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Abstract

Transport experiments are sensitive to charged ‘quasiparticle’ excitations of the fractional quantum Hall effect. Inelastic

Raman scattering experiments have probed an amazing variety of other excitations: excitons, rotons, bi-rotons, trions, flavor

altering excitons, spin waves, spin-flip excitons, and spin-flip rotons. This paper reviews the status of our theoretical

understanding of these excitations.
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1. Introduction

Transport experiments told us quite early on that there is

a gap to charged excitations in the fractional quantum Hall

effect (FQHE) [1]. The longitudinal resistance was seen to

behave like rxxZexp(KD/2kBT) in a range of temperature,

and the quantity D is interpreted as the minimum energy

required to create a charged excitation. Subsequently, the

excitations were probed by optical means [2–6] as well as by

ballistic phonon absorption [7–9]. These and subsequent

optical experiments have proved to be a treasure-trove of

information on charge-neutral as well as high energy

excitations not accessible in transport experiments and
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have revealed a strikingly rich structure with many kinds of

excitations.

There has also been substantial theoretical progress on

this issue, and an excellent description of the neutral

excitations has been achieved in terms of a particle hole pair

of composite fermions (CFs), which dovetails nicely with

our understanding of the incompressible ground states as an

integral number of filled quasi-Landau levels of composite

fermions. This paper will review the status of our qualitative

and quantitative understanding of the excitations of the

FQHE states. The reader is referred to the original articles

for technical details.

The character of neutral excitations is of great interest in

its own right, and their explanation is a critical test for

theory. There is another motivation for their consideration.

Much effort has been invested into a calculation of the gaps

to charged excitations. However, a pesky factor of two

discrepancy between theory and experiment has persisted
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over the years, believed to be caused by disorder for which a

quantitatively reliable theoretical treatment is not available

at the moment. In contrast, disorder is not likely to affect the

energy of a localized neutral excitation as significantly,

because of its much weaker dipolar coupling to disorder.

The coupling is further diminished because the disorder in

modulation-doped samples is typically smooth on the scale

of the size (on the order of a magnetic length) of many

spatially localized neutral excitations. We will find that the

theoretical predictions, without including disorder effects,

agree reasonably well with experiment.
2. The composite fermion exciton

A composite fermion [10–13] is the bound state of an

electron and an even number of quantized vortices (some-

times modeled as the bound state of an electron and an even

number of magnetic flux quanta, with a flux quantum

defined as f0Zhc/e). Composite fermions are to FQHE

what Cooper pairs are to superconductivity. The interacting

electrons at Landau level filling factor nZn/(2pnG1), n and

p being integers, transform into weakly interacting compo-

site fermions at an effective filling n*Zn. The ground state

corresponds to n filled CF Landau levels (LLs), shown

schematically in Fig. 1(a). The CF theory not only explains

the origin of a gap at these fractional fillings, which are

precisely the observed fractions, but also gives a natural

insight into the excitations. Fig. 1(b) shows a typical neutral

excitation, which is a particle-hole pair of composite

fermions, called the CF exciton. It is analogous to the

familiar exciton at integral fillings. Jain’s wave functions for

the CF ground state and the CF exciton are readily

constructed by analogy to the known wave functions of
Fig. 1. (a) The incompressible ground state at nZ2/5, which

represents two filled CF-Landau levels. (b) An exciton of composite

fermions. Composite fermions are depicted as electrons carrying

vortices.
the electron ground state at filling factor n, F
gs
n , and its

exciton, Fex
n :
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where zjZxjKiyj is the position of the jth particle, and PLLL

denotes projection of the wave function into the lowest

Landau level. The explicit form of these wave functions has

been given in the literature [14]. The composite fermion

interpretation of Fn follows since, multiplication by the

Jastrow factor
Q

j!kðzjKzkÞ
2p is tantamount to attaching 2p

vortices to each electron, thus, converting it into a composite

fermion. These wave functions have been found to be quite

accurate in tests against exact diagonalization results

available for small systems [10,14]. We will not discuss

the field theoretical approaches to study the excitations; the

reader is referred to the articles by Lopez and Fradkin, [15]

He, Simon and Halperin, [16] and Murthy and Shankar [17].

The Hamiltonian for the many electron system is given

by HZPLLL
1
2

P
jsk VðrjkÞ

� �
PLLL, where V(r) is the effec-

tive two-dimensional electron–electron interaction. For a

strictly two-dimensional system V(rjk)Ze2/3rjk, where 3 is

the dielectric constant of the background material. A

quantitative correction comes from the finite transverse

extent of the electron wave function, which alters the form

of the effective two-dimensional interaction at short

distances. The effective interaction can be calculated once

the transverse wave function is known, which in turn is

determined by self-consistently solving the Schrödinger and

Poisson equations, taking into account the interaction effects

through the local density approximation including the

exchange correlation potential [18]. The energy of the

exciton,

Dex Z
hFex

n jHjFex
n i

hFex
n jFex

n i
K
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gs
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gs
n jF
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is computed by Monte Carlo methods in the spherical

geometry [19]. All results below are thermodynamic

extrapolations, unless mentioned otherwise. The energies

are quoted in units of e2/3l0, where l0Z
ffiffiffiffiffiffiffiffiffiffiffiffi
Zc=eB

p
is the

magnetic length.

Scarola, Park and Jain [20] determined the dispersion of

the CF exciton for 1/3, 2/5, and 3/7, corresponding to one,

two, and three filled CF-LLs, respectively. The dispersion,

as shown in Fig. 2, is rather complicated in general,

reflecting the complex density profiles of the CF-quasipar-

ticle and the CF-quasihole. In particular, it has several

minima, which are called ‘rotons’ (This name has its origin

in analogy to superfluid 4He. The minimum at nZ1/3 was

earlier found by Girvin, MacDonald and Platzman [21] in a

single mode approximation). It might seem that rotons

would not be accessible in light scattering due to their large



Fig. 2. The dispersions of the CF excitons at nZ1/3, 2/5, and nZ3/7

for a strictly two dimensional system (From Ref. [11]).
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wave vector, but disorder-induced breakdown of wave

vector conservation combined with a peak in the density of

states at the roton energy makes it possible for inelastic

Raman scattering to detect them. A comparison between

theory and experiment is given in Table 1 [20]. For the

roton, the theoretical energies, obtained with no adjustable

parameters, are in excellent agreement with the observed

ones. One may worry that the situation will be spoiled by

Landau level mixing, but that turns out not to be the case;

corrections due to LL mixing are estimated to be on the

order of 5% for typical densities [20].
3. Long wave length limit: composite fermion bi-rotons

As seen in Table 1, in the small wave vector limit the

calculated energy at 1/3 is off by w30%. It has been

suggested that here the true lowest energy excitation may

contain two CF-excitons [21], and there has been debate as

to which excitation is being probed by Raman scattering in

this case [21,22]. Further progress was hampered by the lack
Table 1

Comparison of theory and experiment (From Ref. [20]) for the roton energy

of e2/3l0

n kl0Z0 R

Experiment Theory E

1/3 0.082 0.104(1) 0

0.084 0.113(1) –

– 0.09(2) 0

0.074 0.095(1) 0

– 0.092(1) 0

2/5 – 0.054(1) 0

– 0.055(1) 0

3/7 – 0.044(2) 0

In Ref. [7], the roton energies were determined for 2/3, 3/5, and 4/7, which,

at 1/3, 2/5, and 3/7, when measured in units of e2/3l0.
of a quantitative theory of the bi-roton excitation and

because the system sizes on which exact-diagonalization

studies can be performed are too small to shed meaningful

light on long wavelength excitations.

Park and Jain [23] constructed a wave function for the

long wave length excitation by putting two rotons of

opposite wave vector together, by appealing to the analogy

to the two-exciton state at nZn, which contains two

particle-hole pairs. In order to obtain a wave function that

is orthogonal to the ground as well as the single exciton

state, they consider the two-exciton wave function at

angular momentum LZ1 in the spherical geometry [24].

The energy of this wave function is compared with the

single exciton at LZ2, both of which correspond to k/0 in

the thermodynamic limit. Fig. 3 demonstrates that the bi-

roton state has 10% lower energy than the single exciton

state in the long wavelength limit. Ghosh and Baskaran [25]

have estimated the binding energy of the bi-roton in a

variational scheme, exploiting the oriented-dipole character

of the roton.

These results have relevance to Raman scattering

experiments. Our theoretical understanding of the scattering

cross section of the FQHE gap modes observed in Raman

scattering is rather unsatisfactory, even ignoring the

complications introduced by the resonant nature of Raman

scattering [22,26,27]. However, as noted in the early

literature [2], there is reason to expect that the bi-roton

mode might couple more strongly to light in Raman

scattering than the single exciton mode: the scattering

cross section for the single exciton vanishes rapidly with

wave vector as a result of Kohn’s theorem, but there is no

reason for it to vanish for the bi-roton mode. Also, while the

two-exciton states form a continuum, the bi-roton states

provide a peak in the density of states at the lower edge of

the continuum. In order to make contact with experiment at

a quantitative level, a square quantum well of width 33 nm

was considered in Ref. [20], as appropriate for the

experiment of Kang et al. [4] The excitation energies are

further reduced due to Landau level mixing, which was
as well as the energy of the long-wavelength exciton, quoted in units

oton Reference

xperiment Theory

.044 0.050(1) [5]

0.052(1) [2]

.041(2) 0.045(1) [7]

.047 0.047(1) [3]

.036(5) 0.045(1) [8]

.021(2) 0.026(1) [7]

.025(3) 0.027(1) [9]

.014(2) 0.017(2) [7]

assuming particle-hole symmetry, are the same as the roton energies



Fig. 3. The Coulomb energies as a function of 1/N for the single

exciton and the bi-roton states in the long wavelength limit (From

Ref. [23]).
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estimated by Scarola et al. as a function of the density for the

single roton at nZ1/3. Assuming that the percent reduction

of the bi-roton energy is approximately the same (approxi-

mately 5% for typical densities) produces a realistic

estimate for the energy of the bi-roton mode, plotted

(dashed line) in Fig. 4 along with the experimentally

determined energies [4] of the long-wavelength mode

(stars). The agreement is on the level of 20% or better.

Hirjibehedin et al. [28] have investigated the wave vector

dependence of the long-wavelength excitation and found the

surprising result that it splits into two modes at relatively

larger wave vectors. This suggests that the excitation in the

zero wave vector limit is actually an unresolved doublet.

The authors also estimate the binding energy of the bi-roton

mode by comparing its energy with that of two unbound

rotons and find it to be approximately 10% of the total bi-

roton energy.
Fig. 4. Comparison between the experimental data (stars) from

Kang et al. [4] and the theoretical estimation of the bi-roton bound

state energy (dashed line). Theoretical estimates are obtained by

considering Landau level mixing as well as finite thickness effects

(From Ref. [23]).
4. Composite fermion trion: a new charged excitation

The excitation gaps at general momenta are successfully

described in terms of a single CF exciton or, in the long

wave length limit, a CF bi-roton. These are charge-neutral

bound states of two and four composite fermions,

respectively. Park [29] has considered CF excitons in the

presence of an isolated CF quasiparticle or CF quasihole.

Will a CF exciton take advantage of the quasiparticle or

quasihole to form a new bound state involving three

composite fermions? Such a charged complex is known as

a trion.

There has been considerable interest in the trion state of

electrons in two spatial dimension because of the increased

binding energy due to the reduced dimensionality [30–32].

Trion excitations in strong magnetic fields have been

studied by a number of authors; all of whose works,

however, have concentrated on trion bound states of

electrons in the conduction band and holes in the valence

band [33–36]. On the contrary, the trion state in this section

is formed by CF-quasiparticles and CF-quasiholes which

reside in the same layer, band and electronic LL.

Park [29] used a simple criterion for the stability of the

CF trion: can the CF exciton lower its energy by forming a

bound state with an already present quasiparticle? The

energy cost is computed as a function of the momentum of

the constituent neutral CF exciton, kexl0, which can be

roughly used as a measure of CF trion size. A subtle, but

important technical point in constructing the wavefunction

for CF trion is that it is not straightforward to increase

electron numbers while staying at a fixed value of kexl0:

because of the nature of the spherical geometry, kexl0 is also
Fig. 5. Energy of the a CF exciton in the presence of a solitary CF

quasiparticle (dashed line) as a function of the momentum (kexl0).

The quantity kexl0 is proportional to the distance between the CF-

quasiparticle and the CF-quasihole of the constituent neutral

exciton, and can, therefore, be used as a measure of the size of

CF trion itself. The solid line shows the energy of a neutral CF

exciton. The fact that the former is lower near kexl0Z1.5 shows that

the CF-exciton forms a bound state with the CF-quasiparticle to

form a trion (From Ref. [29]).



Fig. 6. Schematic view of how the lowest electronic Landau level

splits into CF-LLs of composite fermions carrying two vortices

(2CFs), and how the lowest 2CF-LL further splits into 4CF-LLs. The

Landau level index is denoted by n(P) where ‘P’ is the type of

relevant particle; ‘e’ (electron), ‘2CF,’ or ‘4CF.’ The three ladders of

flavor changing excitations are indicated in the rightmost column

(From Ref. [38].).
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changed upon increasing the system size in order to obtain a

unique trion state. The method in Ref. [29] is a particular

way of scanning CF trion states. Exact diagonalization

studies for the trion are not easy to carry out in practice.

Fig. 5 shows the Coulomb energy of a CF exciton in the

presence of a CF-quasiparticle, as a function of kexl0, which

is compared with that of a neutral CF exciton. The former

has a lower energy in the vicinity of kexl0Z1.5, demonstrat-

ing that the CF exciton and the CF-quasiparticle form a trion

bound state. The binding energy of the trion is estimated to

be roughly 0.02e2/3l0. As expected, there is no energy gain

for large kexl0, because here the CF trion represents a far-

separated, independent collection of quasiparticles and

quasiholes.

The CF-trions ought to be observable in resonant

inelastic light scattering experiments. The conventional

interpretation of the excitations measured in those exper-

iments is in terms of neutral excitons. However, since, there

presumably are always some localized quasiparticles in real

experiments (induced by disorder), it is expected that light-

scattering will also excite CF trions. Interestingly, Hirjibe-

hedin et al. [28] have seen additional excitations at energies

slightly below the ordinary roton energy, which may be just

the CF trion excitations discussed above. They lie 0.005–

0.01 e2/3l0 below the roton, which compares favorably with

the theoretical estimate of the binding energy of the CF-trion

(The theoretical estimates, not including finite thickness and

disorder effects, are known to overestimate various energy

gaps).
5. Composite fermion flavor altering excitations

The work presented in this section was motivated by the

light scattering experiment by Hirjibehedin et al. [37], who

investigated the filling factor range 1/3RnR1/5. The

relevant composite fermions carry four vortices (4CFs) in

this filling factor range. The experimental results show that

while new low-energy excitations appear for n!1/3, the

excitations from nO1/3 do not disappear but evolve

continuously as the filling factor changes across nZ1/3

toward n/1/5. At first sight, that appears inconsistent with

the understanding that the relevant composite fermions in

the filling factor region n!1/3 are different from those in the

region nO1/3.

Peterson and Jain [38] have proposed that these are a new

class of excitations. The previous sections have described

excitations for which the integrity of the composite fermion

remains intact, i.e. the ‘flavor’ of the CF does not change

(The composite fermions carrying different numbers of

vortices are said to have different flavors. They are

represented by 2pCFs.) These new excitations correspond

to situations for which some of the 2p vortices attached to a
2pCF are stripped away. These are analogous to the pair

breaking excitations in a superconductor.

The basic idea is explained in Fig. 6. The lowest
electronic LL splits into CF-Landau levels of 2CFs, as

depicted in the middle column of Fig. 6 The intra-LL

excitations of electrons are described as inter-CF-LL

excitations of 2CFs. However, the inter-electronic LL

excitation, or Kohn mode, is still supported by the system.

This simple case shows the coexistence of excitation modes

at two different energy scales: the low energy D2/2(k)

excitations conserve the CF flavor, whereas the high energy

D2/0(k) excitations involve a transformation of a 2CF into a
0CF (electron). For n!1/3 the situation is analogous. Here

the lowest 2CF-LL undergoes a further splitting into 4CF-

LLs, as shown in the rightmost column of Fig. 6. Although

we have only 4CFs in the ground state, there are now three

ladders of excitation: (i) D4/4(k) flavor conserving

excitations, which were not present for nO1/3; (ii)

D4/2(k) excitations involving a change of 4CFs into 2CFs,

which are a continuous evolution of D2/2(k) excitations for

nO1/3; and (iii) D4/0(k), which are similar to D2/0(k) and

D0/0(k). The flavor changing excitations correspond to a

partial ionization of the composite fermion. This interpret-

ation is supported by the earlier calculations of Wójs and

Quinn [39], who show that the bands in the energy spectrum

(obtained in exact diagonalization studies) can be charac-

terized by the number of vortices bound to electrons.

To make contact with experiment, it is convenient to

focus on the zero wave vector mode and the roton, which

will be labeled D(0) and D(R), respectively. Fig. 7 shows the

energies D4/4(0), D4/4(R), and their 4/2 counterparts

for a six particle system for zero thickness as well for a

quantum-well sample of width 33 nm. While the 4/2

modes evolve continuously out of the 2/2 modes at nR1/3,

the 4/4 modes are new. The calculated values for

D4/4(R) are approximately w0.2 meV (using parameters

of the experiment in Ref. [37]), decreasing a little bit with

increasing magnetic field. The experimental values go from



Fig. 7. Excitation energies D2p/2p 0 of the zero wave vector and

roton modes are shown as a function of magnetic field (2Q denotes

the number of flux quanta penetrating the sample). The upper panel

gives the energies for strictly two-dimensions, whereas the lower

panel incorporates corrections due to finite thickness using

parameters from the experimental sample of Ref. [37] (quantum

well widthZ33 nm and density Z5.4!1011 cmK2). All results are

for NZ6 particles (From Ref. [38]). The dashed lines are a guide to

the eye.
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w0.2 to w0.11 meV at nZ1/5, decreasing with magnetic

field. For the D4/2(R) mode, the theoretical value starts at

approximately w0.6 meV and increases to w2.0 meV as a

function of magnetic field strength. The experimental value

starts at w0.45 meV and goes on increasing with magnetic

field to w0.7 meV. The theory is in qualitative agreement

with experiment, both in regard to the continuity of some

modes across nZ1/3 and appearance of new modes for n!
1/3, and the observed filling factor dependence. Considering

the small size of the numerical system, we find the level of

quantitative agreement to be adequate.
Fig. 8. The curves labeled (a), (b), and (c) show the dispersions of

three spin reversed modes for NZ30 particles for the Coulomb

potential V(r)Ze2/3r. The ground state is assumed to be fully

polarized. The error bars indicate the estimated statistical error in

Monte Carlo. The curve (d) shows the energy of the spin reversed

excitation 0Y/1[ of the unpolarized 2/5 state for NZ38 (From

Ref. [42]).
6. Spin-flip excitons and spin-flip rotons

The excitations involving spin reversal are also of

interest. They are identified experimentally by ascertaining

the dependence of their energy on the magnetic field: the

energy of a spin reversed mode contains a term proportional

to B in addition to the usual
ffiffiffiffiffiffiffi
Bt

p
dependent term arising

from interactions. One example of such an excitation is the

spin-wave mode [2,3]; its energy in the small wave vector

limit is equal to the Zeeman splitting, denoted by EZ.

Recently, substantial progress has been made in extending

the experiments to other fractions, e.g., nZ2/5 and 3/7,

where a much richer structure has emerged. In particular,

Kang et al. [6] have reported observation of spin-reversed

modes other than the spin wave at these fractions. At nZ2/5,

they find a mode with energy approximately equal to 2EZ;
the near absence of
ffiffiffiffiffiffiffi
Bt

p
dependence of the energy indicates

that it is not modified by the Coulomb interaction. Another

striking observation was of a mode at nZ3/7 which has an

energy smaller than EZ, roughly 0.4 EZ.

At nZ1/3, which maps into n*Z1 of composite

fermions, the lowest energy spin reversed mode is the one

in which the composite fermion flips its spin while

remaining within the lowest CF-LL. Nakajima and Aoki

[40] showed, by comparison with exact diagonalization

results [41], that the CF theory provides an excellent

description of the spin wave mode at nZ1/3. The possibility

of several kinds of modes is immediately obvious in the CF

theory. Consider, for example, nZ2/5, where the up-spin

states of the CF-LLs, labeled 0 and 1, are fully occupied.

Three possible low energy excitations are: (i) 1[/0Y, (ii)

1[/1Y, and (iii) 0[/0Y. The last two conserve the CF-

LL index, whereas the composite fermion lowers its LL

index in the first. Mandal and Jain [42] evaluated the energy

dispersions of the spin-reversed excitations numerically

using the CF theory. (The Coulomb energy of the exciton

measured relative to the ground state is denoted by Dex
c ; the

Zeeman energy EZZ jgjmBB must be added to it to obtain

the full energy of the spin-reversed excitation.) The three

Coulomb eigenvalues obtained in this way are shown in Fig.

8, labeled (a), (b), and (c). For nZ3/7, the Coulomb

Hamiltonian is diagonalized in the subspace defined by six

modes: 2[/0Y; 2[/1Y; 1[/0Y; 2[/2Y; 1[/1Y;

and 0[/0Y. The resulting spectrum is shown in Fig. 9.

The familiar spin-wave mode is recovered at small wave

vectors, as expected. The principal result of the calculations

is that at finite wave vectors, the lowest energy mode is not

the spin wave, but an excitation that involves a spin-flip

associated with a CF-LL transition. Further, this excitation

has a roton minimum, termed the ‘spin-flip roton’ (See also

Murthy [17].). In the 2D limit, the energies of the spin-flip



Fig. 9. The spin reversed excitations of fully polarized 3/7 state. The

results are for the Coulomb potential V(r)Ze2/3r for NZ39

particles (From Ref. [42]).
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rotons at nZ2/5 (for the 1[/0Y mode) and nZ3/7 (2[/
0Y) are estimated to be K0.0024(18)e2/3l0 and

K0.0091(36)e2/3l0, respectively. At nZ2/5, the interaction

energy of the spin-flip roton is very close to zero, implying

that its total energy is close to EZ. At nZ3/7, the interaction

energy of the roton is negative, which, for typical

parameters, leads to a total energy of approximately 0.5

EZ. Mandal and Jain associated the spin-roton with the low-

energy excitation observed by Kang et al. at this filling

factor [6] both because no other such low energy mode is

known, and because the calculated energy of the spin-flip

roton is in reasonable agreement with the observed energy.

Dujovne et al. [43] have studied spin reversed excitations

in the filling factor range 2/5RnR1/3 by resonant light

scattering and analyzed their results successfully in terms of

transitions across spin-split Landau levels of composite

fermions. Their results agree well with the dispersion of the

spin-flip mode at nZ2/5 computed in Ref. [42] in which

both the spin orientation and the CF-Landau level index

change simultaneously (i.e. the 1[/0Y mode). Dujovne et

al. also observed an abrupt change in the energies of the

spin-flip modes at an intermediate filling, which indicates a

not-yet-understood qualitative change in the nature of the

state of the spin-reversed composite fermions. In a more

recent paper, Dujovne et al. [44] have found that the energy

of the composite-fermion spin-flip excitation collapses as

n/1/2, which they link to a partial polarization of the CF

Fermi sea; this interpretation is confirmed by the absence of

such a collapse when the Zeeman energy is sufficiently

enhanced by the application of an additional parallel

magnetic field (tilted field experiment).
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