(r )5e2/er will be expressed in
units ofe2/e l 0, andr in units of l 0; the interelectron interac
tion then becomesV(r )51/r . The appropriate units will be
put back at the end.

Given the pseudoptentials we can construct the two b
interaction in the lowest LL using the following formula:

Ṽ~q!52p(
m

VmLm~q2!. ~3!

Alternatively, we can directly write the Hamiltonian as
08533
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Huc&5(
i , j

(
m

VmPm
i j uc&5(

i , j
(

m5odd
VmPm

i j uc&. ~4!

Here Pm
i j projects particlesi and j onto a state of relative

angular momentumm. This Hamiltonian is useful for exac
diagonalization study.

The pseudopotentials for composite fermions are defi
similarly. For the pseudopotentials in thenth composite fer-
mion Landau level, we consider the state in which the low
CF Landau levels are fully occupied and the (n11)st CF
Landau levels contains two composite fermions.Vm

CF is then
defined as the energy of the state in which the two compo
fermions are in the relative angular momentumm state. In
other words,

Vm
CF5

^cm
CFu(

i , j

1

r i j
ucm

CF&

^cm
CFucm

CF&
2E` , ~5!

whereucm
CF& is the wave function of composite fermions

the relative angular momentumm states. Note that the stat
of two composite fermions in the (n11)st level is a many
body state of electrons. For convenience, the energy is m
sured relative toE` , the energy of the state in which the tw
composite fermions are far separated.~For finite systems the
value ofE` is chosen in the manner explained below.!

We use the spherical geometry for our calculations.19 Fol-
lowing the standard procedure for writing the wave functio
for composite fermions1 the wave function for the relevan
state with angular momentumL is given by

ucL
CF&5P LLLF1

2Fn
11L , ~6!

whereF1 is the wave function of one filled LL,Fn
11L is the

wave function of the electron state in whichn LL’s are fully
occupied and the (n11)st LL contains two electrons in a
angular momentumL state:

Fn
11L5 (

m1 ,m2

^LM u lm1 ; lm2&an11,m1

1 an11,m2

1 Fn . ~7!

Here Fn is the state withn-filled LL’s, an11,m1

1 creates an

electron in thel z5m1 state in the (n11)th LL, l is the
angular momentum of a single composite fermion in then
11)st LL, and^LM u lm1 ; lm2& are Clebsch-Gordon coeffi
cients. Because the energy depends only on the total ang
momentumL, we work with M50, i.e., m11m250. The
explicit form for the general wave functions of this kind
given in the literature.8 PLLL is the lowest LL projection
operator.

In the spherical geometry,Vm is defined as the energy o
the state with angular momentumL52l 2m ~Ref. 20!:

Vm
CF5

^c2l 2m
CF u(

i , j

1

r i j
uc2l 2m

CF &

^c2l 2m
CF uc2l 2m

CF &
2E` ~8!

This brings the definition of the pseudopotentials into co
formity with the disk geometry, reproducing the disk pseud
6-3
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potentials in the thermodynamic limitN→`, when the an-
gular momentum of the lowest Landau-level shell a
diverges:l→`. To see this, it is helpful to note that in th
disk geometry, the separation between the two particles
creases withm. In the spherical geometry, the smallest se
ration is obtained when both particles are put in the saml z
state, which corresponds to the largest angular momen
L52l ~not bothering about the Pauli principle here!. Thus
the largestL corresponds to the smallestm.

The integrals are performed using Monte Carlo; we eva
ate Vm

CF for up to 50 particles. Of particular interest is th
short-range part of the interaction, which appears to c
verge to the thermodynamic limit fairly quickly with th
number of particles, as expected. The long-range part of
interaction is explicitly known, as discussed below.

In order to minimize the computation time, we calcula
several pseudopotentials within one Monte Carlo run
sampling with one wave functioncms

CF(r ), according to

Vm
CF5

* E dr ucm
CF~r !u2(

i , j

1

r i j
~9!

FIG. 1. This figure gives the pseudopotentials for compo
fermion ‘‘holes’’ in the first, second, and third composite fermio
levels. These are defined~up to an overall additive constant! as the
energies of two composite fermion holes in the appropriate com
ite fermion Landau level, with the lower CF levels fully occupie
The systems are large enough that the pseudopotentials at the
few m ~relative angular momentum! values are well converged
Circles denote the pseudopotentials computed from the microsc
wave functions, with error bars showing the Monte Carlo unc
tainty, and crosses are the pseudopotentials for the real-space m
interaction explained in the text. The pseudopotentials for CF ‘‘p
ticles’’ in the second, third, and fourth composite fermion lev
were given in Ref. 17.
08533
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5E drS ucm
CF~r !u2

ucms

CF~r !u2
(
i , j

1

r i j
D ucms

CF~r !u2 ~10!

where (5* ) means that the two sides are equal upto an ad
tive constant. Generally, the error increases as the ang
momentum moves away from the sampling angular mom
tum, and one must eventually use a different state for s
pling; however, sampling with a single state works satisf
tory for N<40, whereN is the total number of particles.

In a Monte Carlo run with composite fermions, all el
ments of the determinant are altered even if a single part
is moved, because of the strongly correlated nature of
problem. However, in a given step, the determinants t
combine to give the state with a well definedL differ only in
two columns. Rather than calculating each determinant
tirely, we use an updating trick earlier used in Ref. 21, wh
is a generalization of a method used for updating deter
nants that differ only in one column.22 The method is ex-
plained in the Appendix.

The pseudopotentials for the CF-CF interaction are sho
in Fig. 1 of Ref. 17 and Fig. 1. The explicit values are giv
in Tables I–VI.

B. Inter-CF interaction in real space

Now that the composite fermions of the fully occupied C
LL’s have been integrated out to produce an effective int
action between the composite fermions of the partially fill
CF LL, only theN composite fermions in the topmost pa
tially filled LL will be explicitly considered in what follows.
~Earlier, the symbolN was used for thetotal number of com-
posite fermions, but below it will be reserved for the numb
of composite fermions in the partially filled CF LL.!

We thus have a system of fermions restricted to a cer
CF LL, with an interaction known through its pseudopote
tials. It would be most natural to feed the pseudopotent
into an exact diagonalization routine and compute the gro
state. However, such studies are not useful for some of
states that we wish to consider. The system sizes acces
to exact diagonalization are too small to capture the phy

e

s-

rst

ic
-
del

r-

TABLE I. Pseudopotentials for CF holes in the lowest CF La
dau level. In this and the following tables,Em is the energy of the
full state, andDEm is the Monte Carlo statistical uncertainty. Th
energies are quoted in units ofe2/e l 0.

m Em DEm

1 27.726 983 0.000 574 412 0
3 27.757 470 0.000 777 853 3
5 27.752 651 0.001 031 060 4
7 27.758 716 0.001 098 803 0
9 27.758 750 0.001 203 422 1
11 27.759 422 0.001 298 531 0
13 27.760 764 0.001 262 413 4
15 27.761 201 0.001 292 929 7
17 27.762 082 0.001 654 684 3
19 27.762 933 0.001 697 643 3
6-4
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of compressible or stripe states.~Also, the spherical geom
etry often used for exact diagonalization is not particula
convenient for the stripe phase.!

We shall instead proceed by considering variational w
functions for several different kinds of states, and determ
ing which has the lowest energy. As mentioned earlier,
approach has the shortcoming that we do not know if
have missed the true ground state, and even for a given s
we may not have a sufficiently accurate wave function.
will consider all of the states that have been investigated
the past in the lowest and higher Landau levels ofelectrons,
and hope that the actual ground state is one of them. U
mately, only experiments can tell us for sure if that is t
case.

We will evaluate the energies of the some of the tr
wave functions using the Monte Carlo method, for which
will need a real space form for the interaction between co
posite fermions. Furthermore, it is convenient to write va
ous trial wave functions in the lowest Landau level. So
will map the problem of composite fermions atn* 5n6nn*

TABLE II. Pseudopotentials for CF particles in the second
Landau level.

m Em DEm

1 211.755 883 0.000 559 362 6
3 211.741 289 0.000 609 289 7
5 211.756 699 0.000 588 831 7
7 211.754 222 0.000 582 146 9
9 211.754 109 0.000 691 326 4
11 211.755 223 0.000 699 356 0
13 211.755 586 0.000 857 009 1
15 211.755 554 0.000 554 568 5
17 211.756 373 0.000 602 169 0
19 211.756 839 0.000 579 602 6
21 211.756 438 0.000 591 401 6
23 211.756 528 0.000 628 321 6
25 211.756 233 0.000 658 381 2
27 211.756 788 0.000 659 904 2

TABLE III. Pseudopotentials for CF holes in the second C
Landau level.

m Em DEm

1 218.135 544 0.000 977 449 7
3 218.120 577 0.000 966 582 2
5 218.133 069 0.000 937 635 8
7 218.131 464 0.000 840 288 9
9 218.130 383 0.000 907 483 9
11 218.130 536 0.000 976 434 0
13 218.131 314 0.000 965 168 3
15 218.130 754 0.001 015 603 9
17 218.131 685 0.000 920 391 3
19 218.130 155 0.000 944 208 9
21 218.131 228 0.001 016 996 7
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into that ofN fermions in thelowestLL at nn* . Such a map-
ping can, in principle, be carried out exactly, because
problem of fermions in any given LL with one interaction
equivalent to that of fermions in a different LL with anoth
interaction, provided the Haldane pseudopotentials for
two interactions are the same. Defining the problem in
lowest LL helps us to find the energies for various compos
fermion states, because convenient techniques exist for w
ing the wave functions in explicit form in the lowest LL.

For some of the states~paired state, Fermi sea! the calcu-
lation will be done in the spherical geometry, and the ene
in the thermodynamic limit (N→`) will be estimated by an
extrapolation of finite system results. For the stripe a
bubble phases, the calculations will be done directly for
thermodynamic limit in the planar geometry. In this case,
spherical geometry is used only for the determination of
effective interaction between composite fermions.

In order to map the problem of composite fermions
n* 5n6nn* into fermions atnn* in the lowest Landau level
we need to find an effective interactionVe f f(r ) which pro-
duces the desired pseudopotentials in the lowest Lan
level. A proper consideration of the long range part of t
interaction is important for our purposes below, especially
the context of stripes, the period of which is determined b
competition between the short range attraction and lo

TABLE IV. Pseudopotentials for CF particles in the third C
Landau level.

m Em DEm

1 218.942 399 0.001 095 083 6
3 218.932 547 0.001 215 427 0
5 218.927 645 0.001 105 587 0
7 218.935 310 0.001 265 645 1
9 218.934 032 0.001 233 024
11 218.934 417 0.001 279 504 3
13 218.933 864 0.001 317 832 2
15 218.933 060 0.001 245 927 9
17 218.935 017 0.001 315 292 9
19 218.934 135 0.001 380 826 6
21 218.934 547 0.001 526 548 6
23 218.934 336 0.001 248 864 4

TABLE V. Pseudopotentials for CF holes in the third CF Land
level.

m Em DEm

1 217.620 082 0.000 983 051
3 217.612 904 0.000 917 553
5 217.606 845 0.001 063 009
7 217.614 824 0.001 009 564
9 217.615 345 0.000 978 099
11 217.614 743 0.000 939 712
13 217.614 587 0.000 958 717
15 217.612 469 0.000 891 311
6-5
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range repulsion. Therefore, we treat the long distance pa
the interaction explicitly in our calculations. Fortunately, t
form of the interaction in this limit is known: it is given b
the Coulomb interaction between particles of fraction
chargee/(2n11), i.e.,

~2n11!22

r F e2

e l 0
G , ~11!

wherer is the dimensionless distance between the compo
fermions measured in units ofl 0, the actual magnetic lengt
at n. At the effective magnetic field, i.e., the magnetic fie
corresponding to the filling factorn* , the natural unit for
length isl * . We denote the distance measured in units ofl *
by r * . The long-range part then translates into

~2n11!22

r *

l 0

l *
F e2

e l 0
G→ ~2n11!25/2

r *
F e2

e l 0
G , ~12!

where we have usedl 0 / l * 5(2n11)21/2. We model the full
interaction between composite fermions at the effective m
netic fieldB* by the following form:

Ve f f~r * !5S (
i

ci r * 2ie2r* 2
1

~2n11!25/2

r *
D F e2

e l 0
G

~13!

The power series, with properly chosen coefficientsci , takes
care of the short-range part of the inter-CF interaction. T
functions of the kindr * 2ie2r* 2

are used because the pseud
potentials for such functions are analytically calculab
Many other functional choices could work equally well; th
mapping from pseudopotentials to a real-space interactio
the lowest LL is one-to-many, and all real-space interacti
with the same pseudopotentials are completely equivalen
the absence of LL mixing.~Slightly different functions were
chosen in Ref. 23. There the long-range Coulomb interac
was not considered explicitly, because that work dealt w
the composite fermion Fermi sea, which corresponds to
limit n→`, so the last terms vanish.! It is important to
choose a real-space form for the effective interaction t
makes the interaction as smooth as possible; large osc
tions of the interaction lead to larger errors in the Mon
Carlo evaluation of the energy.

TABLE VI. Pseudopotentials for CF particles in the fourth C
Landau level.

m Em DEm

1 216.691 824 0.001 014 85
3 216.686 846 0.001 058 39
5 216.682 793 0.001 071 36
7 216.680 260 0.001 083 52
9 216.687 565 0.001 073 23
11 216.684 489 0.001 113 37
13 216.685 492 0.001 256 16
15 216.685 188 0.000 958 45
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The units for the effective potential defined above oug
to be noted. If we replacee2/e l 0 by e2/e l * in Eq. 13, then
the interaction has the natural form for a problem at
effectivemagnetic field. We do our calculations with th
interaction potential, and then obtain the final energies b
change of units.

Next we proceed to find values for the coefficientsci so
that the pseudopotentials ofVe f f reproduce the pseudopoten
tials Vm

CF calculated earlier from microscopic wave fun
tions. Because we are considering fully polarized states, o
the odd pseudopotentials are relevant. In principle, it is p
sible to fix all of theci ’s to reproduce allVm

CF’s exactly, but
in practice, we will fix the first several~five to six! odd
pseudopotentials only. That is sufficient for our purpos
given many other approximations that go into the calcu
tion. The energy is determined predominantly by the sho
distance part of the interaction. Of course, at long distanc
the above model interaction automatically gives the corr
behavior, thereby ensuring that it is quite accurate alm
everywhere.

The energy of two composite fermion particles evalua
from microscopic wave functions receives contribution fro
two sources; their self-energies and their interaction. T
self-energy can be identified by putting them far apart;
cause it is constant, it does not affect the calculation in a
way. We find it convenient to subtract it out by shifting a
Vm

CF by a constant so that the last pseudopotential~remember
that there are only a finite number of pseudopotentials i
finite system! becomes equal to the pseudopotential of
long-rangepart of the model interaction,

E`5

^cmmax
u
~2n11!25/2

r
ucmmax

&

^cmmax
ucmmax

&
, ~14!

where ucmmax
& is the two-body state with relative angula

momentumm in the lowest LL. It is expected that for suffi
ciently large systems, the contribution of the Gaussian te
to the last pseudopotential is negligible due to their ra
decrease with distance.

We have matched the first five or six odd pseudopotent
by adjusting the same number of coefficientsci . The values
of ci used below are quoted in Tables VII and VIII. Th
comparison between the pseudopotentialsVm

CF , calculated

TABLE VII. Parameters for our model interaction for two C
particles in an otherwise empty CF LL. The second, third, a
fourth CF LL’s are considered. All of theci ’s not shown here are se
equal to zero.

Parameter Second CF LL Third CF LL Fourth CF LL

c2 21.573 57 1.754 18 210.6790
c6 0.008 172 94 20.011 476 0 0.079 366 5
c10 21.720 40E-6 2.629 65E-6 22.497 51E-5
c14 4.310 56E-11 26.308 27E-11 9.875 64E-10
c18 21.804 65E-16 1.962 55E-16 27.120 56E-15
c22 0.0 0.0 9.291 68E-21
6-6
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from wave functions, and the pseudopotentials calcula
from the real-space model interaction are shown in Fig. 1
Ref. 17 and our Fig. 1, indicating that the real-space inter
tion provides a good representation of theVm

CF . The specific
choice of whichci are taken to be non-zero in our wor
~Tables VII and VIII! is dictated by the smoothness of th
real space form of the interaction. We also note that the fo
of Ve f f(r * ) depends on details, and can appear rat
strange, with oscillations and even attractive regions,
proper results are guaranteed so long as it generates the
rect pseudopotentials.

IV. PRELIMINARY OBSERVATIONS

A glance at the CF pseudopotentials reveals one of
most striking features of the inter-CF interaction: it is oft
attractive. The smallest energy is obtained at the sma
relative angular momentum, i.e., at the shortest distan
This is true for CF particles in the third or higher CF-Land
levels and for CF holes in the second and higher CF L
This fact already appears to suggest an answer to one im
tant question: Are there any new FQHE states between
fractionsn/(2n11)? New FQHE states here can appea
2CF’s in a partially filled CF LL capture additional vortice
to form a FQHE state. However, capture of vortices requ
a sufficiently strong short range repulsion. Given that
inter-CF interaction is actually attractive, any new FQHE
the range 2/5,n,1/2 appears unlikely~for fully polarized
systems!, to the extent that our model for interacting com
posite fermions is trustworthy.~The caveat is important; fo
example, three body interaction could play an important ro
or when there are many composite fermions, the nature
the two-body interaction might change slightly from o
model which considers only two composite fermion p
ticles.! Nonetheless, the form of the interaction suggests
new FQHE states in the range 2/5,n,1/2 are either very
weak or altogether absent. That is entirely consistent w
experiments.

For composite fermions in the lowest CF Landau le
(n,1/3), on the other hand, the interaction is strongly rep
sive~Fig. 1, top panel!, and a new FQHE is expected. That
also consistent with experiment. The2CF’s capture two ad-
ditional flux quanta to become4CF’s, which then fill Lan-
dau levels to produce a FQHE atn5n/(4n61). There is
presently experimental evidence for six members of th
sequences.11 These states can be interpreted either as the

TABLE VIII. Parameters for our model interaction for two C
holes in an otherwise full CF LL. The first, second, and third C
LL’s are considered. All of theci ’s not shown here are set equal
zero.

Parameter First CF LL Second CF LL Third CF LL

c2 2.086 04 20.641 674 1.156 20
c6 20.01 220 01 0.002 400 19 20.006 993 06
c10 2.854 10E-6 22.155 87E-7 1.385 13E-6
c14 27.633 71E-11 21.271 42E-12 22.498 65E-11
c18 2.906 20E-16 1.481 18E-17 4.720 82E-17
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teger QHE of 4CF’s or as the FQHE of2CF’s; they are
‘‘pure’’ ~as opposed to ‘‘mixed’’! in the sense that they con
tain only a single flavor of composite fermions.

The CF pseudopotentials in Fig. 1 of Ref. 17 and Fig. 1
this paper also indicate that the assumption of treating
interaction between many composite fermions as the sum
two body interactions is not unreasonable. In a given CF
Fig. 1 of Ref. 17 gives the interaction between two CF p
ticles in an otherwise empty CF LL, whereas Fig. 1 gives
interaction between two CF holes in an otherwise full C
LL. The latter is a many-body state of CF particles. Ho
ever, the two interactions are rather similar both in shape
well as magnitude, which is what would be expected if on
two body terms were relevant.

V. VARIATIONAL STATES

A. 4CF FQHE Õ 4CF Fermi sea

One possibility for composite fermions in the partial
filled 2CF LL is to capture two additional vortices to tur
into 4CF’s and then form an integral quantum Hall state w
n8 filled Landau levels, which corresponds to

n* 5n6
n8

2n861
~15!

filling for 2CF’s, and to

n5
n*

2n* 61
~16!

for electrons.
Taking 2CF’s as base particles, the wave function f

their FQHE state is given by

Cn8/~2n811!

FQHE
5PLLLF1

2pFn8 ~17!

where Fn8 is the wave function ofn fully filled LL’s and
PLLL projects the state onto the lowest LL. Recall on
the 2CF’s in the partially filled CF LL are considered explic
itly here; the filled 2CF Landau levels have been integrat
out in producing the effective interaction. The state atn*
5n11/2 is obtained in the limitn8→`, where the filled
Landau-level stateFn8 becomes a Fermi sea. We expe
these states to be energetically favorable whenV1

CF is large
compared to other pseudopotentials.

The energies of these states can be calculated with
help of the real-space interaction, following the method o
lined in the literature. The spherical geometry will be used
our calculations, and the thermodynamic energy will be o
tained from a linear, least squares fit of the finite syst
energies plotted as a function of 1/N.

B. 4CF pairing

At the half-filled Landau level, pairing of composite fe
mions also becomes possible. A weak repulsion between
mions is believed to lead to pairing of composite fermions
half-filling.12,13,16,23The second LL Coulomb interaction be
tween electrons falls within this class of interactions. T
6-7
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paired state is reasonably well described by a Pfaffian w
function,13 which, in particular, has been shown to ha
lower energy than the CF Fermi sea atn55/2.23 Numerical
studies on small systems have shown that this state h
fairly large overlap with the exact ground state,16 although
the overlaps are not decisive, in contrast to the case for fi
composite fermion Landau levels for which the overlaps
in excess of 99%.

We ask whether or not the interaction between CF’s
half-filled CF LL’s favors the paired state of2CF’s.
Here 2CF’s capture two vortices to turn into4CF’s and then
form pairs. With 2CF’s as base particles at a filling facto
equal to 1/2, we consider the Pfaffian wave function for
paired state,

C1/2
P f 5F1

2P f@M #, ~18!

whereP f@M # is the Pfaffian of the matrixM with compo-
nents Mi j 5(zi2zj )

21, defined as P f@M #
}A@M12M34 . . . #. P f@M # is a real space BCS wave func
tion and soC1/2

P f can be viewed as ap-wave paired quantum
Hall state of 4CF’s. We calculate the energy of this state
discussed in Sec. III.

C. 2CF stripes and bubble crystals

For an attractive interaction, phase separation is a lik
possibility, which, from our experience with higher Landa
level physics, would lead to the formation of stripes
bubble crystals. In this case, the base particles,2CF, do not
capture any additional vortices. We calculate the energie
these states closely following the Hartree-Fock formulat
used earlier24,25 for electrons in higher Landau levels; th
only difference is the form of the interaction. We give here
brief outline of the calculation for completeness, whi
closely follows Ref. 24.

Consider fermions in the plane of sizeLx3Ly . In the
lowest LL the eigenstates are

ck~x,y!5
1

ALyl 0p1/2
eikye2(1/2l 0

2)(x1kl0
2)2

~19!

where kP (2p/Ly) 3(integer). Define the operatorC(r )
[(kck(r )ak where ak is the annihilation operator corre
sponding to the stateuck&. With the Fourier transform de
fined as

f̃ ~q!5
1

2pE d2r f ~r !e2 iq•r ~20!

and

f ~r !5
1

2pE d2q f̃ ~q!eiq•r, ~21!

we have
08533
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q

2p

LxLy
f̃ ~q!eiq•r. ~22!

The Fourier transform of the density operator,r(r )
[C†(r )C(r ), is given by

r~q!5
1

2pE d2rr~r !e2 iq•r

5
1

2pE d2r (
k,k8

ck
†~r !ck8~r !e2 iq•rak

†ak8 . ~23!

With the changes of variables:

qy5k82k, k05
k1k8

2
, k65k07

qy

2
, ~24!

the density operator becomes

r~q!5
1

2p3/2l 0
(
k0

3E dxe2(1/2l 0
2)(x1k1 l 0

2)22(1/2l 0
2)(x1k2 l 0

2)22 iqxxak1

† ak2

~25!

5
1

2p (
k0

expF2
1

4
q2l 0

21 ik0qxl 0
2Gak1

† ak2
. ~26!

Define the interaction operatorV̂:

V̂5
1

2E d2rd2r 8V~r ,r 8!r~r !r~r 8!

5
~2p!3

2LxLy
(

q
Ṽ~q!r~2q!r~q!

5
p

LxLy
(

q
(

k0 ,k08
Ṽ~q!

3expF2
1

2
q2l 0

21 i ~k082k0!qxl 0
2Gak

18
†

ak
28
ak2

† ak1
.

~27!

In the Hartree-Fock~HF! approximation, the energy of th
system is given by

^V̂&5
p

LxLy
(

q,k0 ,k08
Ṽ~q!e2 ~1/2! q2l 0

2
1 i (k082k0)qxl 0

2

3@^ak
18

†
ak

28
&^ak2

† ak1
&2^ak

18
†

ak1
&^ak2

† ak
28
&#.

~28!

In terms of the operatorD(q)[(1/2p)(ke
2 ikqxl 0

2
^ak1

† ak2
&,

which represents the density of orbit centers, the energy
6-8
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^V̂&5
~2p!3

2LxLy
(

q
@Ũ~q!2 l 0

2U~ql0
2!#D~2q!D~q!

5
1

2E d2rd2r 8FU~ ur2r 8u!2
1

l 0
2
ŨS ur2r 8u

l 0
2 D GD~r !D~r 8!,

~29!

whereŨ(q)[V(q)e2(1/2)q2l 0
2

and U(r ) is its Fourier trans-
form. It is convenient to defineŨHF(q)5Ũ(q)2 l 0

2U(ql0
2)

where the first term corresponds to the direct interaction
the second to the exchange interaction.^V̂& in the above
equation gives the CF-CF interaction energy, to which
CF-background and background-background interaction
ergies must be added to obtain a finite result. Following R
24 we define the cohesive energy as the energy differe
measured from theuniform Hartree-Fock state

Ecoh5
1

N

~2p!3

2LxLy
(
qÞ0

@Ũ~q!2 l 0
2U~ql0

2!#D~2q!D~q!.

~30!

We can now calculate the cohesive energies of the st
and bubble phases. In the stripe phase with the perio
length of stripeL, the orbit-center density is written as

D~x,y!5
1

2p l 0
2 (

q

2sinS qLn

2 D
Lq

eiqx, ~31!

where $q%5
2p

L
3$ . . . ,23,22,21,1,2,3, . . . %. So the co-

hesive energy is

Ecoh5
1

2n l 0
2 (

q
ŨHF~q!S 2sinS qLn

2 D
Lq

D 2

. ~32!

In the bubble phase with the lattice constantLb for the hex-

agonal lattice, radius of the bubbleR5AA3n/2pLb and
area of a cellA5(A3/2)Lb

2 , the orbit-center density is

D~r !5
1

A (
q

R

l 0
2q

J1~qR!eiq•r, ~33!

where q5ne11me2 , e154p/A3Lbŷ, and e252p/Lbx̂

2(2p/A3Lb) ŷ. This gives the cohesive energy

Ecoh5
4p

A3l 0
2Lb

2 (
q

ŨHF~q!S R

Al0
2q

J1~qR!D 2

. ~34!

With our effective interaction the sums in stripe a
bubble calculations converge quickly as we increase the
off for q. Reference 24, which deals with electrons in t
higher electronic LL’s, finds that the transition from th
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bubble to the stripe phase occurs atnn'0.4, wherenn is the
electron filling in the (n11)st Landau level. Somewhat su
prisingly, we also find a transition atnn* '0.4 in all of our
calculations.

As far as the comparison of stripe and bubble phase
concerned, it is sufficient to know the cohesive energy;
energy of the reference, uniform HF state need not be ev
ated. However, to compare with the Fermi sea, the FQ
state, or the paired state, we also need to know the energ
the uniform HF state, which must be subtracted from the
energy to obtain the cohesive energy.

To calculate the energy of the uniform HF state we
sume that the CF-CF, background-background, and
background interactions are all of the same form, charac
ized byVm

CF . Since the direct interaction terms cancel ea
other the only remaining part is the exchange term of
CF-CF interaction. Thus the energy of the uniform stateE0 is

E052
U~0!

2
3n. ~35!

For example in the case of the Coulomb interaction,

E052
U~0!

2
3n52

1

2E0

`

dqe~1/2! q2
3n52Ap

8
3n,

~36!

FIG. 2. The cohesive energy per particle for the CF Fermi
~squares! and the CF paired state~circles! as a function ofN, the
number of CF ‘‘holes’’ in the topmost CF level. The thermodynam
energies are also shown for the CF stripe and bubble phases
dash (2) and cross (3) on they axis, respectively. All energies ar
measured relative to the uncorrelated uniform density state,
plained in the text. The corresponding results for CF ‘‘particles’’
n* 5111/2, n* 5211/2, and n* 5311/2, corresponding ton
53/8, 5/12, and 7/16, were given in Ref. 17.
6-9
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which is a familiar result. For other interactions, we evalu
E0 numerically.

VI. RESULTS AND DISCUSSION

The energies of various states are shown in Fig. 2 of R
17, and Figs. 2 and 3 of the present paper. The lowest en
for the stripe or bubble states are determined by varying
period. We draw the following conclusions~subject to the
validity of the model!.

~i! FQHE: Within the lowest2CF Landau level, CF holes
capture two more vortices to become4CF’s. They show
quantum Hall effect atnn* 51/3, which corresponds to a2CF
filling factor of n* 512 1

3 , and an electron filling factor o
n5 2

7 . At nn* 51/2, which corresponds ton51/4, the Fermi
sea has the lowest energy. These results are consistent
the observation of FQHE at 2/7 and CF Fermi sea at 1/4

~ii ! Stripes: At n* 5n1 1
2 , which corresponds ton5(2n

11)/@2(2n12)#, the stripe phase has the lowest energy~for
n>1). The stripe phase is obtained independently of whe
we modeln* 5n1 1

2 as 1/2 filling of CF particles on the
background ofn-filled 2CF Landau levels, or as 1/2 filling
of CF holes on the background ofn11 filled 2CF Landau
levels, which suggests that the result is robust. It should

FIG. 3. The cohesive energy per particle for composite fermi
at n* 5n61/3, which correspond to electron filling factorsn
5(3n61)/(6n1362) for the FQHE state as a function ofN, the
number of composite fermions in the partially filled composite f
mion Landau level. This energy is shown by squares. The da
(2) and cross (3) on they axis show the cohesive energies of t
stripe and bubble phases, respectively.
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noted, however, that the issues regarding the stability of
unidirectional charge-density wave against a modulat
along the length and also against quantum fluctuatio
which have been investigated in the context of electro
stripes in higher Landau levels,26 have not been considere
here.

The lowest energy for stripes is obtained for periodL/ l 0
510, 28, and 34 forn53/8, 5/12, and 7/16. The period i
rather large compared to that for the electron stripes in hig
LLs ~for which L/ l 0 is of order unity!, which is not surpris-
ing because the interaction between composite fermion
rather weak, and also the difference between the densitie
the FQHE states on either side is quite small.

A transport anisotropy in higher electronic Landau leve
interpreted in terms of stripe formation, is observed at te
peratures below;50 mK.27 The conditions for the CF
stripes are more stringent. Estimates of the critical tempe
ture from the Hartree-Fock theory are not quantitatively
liable, but noting that the effective interaction between co
posite fermions atn* 5n11/2 is roughly an order of
magnitude smaller than for electrons atn5n11/2, as mea-
sured by the pseudopotentials, we expect the critical te
perature to also be similarly reduced. Also, the much lar
period suggests the need for a high degree of density ho
geneity.

~iii ! Bubbles: At n* 5n6 1
3 with n>1, the bubble phase

has the lowest energy. We remind the reader, however,
our trial wave functions for FQHE states that work very w

FIG. 4. The cohesive energies of stripes~dashed line! and
bubbles~solid line! as a function of the CF filling factor in variou
CF Landau levels. The striped state has lower energy in the vici
of n* 5n11/2.

s

-
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in the lowest Landau level are not so good in higher Land
levels, which makes our calculation somewhat biased aga
the FQHE.

To estimate at what filling a transition occurs from t
bubble crystal to the stripe phase, we have determined t
energies as a function of the filling factor, shown in Fig.
The stripes are found to be stable approximately in the
gion 0.4,n* ,0.6, outside of which bubbles take ove
Overall, the phase diagram for various states of compo

FIG. 5. Phase diagram of various CF states, with bubbles~solid
dots!, CF stripes~shaded region!, and CF FQHE~solid line! as a
function of the CF fillingn* 5n1nn* .

FIG. 6. Pseudopotentials for the CF-CF interaction in the 2
CF-LL for various densities for quantum wells of widths 15 and
nm. The interelectron interaction has been obtained in a lo
density approximation.
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fermions, shown schematically in Fig. 5, is remarkably sim
lar to that for electrons. For electrons,~i! the FQHE occurs in
the lowest Landau level,~ii ! stripes are believed to be re
evant in the vicinity ofn5n11/2 for n>2, and~iii ! bubble
or Wigner crystal takes over in higher Landau levels forn
5n1n8 with n8,0.4. The behavior for2CF’s is quite
analogous.

VII. FINITE THICKNESS

We have assumed until now that the electron layer wi
is zero. In actual experiments, the electron wave function
a finite extent in the transverse direction, which modifies
interaction pseudopotentials. The modified interaction
been obtained in a local-density approximation.28,29 To esti-
mate how finite thickness affects the results presented ab
we have calculated the pseudopotentials for composite
mions in the second CF LL and found~Fig. 6! that the value
V3

CF , which is the largest pseudopotential, is reduced as
increase the density of the electrons. However, the chang
not large enough to alter the previous results. As seen in
7, at n54/11, where the composite fermion filling isn*
54/3, the bubble crystal phase continues to be most fa
able among the ones studied.

VIII. CONCLUSION

In summary, we have considered theoretically the qu
tion of what states of composite fermions are feasible a
result of the residual interaction between composite fer
ons. For this purpose, we have constructed a model for
CF-CF interaction, and studied various plausible sta
within a variational scheme. Our results suggest that the f
tional quantum Hall effect, the stripe phase, as well as
bubble crystal of composite fermions can all occur at vario
filling factors.
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APPENDIX

One of the most time consuming aspects of our Mo
Carlo calculation is the evaluation of determinants. Wh
two matrices have many common columns~rows!, the deter-
minant of one can be related to the other, which amount
substantial saving of computation time in Monte Carlo. He
we describe a general method for it.

Consider twon3n matricesA andA8, which differ only
in the (i 1 ,i 2 , . . . ,i m)th columns, where 0,m<n. Our aim
is to obtain the determinant ofA8 with minimum computa-
tion.

The determinant ofA8 can be written as

det@A8#5det@A#det@AÀ1A8#. ~A1!

SinceA8 differs from A only at (i 1 ,i 2 , . . . ,i m)th columns,
@AÀ1A8#kl is equal todkl when l ¹( i 1 ,i 2 , . . . ,i m).

Define Cj ( j 51,2, . . . ,m) to be n3n matrices whose
components are same as those ofA at j th column and zero
elsewhere. Further, define anm3m matrix B such that
@B#ab5@AÀ1Cb8# i ai b

wherea,bP$1,2, . . . ,m%. Then the fol-
lowing is true.

det@AÀ1A8#5det@B#. ~A2!
v.

,

08533
-

e
n

to
e

This gives a simple relation between the determinants
A8 andA:

det@A8#5det@A#det@B#. ~A3!

Consider some examples:
~1! Updating of one column:

det@A8#5det@A#det@B#5det@A#@AÀ1C18# i 1i 1
. ~A4!

~2! Updating of two columns:

det@A8#5det@A#det@B#

5det@A#~@AÀ1C18# i 1i 1
@AÀ1C28# i 2i 2

2@AÀ1C18# i 2i 1
@AÀ1C28# i 1i 2

!. ~A5!

~3! Updating of three columns:

det@A8#5det@A#det@B#

5det@A#~@AÀ1C
1
8# i 1i 1

@AÀ1C28# i 2i 2
@AÀ1C38# i 3i 3

1@AÀ1C18# i 2i 1
@AÀ1C28# i 3i 2

@AÀ1C38# i 1i 3

1@AÀ1C18# i 3i 1
@AÀ1C28# i 1i 2

@AÀ1C38# i 2i 3

3@AÀ1C18# i 2i 1
@AÀ1C28# i 1i 2

@AÀ1C38# i 3i 3

2@AÀ1C18# i 3i 1
@AÀ1C28# i 2i 2

@AÀ1C38# i 1i 3

2@AÀ1C18# i 1i 1
@AÀ1C28# i 3i 2

@AÀ1C38# i 2i 3
!. ~A6!
s-
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