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Models of strong interaction in flat-band graphene nanoribbons: Magnetic quantum crystals
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Graphene-based nanostructures exhibit flat electronic energy bands in their single-particle spectrum. We
consider interacting electrons in flat bands of zigzag nanoribbons. We present a protocol for flat-band projection
that yields interaction-only tight-binding models. We argue that, at low densities, flat bands can delocalize
single-particle basis states to support ferromagnetic quantum crystal ground states.
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I. INTRODUCTION

Graphene-based structures offer unique opportunities to
engineer electronic band structure by shape alone.1,2 Infinite
graphene sheets exhibit a conic spectrum, but finite-sized
graphene nanostructures yield a surprisingly broad array of
interesting band features. A subset of graphene nanostructures
reveal flat bands. Theoretical work shows that flat bands can be
found, e.g., at the edges of two-dimensional graphene,3 in one-
dimensional graphene nanoribbons,3–5 hydrogenated graphene
nanoribbons,6 graphene dots,7 and graphene antidots.8

Electrons in flat kinetic energy bands pose challenging
theoretical problems. The absence of any dispersion leaves
the Coulomb interaction to govern the low-energy physics.
Many common approximations fail in the extreme flat-band
limit. A single flat band can not lead to intraband screening
as in ordinary Fermi liquids, e.g., two-dimensional graphene
sheets.9 Magnetic properties in bulk graphene, in particular,
occur in a regime where large screening effects (allowed
by a dispersive kinetic energy) minimize the impact of the
long-range intraband Coulomb interaction between electrons
(see, e.g., Refs. 10–16). Flat kinetic energy bands, by contrast,
do not allow screening and therefore strongly emphasize
interaction effects by default. Furthermore, conventional per-
turbative treatments of the interaction (in comparison to the
kinetic energy) fail in flat bands due to the absence of a small
parameter.

Most theoretical studies of interactions in flat bands use the
Hubbard model with an onsite term.17–19 The onsite Hubbard
model incorporates just the energy penalty for two electrons
to occupy the same site while ignoring the long-range part of
the Coulomb interaction. The onsite term leads to surprising
ground states in the flat-band Hubbard model. For example,
work by Nagoaka17 finds ferromagnetism in flat bands at
specific fillings, near one particle per site. This is in stark
contrast to antiferromagnetism favored by super exchange in
dispersive bands.

Graphene edges, nanoribbons, and dots present physical
systems hosting flat bands. Theoretical modeling typically
relies on the onsite Hubbard model to make predictions. For
example, work studying flat bands in onsite Hubbard models
of zigzag nanoribbons20,21 uses mean-field theory to argue for
ferromagnetic states along nanoribbon edges but antiferromag-
netic coupling between edges. An ab initio calculation22 and
a work using both the weak-coupling renormalization group
and the density-matrix renormalization group calculation23

provide similar results.

Motivated by recent experiments on graphene
nanoribbons,24 we construct interacting lattice models
of electrons in flat-band nanoribbons. We focus on zigzag
nanoribbons because here, in contrast to arm-chair ribbons,
two flat bands arise near the Fermi level even in the absence of
adsorbates.3 In the top panel of Fig. 1, we schematically show
a zigzag nanoribbon where R0 (∼2.46 Å) labels the width of
a unit cell along the ribbon (x direction) and Ly labels the
number of zigzag chains across the ribbon (y direction). At
low densities, the absence of intraband screening in flat bands
suggests that the long-range part of the Coulomb interaction
is relevant. We therefore construct models that include even
the long-range part of the interaction. We choose to model
a very specific regime: flat bands in zigzag nanoribbons
because we expect the absence of conventional screening to
cause flat-band electrons to order in a way that is completely
distinct from electrons in bulk graphene.

The goal of our work is to establish a set of working
Hamiltonians of zigzag nanoribbons. We construct a single-
particle basis of Wannier functions. We use our basis to
compute the interaction matrix elements. We then establish
a projection protocol that sets up approximate flat-band
models. Projection into flat bands delocalizes basis states
due to quantum interference. The resulting flat-band models
are highly nontrivial (incorporating two bands, long-range
interactions, and spin) and can lead to many quantum ground
states even in the absence of significant dispersion. We make
simple estimates of the low-energy properties of our models
at odd denominator fillings of a single band.

We argue that, at low densities, the long-range part of the
Coulomb interaction supports ferromagnetic quantum crystals
(bottom panel of Fig. 1). Crystalline order projected into the
flat band incorporates quantum superpositions because basis
states delocalize. At low fillings, direct spin exchange leads to
an effective Heisenberg model. Our simple estimates therefore
predict ferromagnetic crystalline order in certain parameter
regimes. Our work sets the stage for more accurate studies of
our models with a general class of Jastrow-correlated wave
functions that apply to flat bands.25

Our protocol differs from conventional band-structure
calculations. Flat bands, in contrast to dispersive bands, are,
by default, strongly interacting. Conventional applications of
density functional theory accurately model the effect of core
electrons while making very local approximations for the
Coulomb interaction between mobile electrons. Flat bands
require accurate treatment of the long-range portion of the
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FIG. 1. (Color online) Top: Schematic of a zigzag nanoribbon
of carbon atoms. Bottom: Schematic of a ferromagnetic crystal with
one electron for every three unit cells in one band. The shaded areas
correspond to single unit cells and the arrows indicate aligned electron
spins.

unscreened Coulomb interaction between otherwise mobile
electrons.

In Sec. II, we consider the band structure that arises from
noninteracting tight-binding models of zigzag nanoribbons.
Two flat bands are identified. In Sec. III, we construct localized
single-particle basis states, orthonormal Wannier functions,
from carbon πz orbitals in the honeycomb lattice model of
zigzag nanoribbons. Sections IV and V use the Wannier
functions to explicitly compute Coulomb interaction matrix
elements for one and two flat bands, respectively. Section VI
defines a projection scheme that limits the total many-body
model to the flat-band portion of the single-particle spectrum.
Section VII sorts terms in the many-body model to argue
that, at low fillings, energetics favor ferromagnetic quantum
crystals. Section VIII summarizes and looks forward to more
accurate studies of the models constructed here.

II. FLAT BANDS IN ZIGZAG GRAPHENE NANORIBBONS

We consider interacting electrons hopping among carbon
sites forming zigzag graphene nanoribbons (Fig. 1). We first
model the electrons in a simple noninteracting tight-binding
picture. The single-particle tight-binding Hamiltonian is2

H0 = −t
∑
〈n,m〉

(ĉ†nĉm + H.c.), (1)

where the hopping integral is t ∼ 2.7 eV for graphene2 and
the sum is along bonds of the honeycomb lattice. The second-
quantized operator ĉ

†
n creates a fermion at a site n. Labels n

and m indicate lattice sites, in contrast to labels for unit cells,
i,j,k,l, used in the following.

Two bands near the Fermi level flatten for large ribbon
widths.3 An example band structure for a narrow width, Ly =
4, is shown in Fig. 2. Near the Fermi surface, the conduction
band (upper band, u) and valence band (lower band, d) are
nearly degenerate for wave vectors q in the region qR0 ∈
[2π/3,4π/3] and form flat bands. For larger widths, the bands
flatten considerably.

FIG. 2. (Color online) The dotted-dashed lines indicate the
energy eigenvalues of Eq. (1) versus wave vector for a nanoribbon
of width Ly = 4 and a q-space mesh of N = 44. The solid line
shows the approximate expression for the energy [Eq. (3)]. Two flat
bands form near qR0 = π . In the large-Ly limit, the bands flatten for
2π/3 � qR0 � 4π/3.

We examine the bandwidth with simple ansatz flat-band
single-particle states.3 Considering states in the region qR0 ∈
[2π/3,4π/3] with even Ly ,

φ±(q,y) = [φA(q,y), ± φB(q,y)]T

= [(−uq)y−1, ± (−1)y−1(uq)Ly−y]T (2)

for y = 1, . . . ,Ly where uq ≡ 2 cos(qR0/2), the energy dis-
persion in band � = u,d can be computed analytically:

|E�(q)| ≈ |φ(q,y)T H0(q)φ(q,y)|/|φ(q,y)|2
= t

(
1 − u2

q

)
u

Ly

q

/(
1 − u

2Ly

q

)
, (3)

with

H0(q) = t

(
0 Q(q)

Q†(q) 0

)
,

Q(q) =

⎛
⎜⎜⎜⎜⎝

uq 0 . . . 0

1 uq 0 . . .

...
...

...
...

0 . . . 1 uq

⎞
⎟⎟⎟⎟⎠ .

Figure 2 compares Eq. (3) with the exact results from Eq. (1).
Equation (3) can be used to determine the bandwidth. For

partially filled lattices, a narrow range of single-particle basis
states will be occupied. The bandwidth for states in the flat-
band sector vanishes for ribbons with large width:

|E�(|q − π | → π/3)| → t

Ly

. (4)

From this estimate, we see that band dispersion plays a small
role for dilute ribbons with increasing ribbon widths.

A vanishing bandwidth, due to quantum interference,
leaves the interaction as the dominant term in the many-body
Hamiltonian for electrons. For dilute ribbons, we will work
in the approximation that H0 adds an overall constant energy
shift to the spectrum. The full Hamiltonian adds the unscreened
Coulomb interaction

Htotal = H0 + HV . (5)
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In the following, we treat the dispersion as a small correction
to the interacting term. We project the Hamiltonian into the
basis of flat-band states. Our model becomes

Htotal =
∑

q∈BZ,σ,�

E�(q)ĉ†qσ�ĉqσ� + HV

→ constant + P†
FBHVPFB, (6)

where the first equality is written in terms of the creation
(annihilation) operators ĉ

†
qσ� (ĉqσ�) for Bloch states at wave

vector q and band � in the Brillouin zone (BZ), which are
related to the operators for single-particle basis states by a
Fourier transform

ĉ
†
jσ� = 1√

N

∑
q∈BZ

eiq·Rj ĉ
†
qσ�. (7)

Here, Rj is the lattice vector of the j th unit cell, N defines
the number of unit cells and q-space mesh, and σ ∈ {↑ , ↓}
denotes spin. P†

FB denotes projection into flat bands such that
the many-body eigenstates are constructed from Bloch states
with qR0 ∈ [2π/3,4π/3]. Many-body states incorporating
these values of q will have essentially no kinetic energy.
We consider this model as a centerpiece to understanding the
electronic properties of flat-band nanoribbons at low densities.

To explore possible many-body states in zigzag nanorib-
bons, we construct an accurate form for Eq. (6) in the
flat-band basis. We note that the absence of any dispersion
excludes intraband screening as in ordinary Fermi liquids.
Thus, many-body eigenstates are determined entirely by the
interplay between various terms in the interaction. It is
therefore crucial to accurately determine the interacting terms
in Eq. (6) as prescribed by our choice of single-particle
basis. To construct an accurate single-particle basis, we
revisit the underlying simple tight-binding model formed from
overlapping πz orbitals. We construct orthonormal Wannier
functions from these orbitals. The Wannier functions will serve
as single-particle basis states, allowing the construction of
competing terms in a many-body model.

III. SINGLE-PARTICLE BASIS STATES: FLAT-BAND
WANNIER FUNCTIONS

In this section, we construct a set of single-particle basis
states in nanoribbon flat bands. We superpose carbon πz

orbitals to form orthogonal Wannier functions. The Wannier
functions will then, in later sections, be used to accurately
determine interaction matrix elements.

In an isolated band, the Wannier functions are given by

Wj (r) = W0(r − Rj ) = V

(2π )D

∮
BZ

dq e−iq·Rj �q(r), (8)

where D is the dimension, V is the volume of unit cell.
The Bloch functions are �q(r) = ∑M

m=1 Cmqχmq(r), with M

atomic sites per unit cell.
To make contact with first-principles calculations on

graphene nanoribbons,2 we form Bloch functions from carbon
πz orbitals φ(r) =

√
ξ 5/πze−ξr . The basis states become

χmq(r) = (1/
√

N )
∑N−1

j=0 eiq·Rj φ(r − Rj − Tm), where Tm is
the location of the mth atom in the unit cell.

The coefficients Cmq and energy eigenvalues E(q) are
obtained from diagonalization of the secular equation

[Õ−1H̃ (q)]Cq = E(q)Cq, (9)

where the matrix H̃ follows from the tight-binding Hamilto-
nian H0: H̃ (q)mn = ∫

dr χ∗
mq (r)H0χnq(r) and the elements of

the overlap matrix Õ are given by Omn = ∫
dr χ∗

mq(r)χnq(r).
The eigenvectors Cq ≡ {C1q, . . . ,CMq}T yield the coefficients
used in the definition of the Wannier functions. In the
tight-binding approximation, we set Omn proportional to the
elements of the identity matrix δmn.

We solve Eq. (9) to construct orthonormal Wannier func-
tions. We consider a one-dimensional lattice of unit cells
along the nanoribbon. The discrete wave vectors become
q = (2πq/NR0)x̂. The Wannier function located at Rj is then

Wj (r) = 1

N

N−1∑
q=0

e−i2πqj/N�q(r). (10)

The Wannier functions defined in this way are unique for a
D = 1 single-band model,26 but for higher dimensions and
with more bands they are not necessarily unique.27 We choose
a specific set of single-particle basis states by enforcing Cmq =
|Cmq | at the edge atomic site m = 1. As a result, we obtain a
set of real Wannier functions symmetric about the x axis.

The above Wannier function can be written as a summation
over all local atomic orbitals φ(r) located at sites rmi = Tm +
Ri . Rewriting W at the origin gives

W0(r) = Nf

M∑
m=1

N−1∑
i=0

αmiφ(r − rmi), (11)

with weights αmj = ∑N−1
q=0 Cmqe

i2πqj/N and normalization
constant Nf . The coefficients α completely determine our
choice of basis.

We can extend our calculation of the Wannier functions to
include both the upper and lower bands. A denser sampling in
momentum space (i.e., larger N ) yields more accurate Wannier
functions. In practice, we find that the Wannier function has
already converged when taking N = 44 for Ly = 4. The Wan-
nier functions of upper and lower bands for the same sample
ribbon are shown in Fig. 3. We note that the Wannier functions
localize symmetrically about x = 0 with an extension of less
than four unit cells. The Wannier functions are also symmetric
(antisymmetric) along y for the upper (lower) band.

The flat-band Wannier functions constructed here corre-
spond to a specific choice of single-particle basis. By construct-
ing superpositions of these functions, we can equivalently
construct a model using basis states localized on either edge of
the ribbon via a simple rotation in the two-band space. Viewed
in this way, our model implicitly includes interedge coupling
in narrow ribbons because we work in the basis of u and d

bands as opposed to a two-edge basis.
Our approach can be used to model graphene edges. Our

study applies to the edge states of very wide ribbons provided
we superpose our u- and d-band Wannier functions to construct
left- and right-edge Wannier functions. Our model can then
be used to study edges of very wide ribbons. But, we stress
that our model can not apply to the electrons in the center of
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FIG. 3. (Color online) Two-dimensional Wannier functions plot-
ted as a function of position in the lattice for a ribbon of width Ly = 4.
The Wannier functions tend to localize near the ribbon edges.

graphene because we have considered bands in nanoribbons
that carry over only to edge states in the wide ribbon limit.
(For a discussion, see Ref. 3.) In what follows, we focus on
narrow ribbons and only consider Wannier functions in the u-
and d-band basis.

IV. ONE-BAND COULOMB MODEL

Interaction effects determine the low-energy properties
of Eq. (5) in the absence of significant dispersion. When
the chemical potential lies between the nearly flat bands
of zigzag nanoribbons, the Coulomb interaction sets the
dominant energy scale and mitigates response. Figure 4
shows schematic band structures for a wide ribbon with
the chemical potential at the band degeneracy (left) and far
from the flat-band region (right). In what follows, we focus
on dilute systems corresponding to the left panel. We can,
as a first approximation, assume that the valence band is
inert and that only the conduction band u will be active
under external probes. Projection into the flat u band implies
that the Coulomb interaction alone operates in the massively
degenerate subspace formed from u-band single-particle basis

FIG. 4. (Color online) Left panel: Schematic of the energy
dispersion for a wide ribbon with the Fermi level between the
degenerate energy bands u and d . In this regime, low lattice filling
allows us to accurately ignore the finite dispersion near the band
edges. Right panel: The same as the left panel but at larger fillings
of the upper u band. Here, the flat-band approximation will only be
a good approximation if the Coulomb interaction is much larger than
the bandwidth.

states. In this section, we will consider the u band only. In the
following section, we will construct a model of both the u and
d bands.

We consider an unscreened Coulomb interaction in a single
band: ∑

i,j,k,l,σσ
′
Vijkl ĉ

†
iσ ĉ

†
jσ

′ ĉ
kσ

′ ĉlσ , (12)

where the second-quantized operators ĉ
†
iσ (ĉiσ ) create (anni-

hilate) a fermion with spin σ in a Wannier state centered at
the ith unit cell. The matrix elements V depend on the basis.
We can rewrite the Coulomb interaction in the u band in a
suggestive form

Hu
V = V0

∑
i

ni↑ni↓ +
∑
i<j

Vijninj −
∑
i<j

Jij Si · Sj

+ 1

2

∑
{i,j}�{k,l},σσ

′
Vijkl ĉ

†
iσ ĉ

†
jσ

′ ĉ
kσ

′ ĉlσ . (13)

Here, the single-component and total density operators are
niσ = ĉ

†
iσ ĉiσ and ni = ni↑ + ni↓, respectively. The spin oper-

ators Si = (1/2)
∑

σσ
′ ĉ

†
iσ σ̃ σσ

′ ĉ
iσ

′ are defined in terms of the
Pauli matrices σ̃ .

Equation (13) keeps all terms in the full Coulomb interac-
tion. We compute the matrix elements in the basis of Wannier
functions in the u band. Integral equations for the coefficients
are given in the Appendix [Eqs. (A1)]. The first term is the
ordinary single-site Hubbard term, which is the only term that
is commonly used in models of flat-band nanoribbons (see,
e.g., Refs. 20 and 21). The second term captures the diagonal
portion of the Coulomb interaction at long range. The absence
of a dispersion implies that these terms can be relevant and
must be kept in accurate models, especially at low fillings. The
third term, the direct exchange term, favors ferromagnetism for
Jij > 0. The last term represents remaining off-diagonal terms
due to the Coulomb interaction. We find, by direct calculation,
that the last terms are very small compared to the other terms
for a single band.

We compute coefficients in Eq. (13) explicitly. We perform
the integrals in Eqs. (A1) by approximating the exponential
part of the πz orbital, φ(r), as a linear combination of three
Gaussian functions:

∑
s γs(128β5

s /π
3)1/4ze−βsr

2
. We obtain

the parameters γs and βs from the STO-3G package.28 Data for
fitting the πz orbital with ξ = 1.72 are listed in Table I. For
numerical results shown here and in the following sections, we
use the Bohr radius a0 = 0.53 Å as the unit of length and the
Coulomb energy e2/4πεa0 (∼ 27.2 eV in vacuum) as the unit
of energy.

Table II lists the coefficients computed for an Ly = 4
ribbon. As we see, all coefficients are positive and can be sorted

TABLE I. Fitting parameters for the Gaussian approximation to
the πz orbital with ξ = 1.72.

s 1 2 3

γs 0.15591627 0.60768372 0.39195739
βs 2.9412494 0.6834831 0.2222899
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TABLE II. Matrix elements for one-band (u band) case for inter-
unit-cell separations of up to 4R0.

V0 = 2.24 × 10−1

|i − j | 1 2 3 4
Jij 2.34×10−2 4.68×10−3 9.21×10−4 1.69×10−4

Vij 1.43×10−1 9.56×10−2 6.83×10−2 5.23×10−2

by V0 > Vij > Jij > 0. The ground state can be determined
by an interplay between leading terms in Eq. (13) and the
chemical potential. These coefficients suggest that partially
filled single bands support the formation of ferromagnetic
crystals. However, the large Coulomb interaction may cause
mixing between the u and d bands. In the next section, we
construct a two-band model.

V. TWO-BAND COULOMB MODEL

We now consider a more comprehensive two-band model.
The u and d bands in the flat-band region are essentially
degenerate for wide ribbon widths. The Coulomb interaction
can in principle favor occupancy of both bands or the
occupancy of a single band. Accurate estimates of coefficients
in the full two-band model will allow exploration of the
two-band energy landscape to determine the band occupancy
in future work.

We construct Wannier functions in both the u and d bands.
The Hamiltonian is dominated by the following terms:

Hud
V =

∑
i,�

V �
0 ni�↑ni�↓ +

∑
i

(V
′
iiniunid − J

′
iiSiu · Sid )

+
∑
i<j,�

(
V �

ij ni�nj� − J�
ij Si� · Sj�

)

+
∑
i<j

∑
� �=�

′
(V

′
ij ni�nj�

′ − J
′
ij Si� · Sj�

′ )

+
∑
i<j

∑
� �=�

′

∑
σσ

′
(V

′′
ij ĉ

†
i�σ ĉ

†
j�

′
σ

′ ĉ
j�σ

′ ĉ
i�

′
σ

+V
′′′
ij ĉ

†
i�σ ĉ

†
j�

′
σ

′ ĉ
i�

′
σ

′ ĉj�σ ). (14)

We have checked, by direct calculation, that other terms
involving three and four centers are much smaller than
terms kept in Eq. (14). Here, we see the Hubbard and
ferromagnetic terms as in the one-band case. The last term
indicates a nontrivial band-exchange term. The integrals for
all coefficients are listed in the Appendix.

Equation (14) presents a central result of our work. The two-
band model must be studied for different fillings and different
widths to determine expected ground states. Tables III and
IV show numerically computed coefficients for two example
widths Ly = 4 and 10.

The tables show that the electron configurations are deter-
mined primarily by the diagonal components of the Coulomb
interaction (rows 1–3). These rows are nearly equal, indicating
a band symmetry, as expected. These rows govern the charge
degrees of freedom. Rows 4–6 govern the spin degrees of
freedom. The positive elements support ferromagnetism. The
last two rows give rise to band-exchange effects.

TABLE III. Matrix elements for the two-band case with Ly = 4
for inter-unit-cell separations of up to 4R0.

V d
0 = 2.28 × 10−1 V u

0 = 2.24 × 10−1

V
′
ii = 1.91 × 10−1 J

′
ii = 1.32 × 10−1

|i − j | 1 2 3 4 Dw

V d
ij 1.44×10−1 9.51×10−2 6.79×10−2 5.21×10−2 1.01

V u
ij 1.43×10−1 9.56×10−2 6.83×10−2 5.23×10−2 1.02

V
′
ij 1.46×10−1 9.56×10−2 6.81×10−2 5.22×10−2 1.02

J d
ij 2.60×10−2 3.04×10−3 5.75×10−4 1.09×10−4

J u
ij 2.34×10−2 4.68×10−3 9.21×10−4 1.69×10−4

J
′
ij 1.62×10−2 3.14×10−3 6.54×10−4 1.27×10−4

V
′′
ij 2.06×10−2 7.44×10−3 2.95×10−3 1.35×10−3

V
′′′
ij 1.05×10−2 1.82×10−3 3.49×10−4 6.43×10−5

We construct a simple fitting form for the first three rows.
We note that the coefficients V �

ij and V
′
ij can be thought of

as a softened Coulomb interaction between smeared charges
located at separate unit cells i and j . For large separations,
the charges appear as point charges and interact through the
Coulomb interaction, but at short ranges, our basis states
smear the electron charge over the width of the ribbon. We
approximate V �

ij and V
′
ij with a convenient analytic form

Vi �=j ≈
(

e2

4πεa0

)
a0/R0√|i − j |2 + D2

w

, (15)

where the fitting parameter Dw is dependent on the width of
the ribbon and can be determined with a numerical fitting as
shown in Figs. 5 and 6. The last column of Tables III and IV
shows Dw obtained by fitting.

Equation (15) can be used to approximate the coefficients
in Eq. (14) at low filling. At low filling, V �

ij and V
′
ij determine

the configuration of charges. It then suffices to consider spin-
exchange terms at the separations fixed by V �

ij and V
′
ij . We

use this procedure to suggest possible low-energy solutions to
Eq. (14).

VI. FLAT-BAND PROJECTION

The flat-band limit, Eq. (6), establishes a unique set of
nonperturbative models. In this section, we construct a set of
operators that allow flat-band projection of models constructed
in the previous sections. In the following section, we will then

TABLE IV. The same as Table III but for Ly = 10.

V d
0 = 1.21 × 10−1 V u

0 = 1.17 × 10−1

V
′
ii = 1.03 × 10−1 J

′
ii = 5.90 × 10−2

|i − j | 1 2 3 4 Dw

V d
ij 8.93×10−2 6.96×10−2 5.47×10−2 4.45×10−2 2.09

V u
ij 8.74×10−2 6.84×10−2 5.41×10−2 4.41×10−2 2.15

V
′
ij 9.08×10−2 6.93×10−2 5.44×10−2 4.43×10−2 2.12

J d
ij 2.82×10−2 4.80×10−3 1.10×10−3 3.36×10−4

J u
ij 2.65×10−2 6.99×10−3 1.51×10−3 4.30×10−4

J
′
ij 1.65×10−2 4.68×10−3 1.15×10−3 3.10×10−4

V
′′
ij 1.75×10−2 1.00×10−2 5.82×10−3 3.52×10−3

V
′′′
ij 1.28×10−2 2.85×10−3 6.30×10−4 1.85×10−4
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FIG. 5. (Color online) The diagonal component of the interband
Coulomb interaction (V

′
ij ) for a zigzag graphene nanoribbon with

Ly = 4 and N = 44. Circles are from numerical evaluation of
Eqs. (A1). The solid line is a fit with Eq. (15) and Dw = 1.02.

use the projected models in simple estimates of the low-energy
physics.

To enforce flat-band projection, we limit all q-space sums
to the flat-band region (FBR) qR0 ∈ [2π/3,4π/3]. We can
therefore project into a single band by considering a flat-band
operator that limits itself to the FBR:

b̂
†
jσ ≡ 1

N

∑
l

∑
q∈FBR

eiq·(Rj −Rl )ĉ
†
lσ . (16)

This operator creates states centered around the unit cell at
Rj . We note that the states created by this operator have finite
overlap with neighbors at Rj+1 when the flat-band region does
not encompass the entire Brillouin zone. In the limit that the
flat band encompasses the entire Brillouin zone, the overlap
between neighboring states vanishes and we have b̂

†
jσ → ĉ

†
jσ .

Thus, the projection into a flat band that incorporates only a
fraction of the Brillouin zone delocalizes basis states.

We can rewrite our model in terms of projected density
and spin operators. The single-component and total projected
density operators are ρiσ ≡ b̂

†
iσ b̂iσ and ρi ≡ ρi↑ + ρi↓, respec-

tively. The projected spin operators are defined as

S/j ≡ 1

2N

∑
σσ ′

∑
q,q′∈FBR

ei(q−q′)·Rj ĉ†qσ σ̃ σσ ′ ĉq′σ ′ . (17)

FIG. 6. (Color online) The same as Fig. 5 but for Ly = 10 with
Dw = 2.12.

We stress that the projected operators do not exhibit ordinary
commutation relations because the underlying operators create
overlapping states, i.e., 〈0|b̂j+1b̂

†
j |0〉 �= 0.

The projected Hamiltonian can be rewritten entirely in
terms of the above projected operators. Starting from an
unprojected model, we impose projection using the following
replacements: c → b,n → ρ, and S → S/. For example, the
flat-band projected Coulomb interaction in the u band becomes

P†
uH

u
VPu = V0

∑
i

ρi↑ρi↓ +
∑
i<j

Vijρiρj −
∑
i<j

Jij S/i · S/j

+ 1

2

∑
{i,j}�{k,l},σσ

′
Vijkl b̂

†
iσ b̂

†
jσ

′ b̂
kσ

′ b̂lσ . (18)

The projected two-band model can also be obtained with a
similar replacement applied to Hud

V .

VII. LOW-ENERGY PROPERTIES

We use flat-band projection to discuss possible low-energy
states of Eq. (6) based on simple energetic arguments. A
detailed quantitative analysis of low-energy states is beyond
the scope of this work. We make progress by ordering terms
according to dominant energy scales. We then focus on
example lattice fillings.

To consider low-energy solutions of Eq. (6), we first
examine the kinetic term. The kinetic term enforces a flat-band
projection provided the chemical potentials lies near the
flat band, i.e., Fig. 4(a). It is then sufficient to require that
many-body eigenstates of HV utilize Bloch states with qR0 ∈
[2π/3,4π/3]. We can analyze Eq. (14) with this q-space
restriction by using projected operators constructed in the
previous section.

We first point out an intrinsic energetic ordering to each of
the terms in Eq. (14). We rewrite each of the terms according to
an approximate ordering by energy and in the projected space:

P†
udH

ud
V Pud =

∑
i,�

V �
0 ρi�↑ρi�↓

+
∑

i,j,�,�′

(
V

�,�′

ij ρi�ρj�′ − J
�,�′

ij S/i� · S/j�′
)

+Hband-exch, (19)

where we have redefined the diagonal Coulomb terms:

V
� �=�′

i<j ≡ V ′
ij , V

�=d,�′=u

ii ≡ V ′
ii , and V

�=�′

i<j ≡ V �
ij , otherwise

V
�,�′

ij = 0. (Note that our direct calculations find V
� �=�′

ij ≈
V

�=�′

ij .) We have also redefined the off-diagonal exchange

terms: J
� �=�′

i<j ≡ J ′
ij , J

�=d,�′=u

ii ≡ J ′
ii , and J

�=�′

i<j ≡ J�
ij , other-

wise J
�,�′

ij = 0. The last term in Eq. (19) corresponds to the
last term in Eq. (14).

We can understand the low-energy properties of the first
three terms in Eq. (19) at a few specific fillings. Considering
an inert d band, we assume that the u band is partially filled
at odd denominators, νu = 1/(2p + 1), where p = 1,2, . . . (ν
indicates the number of particles per basis state). Ignoring
Hband-exch allows a decomposition of basis states into the u and
d bands. An inert d band implies that the interband interaction

075438-6



MODELS OF STRONG INTERACTION IN FLAT-BAND . . . PHYSICAL REVIEW B 85, 075438 (2012)

leads to an overall shift of the chemical potential. A strong
external gate bias canceling this shift should be able to maintain
the u-band filling νu = 1/(2p + 1).

In the limit of commuting projected density operators, it
is well known29 that the first terms in Eq. (19) lead to a
charge order, i.e., one-dimensional Wigner crystals with lattice
spacing 2p + 1. We therefore expect that the u-band electrons
form a classical Wigner crystal in the limit that the flat band en-
compasses the entire Brillouin zone. The bottom panel of Fig. 1
depicts a classical crystal configuration in a single spin state.

In the limit that the projected density operators do not
commute, the case for zigzag nanoribbons, we predict quantum
crystals in partially filled bands. Quantum crystals arise,
in direct analogy to Wigner crystals, as eigenstates of the
projected density operators. For example, a trial quantum
crystal state at νu = 1/(2p + 1) in spin state σ is given by∏

j=0

b̂
†
2pj+j,σu|0〉. (20)

This trial state appears to minimize the energy of the first two
terms in Eq. (19) by separating flat-band charges by an average
of 2p unit cells. Thus, the first two terms in Eq. (19) impose
a rigid charge order in the u band. However, the charges are
significantly delocalized. A finite overlap among neighbors
implies that the charges exist in a superposition of several
different unit cells at once: a quantum crystal.

Provided a rigid charge ordering, we consider the next
lowest-energy scale: low-energy spin properties of Eq. (19).
We approximate the spin-spin coupling with an effective
Heisenberg model for the u-band particles at νu = 1/(2p + 1):

H
p

eff = −J u
0,2p+1

∑
i

S/i,u · S/i+2p+1,u. (21)

Equation (21) applies to the case of a single band at odd
denominator filling.

The ground states of Eq. (21) are ferromagnetic quantum
crystals. The low-energy spin excitations are ferromagnetic
magnons. The underlying rigid charge order enforces a large
magnon wavelength. At νu = 1/(2p + 1), spin-wave theory
yields excitation energies

h̄ωq = 2J u
0,2p+1{1 − cos[(2p + 1)R0q]}. (22)

This dispersion offers a clear indicator of ferromagnetic
crystals in the spin degrees of freedom.

At finite temperatures, the Mermin-Wagner theorem asserts
that spin-spin correlations decay with a finite length scale in
the one-dimensional Heisenberg model.30 Thus, ferromagnetic
ordering holds only up to small length scales. The spin-
spin correlation length at nonzero temperatures T for the
Heisenberg chain with exchange coupling J is31

ξT

(2p + 1)R0
= AJ

4T

[
1 + B(8T/J )1/2/π + O

(
T

J

)]
, (23)

where A ≈ 1.1 and B ≈ 0.65. Our results suggest that for
Ly = 10 at T = 1 K with J u

i,i+3 ≈ 1.5 × 10−3(e2/4πε0a0) ≈
473 K, the correlation length is ξT /(2p + 1)R0 ≈ 133. Thus,
about 390 unit cells containing 130 u-band electrons are
included in the formation of a fully magnetized domain at
νu = 1/3 for these parameters.

VIII. SUMMARY AND OUTLOOK

We constructed interacting flat-band lattice models of
zigzag nanoribbons. A single-particle basis of orthonormal
Wannier functions was built from carbon πz orbitals in a
honeycomb-ribbon lattice. The single-particle basis was used
to explicitly compute the Coulomb matrix elements for two
ribbon widths Ly = 4 and 10. The total model [Eqs. (5) and
(14)] was then projected into the flat bands of the single-
particle spectrum. The projected flat-band model [Eq. (19)]
suggests ferromagnetic quantum crystal ground states.

Our flat-band model [Eq. (19)] sets the stage for more accu-
rate analyses with a combination of numerics and many-body
wave functions. The absence of a small parameter calls for a
combination of variational studies and diagonalization to ver-
ify proposed ground and excited states.25 In addition to crystals
discussed here, uniform quantum liquids are also possible.25

The models constructed here focus on key physics of
interacting flat bands but exclude several realistic effects.
In experiments on graphene nanostructures, many correc-
tions may be required before making a detailed comparison
with experiment. For example, edge roughness, defects, and
substrate disorder can destroy the flat-band approximation.
Furthermore, interband screening has also been ignored in
the current study. While intraband screening was implicitly
incorporated in our model, screening from nearby bands could
lead to corrections to the pure Coulomb model studied here,
e.g., RKKY-type interactions.32,33
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APPENDIX

The coefficients in Eqs. (13) and (14) are given by

V �
0 =

∫
d2r d2r′

|r − r′| |W0�(r)W0�(r′)|2,

J �
ij = 2

∫
d2r d2r′

|r − r′| W ∗
i�(r)Wj�(r)Wi�(r′)W ∗

j�(r′),

V �
ij =

∫
d2r d2r′

|r − r′| |Wi�(r)Wj�(r′)|2 − 1

4
J�

ij ,

J
′
ij = 2

∫
d2r d2r′

|r − r′| W ∗
iu(r)Wjd (r)Wiu(r′)W ∗

jd (r′),
(A1)

V
′
ij =

∫
d2r d2r′

|r − r′| |Wiu(r)Wjd (r′)|2 − 1

4
J

′
ij ,

V
′′
ij =

∫
d2r d2r′

|r − r′| W ∗
iu(r)Wid (r)Wju(r′)W ∗

jd (r′),

V
′′′
ij =

∫
d2r d2r′

|r − r′| W ∗
iu(r)Wju(r)Wid (r′)W ∗

jd (r′),

Vijkl =
∫

d2r d2r
′

|r − r′ | W ∗
iu(r)Wlu(r)W ∗

ju(r
′
)Wku(r

′
).

The last term is used only in Eq. (13).

075438-7



HAO WANG AND V. W. SCAROLA PHYSICAL REVIEW B 85, 075438 (2012)

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

3K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys.
Rev. B 54, 17954 (1996).

4H. H. Lin, T. Hikihara, H. T. Jeng, B. L. Huang, C. Y. Mou, and
X. Hu, Phys. Rev. B 79, 035405 (2009).
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