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Variational wave functions that introduce zeros (vortices) to screen repulsive interactions are typically difficult
to verify in unbiased microscopic calculations. An approach is constructed to insert vortices into ansatz wave
functions using a matrix-product representation. This approach opens the door to validation of a broad class of
Jastrow-based wave functions. The formalism is applied to a model motivated by experiments on ultracold atomic
gases in the presence of synthetic spin-orbit coupling. Validated wave functions show that vortices in atomic
Fermi gases with flat Rashba spin-orbit bands cluster near the system center and should therefore be directly
visible in time-of-flight imaging.
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I. INTRODUCTION

Jastrow factors in variational wave functions enable the
tuning of the location of wave-function vortices to capture the
essential properties of many-body problems [1]. While this
approach has been highly successful in quantum chemistry and
related fields [2–4], it has also seen some success in solving
flat band Hamiltonians of the form

HFB = PVintP, (1)

where P projects the interparticle interaction, Vint, into a flat
single-particle band. The best known problems in this class
include models of the quantum Hall (QH) effects [5–8]. But
Eq. (1) describes a broad array of other compelling problems as
well, e.g., electrons in graphene-based nanostructures [9,10],
atomic gases under fast rotation [11], atoms in kagome
optical lattices [12], fractional Chern insulators [13], bosons in
certain frustrated lattices [14], and spin-orbit coupled (SOC)
systems [15–18]. IfP projects onto a basis with noncommuting
density operators, interesting quantum liquids or other states
may arise. But solving such problems can be prohibitive.
The nonperturbative nature of Eq. (1) implies reliance on
numerical validation of ansatz wave functions to rigorously
define quantitatively accurate solutions.

A well known validation procedure, used in the QH
regime [8] to study models in the form of Eq. (1), employs
parent Hamiltonians [19]. Under this procedure a proposed
wave function must be shown to be generated from a parent
Hamiltonian and then compared with states of a physically
motivated model using wave-function overlaps and energetics.
For example, the vortex attachment protocol defined by the
Laughlin state [5] was validated with a parent Hamilto-
nian [8,19]. But this process is prohibitive when studying
wave functions that do not have simple parent Hamiltonians. A
generic wave-function validation procedure would overcome
this key difficulty.

Matrix product states [20] (or, more generally, tensor
networks) offer numerically efficient representations of wave
functions that might serve as alternatives to parent Hamilto-
nians in validation. Matrix-product representations have been
used to study entanglement in some QH states [21]. A general
recipe for vortex attachment in terms of matrix products
would also offer a useful tool to validate ansatz states since

matrix product states are straightforward to work with and
related algorithms (e.g., the density matrix renormalization
group [22,23] and other methods [24]) offer considerable
opportunity for scale-up. Promising work along these lines
demonstrates a projective construction of Jastrow factors to
compute local averages with local tensor networks [25].

I construct a matrix-product representation of Jastrow-
based wave functions that offers direct validation of vortex at-
tachment protocols and avoids using parent Hamiltonians. The
wave functions constructed here use the composite fermion
ansatz, originally constructed for use in the fractional QH
regime [6], but can be directly compared to numerics on other
models, not just QH models. Based on a formal connection
with the QH regime, I expect that vortex attachment should
be useful in solving an example flat band problem motivated
by recent experiments on ultracold atomic gases [26]. These
experiments use lasers to generate synthetic SOC. Assuming
that synthetic Rashba SOC can be taken to the flat band limit,
I find that interactions between fermions favor the clustering
of vortices near the system center (similar to what has been
found in studies of rotating quantum gases, quantum dots, and
bosons with SOC [4,15,27–30]) and should be experimentally
observable if flat band limits can be reached.

The paper is organized as follows. Section II discusses
a general class of first quantized wave functions based on
the composite fermion ansatz [6]. These wave functions use
Jastrow factors to insert vortices to minimize interaction
energy. Section III describes key aspects of these wave
functions: basis state translation and filling. The central
result of the paper is then presented in Sec. IV. Here the
wave functions are written in second quantized form and are
recast in the context of matrix products. Section V uses the
matrix-product form for the Jastrow factor to rewrite a relevant
example, the Laughlin wave function [5]. Sections VI and
VII study the flat band limit of two-dimensional fermions
in the presence of parabolic trapping, Rashba SOC, and
slow rotation. Here a demonstration of the wave function
validation process shows that interactions favor placing vor-
tices at the center of the system instead of placing vortices
on each particle, as in Laughlin-type states. Section VIII
discusses a physical interpretation of these results and pos-
sible observables in ultracold atomic gas experiments with
fermions.
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II. VORTEX ATTACHMENT IN FIRST QUANTIZATION

I consider ground and excited state wave functions based
on the composite fermion ansatz [6]:

ψν(r1, . . . ,rN ) = 〈r|Jγ
2p|�ν∗ 〉, (2)

where the Jastrow factor J 2p
γ places 2p vortices in the

constituent wave functions, �ν∗ , of N particles. The number
of particles per basis state (the filling) in the constituent state
is ν∗. It is convenient to take �ν∗ to be a weakly interacting
state, e.g., a single Slater determinant.

Vortex insertion changes the filling because it is equivalent
to removing a particle from a basis state. J 2p

γ adds 2p vortices
and therefore changes the number of basis states from Nν∗−1

to N (ν∗−1 + 2p). Section III shows that ψν is a state with
ν = ν∗/(2pν∗ + 1) particles per basis state.

The following first-quantized Jastrow factor inserts 2p

vortices independent of basis [10]:

Jγ
2p =

N∏
j<k,{�}

(T †
j − γ T

†
k )2p, (3)

where T † translates single-particle basis states through Hilbert
space by increasing basis state indices within a set �. For
a basis sorted with a single index, n, � corresponds to a
one-dimensional (1D) graph. The Hilbert space translation
operator then becomes a ladder operator [31] in J : T †φn ∝
φn+1, where φn is a single-particle basis state. Section III
discusses examples of basis state translation.

The variational parameter γ controls two types of vortex
insertion. γ = 1 attaches 2p vortices to each particle thus
lowering repulsive interaction energy by separating particles
pairwise. States with γ = 0 insert 2pN vortices on the n =
0 basis state to lower occupancy of this basis state. Wave
functions with either γ = 0 or γ = 1 will be studied below.

Trial wave functions using Eq. (3) should be energetically
favorable in problems with QH features: (1) φn constitutes a
flat band, (2) φn are only quasilocalized (the density operators
between different n do not commute), and (3) the interaction
energy between basis states decreases while separating them
in the graph, �. These conditions describe the lowest Landau
level (LLL) limit [8] but can be satisfied, more generally, by
other problems as well. I will discuss strong spin orbit coupling
as an additional example.

In the following I consider wave functions with Slater
determinant constituent states �ν∗ . A single Slater determinant
attaches one vortex (due to Pauli exclusion) to each particle.
The following two sections will show that, with this choice,
Eq. (2) reduces to the Laughlin wave function [5] at ν =
1/(2p + 1) for γ = 1 if the basis states are chosen to be LLL
wave functions.

III. BASIS STATE TRANSLATION AND FILLING

This section shows that the operators (T †)l map to transla-
tion of single-particle basis states along a graph representation
of the Hilbert space. The graph representation is used to
explicitly construct a two-particle wave function. The filling
of N -particle wave functions constructed from T † will also be
derived explicitly.

(T1
+ )2 Φν *=1

Φν *=1

T2
+T1

+ Φν *=1

2 1

2 1

12

T1
+T2

+ Φν *=1

(T2
+ )2 Φν *=1

12

21

n =  0        1        2        3

FIG. 1. (Color online) Schematic showing particles (circles) oc-
cupying basis states (dashes) for a two particle example of a Jastrow
factor, Eq. (4), acting on a constituent state, Eq. (5). The top row shows
one of two terms in the two particle Slater determinant constituent
state, Eq. (5). The bottom four rows show the four configurations
generated by acting Eq. (4) on the state in the top row. Acting Eq. (4)
on Eq. (5) yields four other configurations (not shown) that are the
same but with the particle indices exchanged.

I begin by constructing a two-particle wave function using
Eq. (2). I consider a degenerate Hilbert space that can be
indexed with an integer: φn, where n = 0,1,2, . . . labels each
basis state. Figure 1 depicts these basis states as horizontal
dashes.

The translation operators in this case act as ladder operators
on a 1D graph. They are defined as T †φn = fnφn+1, where
fn is a variational functional [10] of n. For simplicity I
set fn = 1 in this section without loss of generality. The
operator representation allows a polynomial construction of
Jastrow factors even though the basis states themselves are
not polynomials, i.e., 〈r1|(T †

1 )2|φ0〉 = φ2(r1) but φ2(r1) �=
φ1(r1)φ1(r1). N = 2 in Eq. (3) gives

J 2
γ=1 = (T †

1 − T
†

2 )2, (4)

for p = 1. I use this form to construct a two-particle ansatz
wave function below.

The operator form of the Jastrow factor allows a direct
basis-independent construction of the total wave function. I
select a two-particle determinant state as the constituent state:

〈r1,r2|�ν∗=1〉 ∝ φ0(r1)φ1(r2) − φ1(r1)φ0(r2), (5)

where the constituent filling is ν∗ = 1 because there is one
particle per basis state. This state is depicted schematically in
the top row of Fig. 1.

I now construct the total N = 2 wave function using Eq. (2).
Acting Eq. (4) on Eq. (5) yields

〈r1,r2|ψν=1/3〉 ∝ φ3(r1)φ0(r2) − 3φ2(r1)φ1(r2)

−φ3(r2)φ0(r1) + 3φ2(r2)φ1(r1). (6)

Here the total wave function results from a sum of eight terms.
Four of the terms are depicted schematically in Fig. 1. The
other four terms result from swapping particle coordinates.

The wave function written in Eq. (6) appears to have a filling
different from 1/3. The enumeration of basis states in Fig. 1
shows that there are only four basis states for two particles.
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The filling for the two-particle equation, Eq. (6), is therefore
1/2. But it can be shown that the filling of Eq. (2) converges
to 1/3 in the large N limit for p = 1 and ν∗ = 1.

I now show that the filling of Eq. (2) converges to
ν∗/(2pν∗ + 1) in the large N limit [6,8]. The number of basis
states in any constituent state at filling ν∗ is, by definition,
Nν∗−1 + c1, where c1 is a constant of order unity. If the
Jastrow factor inserts 2p vortices per particle, each vortex
vacates a basis state. The number of basis states then increases
to N (ν∗−1 + 2p) + c2 + c1, where c2 is also a constant of order
unity. This shows that the number of particles per basis state
yields a filling: ν = ν∗/(2pν∗ + 1), in the large N limit.

The filling can also be derived explicitly from specific forms
for the Jastrow factor and the constituent state. Consider the
largest power in the Jastrow factor defined in Eq. (3): J 2p

γ =
(T †

1 )2p(N−1) + · · · . This shows that J 2p
γ shifts the largest basis

state index by 2p(N − 1), i.e., c2 = −2p. A single Slater
determinant constituent state can also be written in terms
of translation operators: |�ν∗=1〉 ∝ ∏N

j<k(T †
j − γ T

†
k )|0〉 =

(T †
1 )N−1|0〉 + · · · , where the last equality shows that this

constituent state has a basis state index that is at most N − 1.
Putting these two results together, the largest power of the T

†
1

operator in J 2p
γ |�ν∗=1〉 is (2p + 1)(N − 1). The number of

basis states is therefore (2p + 1)(N − 1) + 1, with c2 = −2p

and c1 = 0. This leaves the filling, defined as the number of
particles per basis state, to be ν = N

(2p+1)(N−1)+1 →
N→∞

1
2p+1 .

The first equality shows that, for N = 2 and p = 1, the filling
is 1/2 (as shown schematically in Fig. 1). But the large N limit
yields ν → 1/3 for p = 1.

IV. MATRIX-PRODUCT FORMULATION
FOR VORTEX ATTACHMENT

Recasting the Jastrow factors considered above in
second quantization allows a representation in terms of
matrix products. In the following, first-quantized N -body
operators O will be represented in second quantization
by Ô = ∫

�̂†(r1) · · · �̂†(rN )O�̂ (r1) · · · �̂ (rN )dr1 · · · drN ,
where �̂†(r) is a fermion field operator. Expanding the field
operators imposes a specific basis choice in Fock space:
�̂†(r) = ∑

n φn(r)ĉ†n, where ĉ
†
n creates a fermion in the state

φn. Using this expansion, Eq. (3) can be rewritten as sums
over T † using Shiota’s formula [32] that, in turn, allows a
second-quantized representation (see the Appendix):

Ĵ 2p
γ = (−1)

pN(N−1)
2

N(N−1)∑
k=1

(−1)k

k!

×
∑

n1 � 1, . . . ,nk � 1
n1 + · · · nk = N(N − 1)

k∏
i=1

1

2ni

×
nip∑
l=0

(
nip

l

)
(−1)lM̂nip−lM̂l, (7)

where

M̂l =
∑
n,n′

γ l
n,n′ ĉ

†
nĉn′ (8)

defines a matrix in terms of variational parameters γ l
n,n′ . For

γ = 1 they are given by γ l
n,n′ = 〈φn|(T †)l|φn′ 〉. Section VI

shows that the γ = 0 limit arises when the variational
parameters γ l

n,n′ are chosen such that γ l
n,n′ ∝ δl,1〈φn|(T †)l|φn′ 〉.

Equations (7) and (8) define the centerpiece of this work.
Wave functions constructed from these Jastrow factors can
be compared directly with model diagonalization without
reference to parent Hamiltonians. The matrix sizes in the
above equations can, in some cases, exhibit a basis-dependent
exponential scaling with N which at first appears prohibitive.
Nonetheless, there are two situations where these relations
can be used. (1) In their exact form, Eqs. (7) and (8) are
suited to small system size validation studies. I demonstrate
the validation process below. Once validated, the ansatz wave
functions in their first-quantized form can be used in larger
systems. (2) Writing the Jastrow factor in terms of a product
over matrices also allows use of well known approximations
for optimization, implementation, and validation. Approxi-
mate wave functions derived from Eq. (7) using singular value
decomposition will be explored in future work.

I rewrite the ansatz states, Eqs. (2), in second quantization
using Eq. (7):

|ψ̂1/(2p+1)〉 = Ĵ 2p
γ

N−1∏
n=0

ĉ†n|0̂〉. (9)

This form shows that J 2p
γ can be written as a sum of matrix

products acting on a column vector defined by �̂ν∗=1 =∏N−1
n=0 ĉ

†
n|0̂〉. Excited states can also be constructed using a

different constituent state: ĉ
†
N−1+
M

∏N−2
n=0 ĉ

†
n|0̂〉, where the

n = N − 1 state increments by 
M . I implement examples
below.

V. APPLICATION TO SINGLE COMPONENT
LAUGHLIN STATES

As a useful first example I rewrite the Laughlin ground state
as a product of matrices [21]. A specific Jastrow factor and a
specific constituent state (a Slater determinant) are chosen and
inserted into Eq. (2). This yields a specific operator form for
the trial state. By choosing LLL single-particle basis states in
the symmetric gauge, the familiar form for the first quantized
Laughlin wave function is recovered. I then compute the matrix
elements used to rewrite the Laughlin wave function with
Eq. (7)

I start with a specific operator form for the Jastrow factor:

J 2p

γ=1 =
N∏

j<k

(T †
j − T

†
k )2p, (10)

and a specific constituent state:

|�ν∗=1〉 ∝
N∏

j<k

(T †
j − T

†
k )|0〉, (11)

where the vacuum is defined by 〈r|0〉 = ∏
j φn=0(rj ). The

constituent state |�ν∗=1〉 is equivalent to a Slater determinant.
Substituting Eqs. (10) and (11) into Eq. (2) leads to an operator

115136-3



V. W. SCAROLA PHYSICAL REVIEW B 89, 115136 (2014)

form for the Laughlin state [10,31]:

|ψν=1/(2p+1)〉 =
N∏

j<k

(T †
j − T

†
k )2p|�ν∗=1〉

∝
N∏

j<k

(T †
j − T

†
k )2p+1|0〉. (12)

Here the wave functions are written in terms of basis-
independent Hilbert space translation operators. To connect
with more familiar forms for the Laughlin state, a basis must
be chosen.

The Laughlin wave function was originally constructed
in the symmetric gauge appropriate for a disk geome-
try. The LLL basis states in this gauge are [5,8] φD

m =
zm(2π2mm!)−1/2 exp(−|z|2/4), in units of the magnetic length,
where z = x − iy is a complex planar coordinate and
m = 0,1, . . . indexes angular momentum. The translation
operators in this basis give 〈r|(T †)l|φ0〉 = fl

√
2l l!φD

l (r) =
(2π )−1/2zl exp(−|z|2/4). The choice fl = 1 yields the Laugh-
lin wave function:

〈
r
∣∣ψν= 1

2p+1

〉 ∝
N∏

j<k

(zj − zk)2p+1
N∏

i=1

e−|zi |2/4. (13)

This shows that the familiar form for the Laughlin state follows
from Eq. (2) with specific choices for the Jastrow factor, the
constituent state, and basis. Figure 2 shows a schematic for
vortex attachment in this basis.

The Laughlin state can now be written in terms of matrix
products using Eq. (7). To compute the matrix elements γ l

n,n′ ,
I require the translation operator to act as a polynomial in z.
This can be achieved using m → n to map the problem to
single-particle basis states on a 1D graph labeled by n. Using∫

d2r φD
n zlφD

n′ = �l
n′δn,n′+l , leads to

γ l
n,n′ → �l

n′δn,n′+l

} Laughlin in
disk basis, (14)

where �l
n is

�l
n′ ≡

√
2l(n′ + l)!

n′!
. (15)

This choice for the matrix elements completely specifies
the Laughlin state in second quantization [using Eq. (7),

(a)

yx

(b) (c)

FIG. 2. (Color online) (a) Schematic of two particles in an
angular momentum eigenstate in the disk geometry. Rings set an
average interparticle spacing. (b) Attaching one wavefunction vortex
to each particle accounts for Pauli exclusion. Attaching two additional
vortices [γ = 1 and p = 1 in Eq. (3)] separates them further.
(c) Placing the two additional vortices at the center [γ = 0 and p = 1
in Eq. (3)] forces occupancy of higher angular momenta.

Eq. (9), and (14)] and defines a matrix-product representation
equivalent to those in Ref. [21]. I have checked that the wave-
function amplitudes specified above reproduce the Laughlin
state obtained from the parent Hamiltonian [19].

VI. APPLICATION TO SPIN-ORBIT COUPLED FERMIONS

In this section I now turn to a flat band problem with
nonpolynomial basis states motivated by ultracold atomic gas
experiments [26]. In such experiments external lasers can be
used to confine fermionic alkali atoms, e.g., 40K, to 2D. Two
hyperfine levels define a pseudospin. The laser beam waist
induces a parabolic trapping, while applied Raman beams have
recently demonstrated the ability to apply synthetic spin-orbit
coupling [26]. I first discuss single-particle properties of a
model of Rashba SOC. I then model interactions within a flat
single-particle band.

I begin with the full 2D model of two-component
fermions [14–16,28,30]:

Ĥ =
∫

d2r �̂†
σ (r)

[
−�

2∇2

2mp

+ mpωTr2

2
+ �λi(∂xσy − ∂yσx)

+ g
σ,σ ′
2D

2
�̂

†
σ ′(r)�̂σ ′(r)

]
�̂σ (r), (16)

where the field operator �̂†
σ creates a fermion at r = (x,y)

in spin state σ =↑ , ↓, ωT specifies the trapping frequency
due to a parabolic confinement of particles of mass mp,
λ is the strength of the Rashba term, and σ are the Pauli
matrices. For fermions, the interaction term originates from
a contact interaction, g

↑,↓
2D δ(r − r′), with strength g

↑,↓
2D =√

8π�
2as/mplz, where lz is the harmonic confinement length

along the z direction and as is the s-wave scattering length.
I first discuss the noninteracting limit (gσ,σ ′

2D = 0). The
single-particle part of the Hamiltonian can be rewritten: H0 =
(−i�∇ + λmpẑ × σ )2/2mp + mpωTr2/2. This form shows
that the Rashba term appears as a non-Abelian vector potential
that suggests a magnetic-field-like interpretation.

Recent work [15,16,30] shows that low energy single-
particle basis states of trapped Rashba particles define a flat
band that resembles the LLL for strong SOC. For ωT = 0
the eigenstates of H0 define a “Mexican-hat” potential in
momentum space. But the trapping gaps out all but one low
energy ring that forms a flat band for α � 1, with α ≡ lT/lSO,
lT ≡ (�/mpωT )1/2, and lSO ≡ �/mpλ. The degenerate single-
particle energies, ≈ (1 − α2/2)�ωT + O(m2/α2), contribute
just to the zero-point energy. This shows that the flat band
limit is a good approximation for m < α.

The resulting single-particle basis states defining the lowest
energies are well approximated [15] by spinor eigenstates of
total angular momentum, Lz + �σz/2, with eigenvalues �(m +
1/2):

φm(r,θ ) = exp(−r2/2α2)

Nm

(
eimθJm(r)

ei(m+1)θJm+1(r)

)
, (17)

where N2
m ≡ πα2 exp(−α2/2)[Im(α2/2) + Im+1(α2/2)] de-

fines the normalization, Jm (Im) are the Bessel (modified
Bessel) functions, and lSO is the unit of length. The φm(r,θ )
define a helicity basis because these states are also eigenstates
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of the helicity operator, σ · L, where L is the angular
momentum operator.

Adding the following term: −ωTσzLz, to H0 yields Eq. (17)
as exact eigenstates [15]. This simplifies calculation of
interaction matrix elements but the term is not straightforward
to generate in atomic gas experiments. It can be shown [15]
that, in the absence of a −ωTσzLz term, Eq. (17) is still a good
approximate solution to H0 for α � 1.

Equation (16) is time-reversal invariant. As a result, the
single-particle basis states φm belong to a Kramers degen-
erate pair, the other member having the opposite angular
momentum. The ansatz wave functions discussed here can be
generalized to a two-component basis but as a first test I restrict
the basis to a single component by breaking time-reversal
symmetry with slow rotation.

Equation (16) can be written in a rotating frame of
reference. Under slow rotation I include a term −ωRLz, to
impose a splitting ∼�ωRm between the Kramers degenerate
pairs. Dynamical corrections ∼ ω2

R can be ignored for slow
rotation [33]. Here I also assume that rotation induced Zeeman
terms discussed in Ref. [15] are canceled with an applied
Zeeman coupling. In this limit the spinors φm form a basis
in a degenerate kinetic energy band at fixed total angular
momentum, M ≡ ∑N

i=1 mi , for 0 � m < α and α � 1.
Equation (17) defines a quasilocalized basis set that

approximates LLL functions for r → 0. For α � 1 the basis
states are Gaussians in r , but for α � 1 the Bessel function
imposes an oscillating tail. Figure 3 shows the peak of φm

increasing along r as m increases.
I now consider interactions, g

↑,↓
2D > 0, in Eq. (16). Requir-

ing m < α and α � 1 ensures the flat band limit. s-wave
scattering dominates interactions between ultracold alkali
atoms. I therefore use Vint → g

↑,↓
2D δ(r − r′), where g

↑,↓
2D is an

experimentally tunable interaction strength between fermions
of opposite spin [34], in Eq. (1) with P projecting into φn.
Projection follows from an expansion in the flat band basis:
�̂† = ∑

m φmĉ
†
m, where ĉ

†
m creates a fermion in the helicity

eigenstate defined by Eq. (17). I study the spectrum at fixed
M . Working with fixed M corresponds to a point along the
Yrast line [4]. For fixed M , the interaction then becomes the
only nonconstant term, thus leaving a Hamiltonian in the form
of Eq. (1):

Ĥ ≈ g
↑,↓
2D

2

∑
{m}

〈
φm1 ,φm2

∣∣φm3 ,φm4

〉
ĉ†m1

ĉ†m2
ĉm3

ĉm4
, (18)

0 10 20
r/lso

0

0.2

|φ
mσ |2

|φm=6
↓ |2|φm=5

↑ |2

φn=5=(T
+)5φ0

0     1     2     3     4     5     6     7     8     9 n

FIG. 3. (Color online) Single-particle basis states as a function
of position for each spin component in Eq. (17) for α = 100. The
inset depicts the mapping between angular momentum, indexed by
m, and a 1D graph indexed by n.

where the sum is over allowed indices, m1 + m2 = m3 + m4.
This shows that an interaction-only flat band model, Eq. (1),
derives from Ĥ . Equation (18) also shows the form of the
interaction matrix used to numerically diagonalize g

↑,↓
2D δ(r −

r′) in the φm basis.
I now discuss possible wave functions designed to capture

the essential properties of the eigenstates of Eq. (18). Figure 3
shows that spatially decaying interactions should decrease
in strength as |m − m′| increases. This suggests that here
Eq. (3) [or, equivalently, Eq. (7) with m → n ] will offer an
energetically favorable method to impose vortex attachment
because (1) the basis defines a flat band, (2) the basis states
are only quasilocalized and therefore define noncommuting
density operators, and (3) Hilbert space translation spatially
separates particles to decrease the interaction energy.

To capture the effects of interactions I consider wave func-
tions written at ν = 1/(2p + 1), which correspond to ground
states at M = (2p + 1)N (N − 1)/2 and 2p + 1 vortices per
particle. I use the formalism introduced above [Eqs. (7)–(9)]
to write ansatz states in the matrix-product form. I consider
two different states (one with γ = 1 and one with γ = 0) in
the helicity basis.

A γ = 1 Laughlin-type state in the helicity basis can be
derived from the r → 0 limit of Eq. (17). I use the definition of
the matrices, γ l

n,n′ = 〈φn|(T †)l|φn′ 〉, in terms of single-particle
basis states. This can be done numerically for the basis states
defined by φm but an analytic expression is possible by noting
that φm defines a LLL-like Hilbert space of spinors. Using this
I derive analytic expressions for γ l

n,n′ in the helicity basis.
I first note that δ function interactions will emphasize the

short range part of the basis states. One can show that, in the
r → 0 limit, the upper and lower entries in the spinor defining
φm reduce to lowest Landau level basis states, φD

m and φD
m+1:

φm → 1√
2

(
φD

m,↑
φD

m+1,↓

)
, (19)

where I have taken the limit r → 0 with r/α held constant.
This simplification allows use of the lowest Landau level
basis states to define the matrix elements with: (T †)l|φD

m′ 〉 =
fm′�l

m′ |φD
m′+l〉, where fm′ is a variational functional of m′.

Using Eq. (19) I find expressions for γ l
n,n′ for the Laughlin

state in the helicity basis:

〈φm|(T †)l|φm′ 〉

→
〈
φD

m,↑
∣∣(T †)l

∣∣φD
m′,↑

〉 + 〈
φD

m+1,↓
∣∣(T †)l

∣∣φD
m′+1,↓

〉
2

=
(
fm′,↑�l

m′ + fm′+1,↓�l
m′+1

)
δm,m′+l

2
, (20)

where the arrow indicates the limit r → 0 with r/α held
constant. This expression allows a definition of the matrix
elements that define the Laughlin state in the helicity basis:

γ l
n,n′ → (

�l
n′ + �l

n′+1

)
δn,n′+l

} Laughlin in
helicity basis (21)

by setting fm′,↑ = fm′,↓ = 2 and m → n. This choice for fm

simply adjusts the normalization. m dependence in fm impacts
energetics.
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Equation (20) can also be used to derive the matrix elements
for the central vortex state (defined by γ = 0). In setting γ = 0,
I note that the only terms that survive in Eq. (7) have l = 1.
This shows that Eq. (20) gives

γ l
n,n′ →

(
�l

n′ + �l
n′+1√
n + 1

)
δn,n′+lδl,1

}
central vortex
in helicity basis,

(22)

with l = 1, m → n, fm′,↑ = 2, and fm′+1,↓ = 2/
√

m′ + 1.
This choice for fm′,↓ prevents the density from vanishing at
the center and was found to give the best overlaps in numerics.

When these Jastrow factors are inserted into Eq. (9) they
offer distinct ansatz states that can be directly compared with
the results of exact diagonalization. Equation (21) places three
vortices on each particle (γ = 1) to build the Laughlin state
in the helicity basis, Eq. (17). But Eq. (22) places 2N vortices
in the system center and one on each particle (γ = 0) in the
helicity basis. A numerical routine (provided in Supplemental
Material [35]) uses the simplicity of the matrix-product
representation and matrix multiplication methods on sparse
matrices to generate these states.

VII. NUMERICAL RESULTS

I illustrate validation by comparing results from numerical
diagonalization of Eq. (18) with ansatz wave functions defined
by Eqs. (21) and (22) for p = 1.

Figure 4 compares the density of the ansatz states with the
exact state. The Laughlin state describes a state with uniform
density near the trap center for large N . The central vortex
state, by contrast, shows a pronounced dip, detailed in the inset.
The density comparison shows good agreement between the
exact state and central vortex state. The overlaps and energies
in Table I also show good agreement.

0 10 20 30
r/lso

0

0.001

0.002

n(
r)

Exact
Eq. (10)
Eq. (11)

FIG. 4. (Color online) Main panel: density as a function of radial
position for α = 100, N = 6 particles, and total angular momentum
M = 45 which corresponds to ν = 1/3. The solid line results from
diagonalization of the interaction-only model, Eq. (18). The dotted
(dashed) line was computed using Eqs. (9) and (21) [Eqs. (9) and (22)]
with p = 1. Inset: the same as the dashed line but versus x and y.

TABLE I. Columns list, from left to right, the particle number,
total angular momentum, interaction energy per particle for the exact
state, and the central vortex state. The last column lists the overlap
of the exact and the central vortex state. The exact state was obtained
from diagonalizing Eq. (18) and the trial state from Eqs. (9) and (22)
with p = 1 and α = 100. The energies units are 2g

↑,↓
2D /l2

T.

N M Exact energy Trial state energy Overlap

4 18 0.06919 0.07028 0.989
4 19 0.06449 0.06511 0.994
5 30 0.08424 0.08531 0.985
5 31 0.08062 0.08140 0.990
6 45 0.09839 0.09949 0.981
6 46 0.09547 0.09640 0.986

Decreasing α induces a transition from the central vortex
state to a more uniform state. At smaller α, Eq. (21) has a
higher overlap (at most 0.5 at α ≈ 23) because in this limit the
basis states better approximate φD. Here interactions appear to
favor vortex attachment on each particle. But the limit α ∼ 100
is consistent with the flat band assumption, m < α. The central
vortex state, Eq. (22), therefore captures the low energy physics
for the physically relevant limit, α > 23.

VIII. INTERPRETATION AND OBSERVABLES

This section discusses the physical implications of the
numerical results. The wave-function comparison shows that,
for α � 1, attaching three vortices to all N particles is
energetically less favorable than placing 2N vortices in the
system center and one on each particle. Such large vortex states
have been the subject of intense interest in the literature (for
reviews, see Refs. [3,4,36]). Here the formation of a vortex is
nontrivial because it minimizes interaction energy only. There
is no kinetic energy in Eq. (18). This energetic competition
is akin to the nontrivial competition between inhomogeneous
Wigner crystals and uniform quantum liquids in the fractional
QH regime.

The energetics of vortex attachment are determined by the
precise form of the interaction and therefore the basis state
functions. For α � 1 the Bessel functions in φm impose an
oscillating tail in r that manifests in the interaction. The
tail builds up an interaction energy cost as it runs through
the rest of the system. The central vortex state gains in
energy by removing the m = 0 state because the tail of
this state overlaps with the most particles. The numerical
results did not find evidence for a Laughlin-type state for
α � 1. Such uniform density states should be energetically
more favorable for monotonically decreasing interactions
established by Gaussian-like bases, e.g., φD.

Two-thirds of the wave-function vortices accumulated at
the system center, rather than on individual particles (as in
Laughlin states). The accumulation of many (∼ N ) wave-
function vortices in one location suppresses the density.
These macroscopic vortices should be visible in time-of-flight
measurements of atomic gas systems [4,36]. Such observations
would imply the ability to control and detect interaction-
generated vortices as they relocate in many-body states to
minimize interaction energy.
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IX. SUMMARY

I introduced an implementation of wave-function vortex
attachment in a general matrix-product representation. I
demonstrated the utility of this formalism by validating wave
functions constructed to describe a model of trapped 2D atomic
Fermi gases in the presence of synthetic Rashba SOC and slow
rotation. The flat band limit led to a large central vortex.

The exact method introduced here allows straightforward
validation of Jastrow-based ansatz states in small system
sizes. Small system sizes are valuable in studying states
with exponentially decaying correlations, e.g., topological
quantum liquids. To reach larger system sizes, approximations
introducing singular value decomposition with tensor network-
based algorithms [24], e.g., the density matrix renormalization
group [22,23], can be used for scale-up.
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APPENDIX: PROOF OF EQ. (7)

This section proves that the second-quantized form of the
Jastrow factor, Eq. (7), derives from the first-quantized form.
The proof follows a derivation of Shiota’s formula [32] (written
in first quantization) and then second quantizes the operators
in this formula.

I start with the first-quantized Jastrow factor:

J 2p

γ=1 =
N∏

j<k

(T †
j − T

†
k )2p,

where, without loss of generality, I choose γ = 1. The
translation operators are understood to act on a suitably chosen
state. I have also assumed that the translation operators act as
ladder operators on a basis φn that has been mapped to a 1D
graph so that T †φn ∝ φn+1.

By defining a new operator,

� ≡
N∏

j,k=1

[1 − ε(T †
j − T

†
k )p],

where ε is a small number, I can rewrite the Jastrow factor as

J 2p

γ=1 = (−1)pN(N−1)/2CoeffεN(N−1) [�],

where CoeffεN(N−1) indicates the coefficient of the εN(N−1) term
in the expansion. � can then be written in terms of sums over
translation operators using the binomial theorem:

� = exp

⎡
⎣ N∑

i,j=1

log{1 − ε(T †
i − T

†
j )p}

⎤
⎦

= exp

⎡
⎣−

∞∑
n=1

εn

n

np∑
l=0

(
np

l

) N∑
i,j=1

(T †
i )np−l(−T

†
j )l

⎤
⎦

= exp

[
−

∞∑
n=1

εn

n

np∑
l=0

(
np

l

)
(−1)l tnp−l tl

]
,

where the sum over all translation operators is

tl ≡
N∑

j=1

(T †
j )l .

This form for � shows that J 2p

γ=1 can be rewritten in terms of
a simple product over operator sums tl .

To find the εN(N−1) coefficient, the exponential can be
expanded:

� =
∞∑

k=0

1

k!

[
−

∞∑
n=1

εn

n

np∑
l=0

(
np

l

)
(−1)l tnp−l tl

]k

.

By substituting � into the equation for J 2p

γ=1, the sums over k

and n become finite because there are only a finite number of
terms contributing to the prefactor of εN(N−1):

J 2p

γ=1 = (−1)
pN(N−1)

2

N(N−1)∑
k=1

(−1)k

k!

×
∑

n1 � 1, . . . ,nk � 1
n1 + · · · nk = N(N − 1)

k∏
i=1

1

2ni

nip∑
l=0

(
nip

l

)
(−1)l tnip−l tl .

This form for J 2p
γ is written with operator sums and can

therefore be rewritten in terms of operators in Fock space.
The above Jastrow factor can now be rewritten in second

quantization. I rewrite the operators tl in terms of the field
operators �̂(r):

Ĵ 2p
γ = (−1)

pN(N−1)
2

N(N−1)∑
k=1

(−1)k

k!

×
∑

n1 � 1, . . . ,nk � 1
n1 + · · · nk = N(N − 1)

k∏
i=1

1

2ni

nip∑
l=0

(
nip

l

)

× (−1)lM̂nip−lM̂l,

where the tl operators have become

M̂l ≡
∫

dr �̂†(r)(T †)l�̂(r).

Here (T †)l�̂(r) implies translation of orthonormal single-
particle basis states in a decomposition of the field operators.
This can be seen by expanding the field operators in terms of
the basis states φn explicitly:

M̂l =
∑
n,n′

〈φn|(T †)l|φn′ 〉ĉ†nĉn′ =
∑
n,n′

γ l
n,n′ ĉ

†
nĉn′ ,

where ĉ
†
n creates a fermion in the state φn. Note that by

changing the form for γ l
n,n′ , the γ = 0 limit can be obtained.

The matrices defined by M̂l are essentially single-particle
density matrices. The above derivation was specified to a
Jastrow factor written for N single component particles with
basis states that can be mapped to a 1D graph. The above
derivation can be generalized to multicomponent bases and
other graphs, �.
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