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Magnetism arising from coupled spin and spatial degrees of freedom underlies the properties of a broad
array of physical systems. We study here the interplay between correlations in spin and space for the quantum
compass model in a finite external field, using quantum Monte Carlo methods. We find that finite temperatures
cant the spin and space �bond� correlations, with increasing temperature, even reorienting spin correlations
between orthogonal spatial directions. We develop a coupled mean-field theory to understand this effect in
terms of the underlying quantum critical properties of crossed Ising chains in transverse fields and an effective
field that weakens upon increasing temperature. Thermal canting offers an experimental signature of spin-bond
anisotropy.
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I. INTRODUCTION

The collective behavior of spins in highly correlated
quantum magnets typically establishes order globally, over a
large portion of the system by breaking a symmetry of the
system. Conventional characterizations of magnetic order,
such as ferromagnetism, therefore, rely on microscopic mod-
els with global symmetries. Recent theoretical studies have,
in contrast, analyzed models that support quantum phases
without long-range ordering, for which novel types of order,
including intriguing topological quantum liquid phases, can
nevertheless arise.1–3 Quantum liquids can be difficult to
identify �both theoretically and experimentally� because the
lack of long-range order defies characterization by simple
bulk order parameters such as magnetization. Models with
quantum liquid ground states can harbor quasilocal symme-
tries which impose a symmetry on a small, nonextensive
subset of spins.4 Examples of such quasilocal operators in-
clude one-dimensional operator chains embedded in two-
dimensional graphs. The qualitatively distinct characteristics
of systems with reduced, nonextensive symmetry play an
important role in identifying novel quantum liquid phases.

We study here one of the simplest of these models, the
quantum compass model in a magnetic field h:

H = − ��
i,j

Si,j
x Si+1,j

x − �
i,j

Si,j
z Si,j+1

z − h�
i,j

Si,j
z , �1�

where Si,j
� =�i,j

� /2 are spin-1/2 operators at the �x ,z� coordi-
nates �i , j� on an L�L square lattice. It is sufficient to con-
sider ��0 since with a � rotation of spins about the z axis
on a single sublattice, our results apply to the ��0 case as
well. The coupling between bond and spin degrees of free-
dom separates this class of models from more conventional
models of magnetism and motivates the intriguing question
as to whether there are generic signatures of anisotropic spin-
bond coupling.

The quantum compass and related models were first dis-
cussed in the context of Mott insulators5 and have been stud-
ied as simple models of orbital order in the transition-metal
oxide compounds with anisotropic coupling among orbitals

defining pseudospins.5–7 For example, recent experiments8–10

on a two-dimensional eg orbital compound, LaSrMnO4, ob-
serve intriguing thermal effects. Anomalies in thermal-
expansion measurements8 and in Raman scattering,10 as well
as structural changes measured by neutron and x-ray
diffraction,9 have all been interpreted as indicating a change
in orbital occupation that is driven by temperature. The re-
orientation of orbital direction with increasing temperature
implied by the experiments raises the question as to whether
this results from thermal repopulation of a noninteracting
orbital system, or from competition between orbital-orbital
interactions and thermal effects. Detailed understanding of
this phenomenon requires quantitative analysis of the com-
peting roles of superexchange, phonon, crystal-field, and
Jahn-Teller effects. However, the orbital-only degrees of
freedom in these systems have been shown to be approxi-
mately described by a quantum compass model with
anisotropic-pseudospin interaction terms given by superex-
change contributions and an effective magnetic field deter-
mined by the crystal-field splitting.11 This enables one to
address in general the intriguing question of whether and
how orbital-orbital interactions can influence the thermal re-
distribution of orbitals. We answer this question in the affir-
mative here, showing that a type of thermal reorientation,
“thermal canting,” of nearly degenerate orbitals can indeed
arise from a large anisotropic orbital-orbital interaction of the
type exemplified in Eq. �1�. We also show that this thermal
canting can provide an observable signature of the aniso-
tropic interactions.

Equation �1� has been studied in other contexts as well. A
duality mapping12 relates Eq. �1� to models of p-wave
superconductors.13 Recent proposals put forward to realize
Eq. �1� in optical lattices, using asymmetric tunneling14 or
polar molecules,15 and in Josephson-junction arrays16 �finite-
sized versions of which have recently been realized17� have
been motivated by the recognition that the h=0 limit is char-
acterized by sets of low-energy twofold-degenerate states
that may provide protected subspaces for encoding quantum
information.16,18 In addition, related4 anisotropic-spin models
�Eq. �4� of Ref. 3� show topological order which allows a
robust form of quantum information processing.2,19 A generic
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experimental signature of the spin-bond asymmetric models
would be a valuable tool in the search for realizations of
models with anisotropy and related quasilocal symmetries.

In this paper we study the finite-temperature properties of
the quantum compass model for h�0, using both quantum
Monte Carlo �QMC� and mean-field theory to identify ge-
neric signatures of the set of one-dimensional symmetries
underlying Eq. �1�. We find a remarkable thermal canting
effect whereby finite temperatures enhance spin-bond corre-
lations rx, where r�=L−2�i,j�Si,j

� Si+1,j
� � and �=x ,z. The en-

hancement resembles an order-by-disorder process.6,20,21 The
reorientation of net spin-bond correlations �from rz to rx�
defines a phase akin to a liquid-crystal smectic C phase
where molecular moments order along a vector �“director”�
tilted with respect to translationally ordered columns. We
develop a mean-field theory using intersecting Ising models
and their crossover phase diagrams22 to show that the finite-
temperature reduction in the z magnetization leads to thermal
canting at the mean-field level and should therefore play a
role in similar models. For ��1 we find that finite tempera-
tures can completely reorient spin-bond correlations to point
in orthogonal directions in spin and real space.

II. SYMMETRIES IN ZERO-FIELD LIMIT

We begin our study with an analysis of the unique sym-
metries of the quantum compass model in several well-
defined limits, for h=0. Under high strain, �	1 ��
1�, the
system forms a series of L weakly coupled spin chains lying
along the x �z� direction in real space. At zero temperature
the chains order to point along the x �z� direction in spin
space. Note that with h=0, Eq. �1� commutes with the
quasilocal symmetry operators Pi=� j2Si,j

x and Qj =�i2Si,j
z ,

which act on ordered chains to generate spin flips along z and
x chains, respectively �P is not an exact symmetry for h
�0�. Gapped excitations along chains are then finite length
domains of flipped spins, as in one-dimensional Ising mod-
els. The operators Q �P� can flip all spins along the ordered
chains in the ground state, resulting in yet another ground
state. This results in a twofold degeneracy of each chain and
therefore a massive ground-state degeneracy of the two-
dimensional system of at least 2L.

As �→1, the interchain coupling allows a set of inter-
chain excitations. Reference 23 showed that high-order inter-
chain fluctuations of the magnetization cost zero energy �for
L→��, preserving a large �O�2L�� ground-state degeneracy
for all �. The �=1, h=0 limit yields discrete global rota-
tional symmetries �see Ref. 12 for a discussion�. A nematic-
like order parameter has been defined,12,24 r	rz−rx, to char-
acterize smecticlike bond ordering along the x and z
directions in spin and real space, analogous to the directional
ordering of molecular moments along columns in liquid
crystals. r=0 implies a disordered phase with no preferred
direction. Finite-temperature studies7,25 suggest a phase tran-
sition from an ordered, 
r
�0, phase to a disordered phase
with Tc�0.055 �Ref. 25� in units of the interaction strength
in Eq. �1�. Example interaction strengths in corresponding
experimental systems are �1000K for orbitals8 or �1K for
Josephson junctions.17

III. QUANTUM MONTE CARLO SIMULATIONS
AT FINITE FIELDS

A weak finite magnetic field picks out a single ground
state with a gap to excitations set by h, simplifying QMC
simulations. We employ the stochastic series expansion using
directed loops.26–28 A modification of the code in the ALPS

�Ref. 29� package allows a treatment of Si,j
x Si+1,j

x bond terms
in the updating scheme. All QMC results presented here are
converged to the thermodynamic limit in studies of several
system sizes up to L=30 for periodic boundary conditions.

Our results show that competition between the interaction
and the magnetic field sets up an interesting interplay in the
energetics along both spatial directions. The inset of Fig. 1
�top panel� shows a schematic of the generic behavior ob-
served in the QMC calculations for ��1 as we increase
temperature. At low temperatures the weak magnetic field
aligns the net magnetization along the z direction. The mag-
netic field and z-interaction term favor spin chains that are
bond correlated along the z direction, i.e., large rz. Using
mean-field theory we will show that interchain interactions
contribute to an effective magnetic field that suppress exci-
tations along the x direction. As we increase temperature
above the gap set by h, the applied magnetic field becomes
less relevant while the mean-field effective magnetic field is
reduced with increasing temperature. Excitations along x are
then allowed to recover. Consequently, bond correlations
build up along the x direction, yielding rx→rz as can be seen
in the QMC and mean-field results in Fig. 1. At high tem-
peratures both types of correlations are trivially suppressed
as the system becomes thermally disordered.

IV. PARTIAL MEAN-FIELD THEORY

At first sight, the buildup of bond correlations along the x
direction is puzzling since one would expect a suppression of
bond correlations with increasing temperature. To understand
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FIG. 1. �Color online� The top �bottom� panel plots the spin-
bond correlations versus temperature along the x �z� direction com-
puted via quantum Monte Carlo �open circles� and partial mean-
field theory �solid line� for the quantum compass model on a square
lattice in a magnetic field. The peak in rx indicates a reorientation of
bond correlations with increasing temperature depicted schemati-
cally in the inset, where ↑ and → correspond to spins aligned along
the z and x directions, respectively. The data are plotted here for
�=1 and h=0.08.

SCAROLA, WHALEY, AND TROYER PHYSICAL REVIEW B 79, 085113 �2009�

085113-2



this buildup of correlations along the x direction, we con-
struct a coupled partial mean-field theory �PMFT� in which
spin interactions along a given bond direction are treated at
the mean-field level, while the interactions along the or-
thogonal direction are treated exactly. In our two-step proto-
col we first choose the z direction �indicated by �¯�z� and
make a mean-field decoupling, Si,j

z Si,j+1
z →Si,j

z �Si,j+1
z �z to gen-

erate the effective field Bx
eff= �Si,j+1

z �z+ �Si,j−1
z �z+h for spins

along x. We then repeat the process by exchanging x and z,
resulting in a set of two coupled mean-field equations:

HMF
z = − �

i,j
Si,j

z Si,j+1
z − h�

i,j
Si,j

z − Bz
eff�

i,j
Si,j

x , �2�

HMF
x = − ��

i,j
Si,j

x Si+1,j
x − Bx

eff�
i,j

Si,j
z . �3�

While in general one may take Bz
eff=���Si+1,j

x �x+ �Si−1,j
x �x� and

make a self-consistent solution to Eqs. �3� and �2�, in what
follows we keep the mean-field solutions analytic by setting
Bz

eff=0. This approximation does not qualitatively alter our
results for � near unity. We also assume a uniform net mag-
netization �Sz�z= �Si,j

z �z. The magnetization �Sz�z obtained
from solving Eq. �2� can then be substituted directly into Eq.
�3�. This mean-field approach is motivated by the work in
Ref. 30 but differs by: �i� having a set of two coupled mean-
field equations, �ii� addressing a different parameter regime
of finite temperatures and magnetic fields, and �iii� obtaining
qualitatively accurate results without a self-consistency loop.
The mean-field approach is expected to be qualitatively ac-
curate because the finite magnetic field suppresses fluctua-
tions along the z direction.

We can now solve the PMFT equations analytically.
Solving Eq. �2� using the well-known solutions of the
classical Ising model,31 we obtain �Sz�z=tanh�C� / �2G�,
where G	
1+ �exp�−4K�−1�sech2�C��1/2, K	1 /4T,
and C	h /2T, and can estimate rz as �Si,j

z Si,j+1
z �z

= �1 /4��K ln
exp�K�cosh�C��1+G�� This first estimate for
the magnetization is then used as input to Eq. �3�, which
is the Ising chain in a transverse field and can be solved
exactly via the Jordan-Wigner transformation.32 We ob-
tain the total energy: �HMF

x �x=�k
k�nk−1 /2�, where 
k

= ��Bx
eff�2−�Bx

eff cos�k�+�2 /4�1/2 and nk is the Fermi dis-
tribution function. Our PMFT estimate for the magnetization
of the two-dimensional system becomes �Sz�x
=�k�2Bx

eff−� cos�k���4
k�−1 tanh�
k /2T�. We can also
obtain an estimate for rx: �Si,j

x Si+1,j
x �x=−�1 /�L��HMF

x �x

− �1 /��Bx
eff�Sz�x. By setting Bz

eff=0 we ignore the influence of
the magnetization along x on rz. The result is an overestimate
for rz at low temperatures. Figure 1 and the inset of Fig. 2
show a comparison between the PMFT and QMC results for
the temperature dependence of rx, rz, and �Sz�. It is evident
that the PMFT captures the qualitative features of the QMC
results.

The success of the PMFT analysis implies that finite-
temperature excitations of the two-dimensional quantum
compass model can be approximated by excitations along
crossed �coupled� one-dimensional Ising models. The pecu-
liar enhancement of rx with temperature can now be under-

stood from the crossover phase diagram of the transverse
field Ising model �Eq. �3��. Figure 2 plots a schematic of this
crossover phase diagram. In our mean-field analysis, Bx

eff car-
ries a temperature dependence because the z spins demagne-
tize with increasing temperature. In Fig. 2 we superpose
Bx

eff�T� from a solution of the mean-field equations, which
shows that an increase in temperature lowers the effective
magnetic field seen by spins along the x direction. The bond
correlations along the x direction are therefore enhanced be-
cause of a consequent drastic reduction in �Sz�z. We conclude
that the nonlinear temperature dependence in the effective
magnetic field experienced by the spin chains lying along the
x direction is therefore responsible for the thermal canting of
spin-bond correlations observed in QMC.

V. MAGNETIC FIELD DEPENDENCE
OF THERMAL CANTING

We now examine thermal canting in finite fields h in
greater detail. Figure 3 indicates that the net spin-bond cor-
relations completely reorient with increasing temperature. To
understand this behavior, first note that the h��	1 limit of
Eq. �1� can be thought of as a set of nearly independent
transverse field Ising models with a quantum critical point
�Bc=� /2�. Lowering h takes the system from the paramag-
netic phase through the quantum critical point �at T=0� to an
ordered chain phase along the x direction. For a specific
choice of ��1 we can therefore completely reorient bond
correlations by tuning h. Thermal canting also tunes Bx

eff but
with a directionally independent parameter, temperature. At
low temperatures the finite magnetic field favors bond corre-
lations along the z direction, r�0, while at higher tempera-
tures thermal canting of spin-bond correlations now favors a
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FIG. 2. �Color online� Crossover diagram for a one-dimensional
transverse field Ising model. The x axis indicates the effective mag-
netic field which can be lowered to tune from the paramagnetic side
�weak nearest-neighbor correlations�, through a quantum critical
point, Bc	� /2, to a regime with relatively strong nearest-neighbor
correlations. The dashed lines schematically define the quantum
critical regime. For the PMFT defined by Eq. �3�, Bx

eff is tempera-
ture dependent and plotted for h=0.08 �solid line� and h=0.001
�dotted line� with �=1. Inset: The same as Fig. 1 but for magneti-
zation density. The PMFT curve plots �Sz�x.
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net orientation along the x direction, r�0. This implies a
canting transition at some temperature Tcant, which is illus-
trated in Fig. 3 for �=1 /0.85, where Tcant�0.25. These re-
sults predict a striking effect, namely, a complete reorienta-
tion of net bond correlations in both spin and real space with
increasing temperature. This thermal reorientation arises
from a distinct mechanism, thermal canting, that can again
be understood in the PMFT calculations as being due to a
weakening of the effective magnetic field with increasing
temperature: thus it is a consequence of the two-dimensional
vector nature of the spin-bond correlations in Eq. �1�.

Our two-dimensional spin-bond analysis at small finite h
also provides a microscopic rationale for the 
r
→0 transi-
tion observed in the h=0 QMC simulations7,25 in terms of an
immediate thermal canting of spin-bond correlations. Our
QMC and PMFT results both show that the rx peak in Fig. 1
moves to lower temperatures with decreasing magnetic field.
The mean-field analysis indicates that this enhancement of rx
at low temperatures derives from the rapid depolarization of
�Sz�z with increasing temperature when h is small. Mean-
field results for extremely small h values and �=1 are shown
in Fig. 4.We see that the increase in rx with temperature at
low h concomitantly tends to decrease r �see inset�. Extrapo-
lating the PMFT results to h→0 yields, for �=1, rx
= �1 /4�tanh�1 /4T�+O�h2� and r=0+O�h2�. Thus r disap-
pears altogether for h→0. This contrasts with the h=0 QMC
results of Refs. 7 and 25 where a low-temperature plateau in

r
 was followed by a rapid decrease at larger T and assigned
to a disordering transition. The difference may be due to a
lack of fluctuations in the PMFT which could play a large
role in the h→0 limit.

VI. SUMMARY

We have found a distinct thermal canting effect in the x-z
plane of the two-dimensional quantum compass model. Ex-

citations governed by the rather unique set of chain symme-
tries implicit in the model provide a microscopic mechanism
responsible for this effect. Thermal excitations above the
paramagnetic gap can be approximated by those of intersect-
ing Ising chains that are generated by quasilocal operators
stemming from the exact symmetry Q and the approximate
symmetry P. Such excitations lead to an enhancement of
spin-bond correlations along the x direction at higher tem-
peratures. This study shows that temperature can be used as
a parameter to experimentally tune the balance between the
excitations generated by these operators and to thereby re-
veal the underlying chain symmetries and anisotropic inter-
actions. Thermal canting arises in our mean-field theory �as
well as QMC�. Our partial mean-field argument applies to a
number of other lattice geometries, in addition to the rectan-
gular lattice of Eq. �1�.

In summary, our combined QMC and partial mean-field
analysis shows that anisotropic interactions can lead to a
thermal redistribution of spin-bond correlations. The results
suggest that observation of thermal canting can provide an
indicator of spin-bond anisotropy, with significant implica-
tions for the transition-metal oxide compounds that are de-
scribed by pseudospin models of orbital degrees of freedom.
Our demonstration that thermal canting can be driven by
anisotropic interactions suggests that the recent observations
of a thermal reorientation of nearly degenerate orbitals in
LaSrMnO4 �Refs. 8–10� warrant further analysis in terms of
anisotropic-pseudospin models of orbitals.
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FIG. 3. �Color online� Net spin-bond correlations as a function
of temperature for h=0.1 and �=1 /0.85. Thermal canting reorients
the spin-bond correlations to lie predominantly along the x direction
in both spin and space for T�0.25.
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