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Cold-atom optical lattices allow for the study of quantum localization and mobility edges in a disorder-free

environment. We predict the existence of an Anderson-like insulator with sharp mobility edges in a one-
dimensional nearly periodic optical lattice. We show that the mobility edge manifests itself as the early onset
of pinning in center of mass dipole oscillations in the presence of a magnetic trap, which should be observable
in optical lattices.
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Optical lattices incorporating ultracold-atomic conden-
sates are rapidly becoming ideal quantum systems for study-
ing various model Hamiltonians developed earlier for study-
ing solid-state phenomena. This is primarily due to the
extraordinary level of precise tunability that experimentalists
have achieved in controlling the parameters �e.g., hopping,
interaction, and lattice periodicity� of the optical lattice,
which makes it possible for the cold-atom optical lattice to
operate as an ideal quantum analog simulator for various
many-body condensed-matter Hamiltonians. By contrast,
ideal model Hamiltonians �e.g., Hubbard and Anderson mod-
els� often poorly describe solid-state systems, since experi-
mental control over complex condensed-matter systems is, in
general, quite limited. In addition, solid-state systems are
invariably contaminated by unknown disorder, defects, and
impurities whose effects are not easy to incorporate in model
Hamiltonians. The cold-atom optical lattices are, therefore,
becoming increasingly important in advancing our knowl-
edge about the quantum phase diagram and the crossover in
model many-body Hamiltonians of intrinsic interest. Ex-
amples include: the Bose-Hubbard model �1�, the Tonks-
Girardeau gas �2�, and the Bose-Einstein-Condensation–
Bardeen-Cooper-Schrieffer �BEC-BCS� crossover �3�.

In addition to studying strong correlation effects �e.g., the
superfluid-Mott insulator transition in the Bose-Hubbard
model� in many-body Hamiltonians, cold-atom optical lat-
tices also offer ideal systems for studying quantum transport
phenomena including ballistic quantum transport �4–6� and
quantum localization �7–10�. The latter may be more gener-
ally classified as metal-insulator transition phenomena with a
direct relationship to the solid state. The distinction between
a “metal” �i.e., a system with finite resistivity at zero tem-
perature� and an “insulator” �i.e., a system with infinite zero
temperature resistivity� is purely quantum. Broadly speaking,
there are four classes of metal-insulator transitions in quan-
tum lattice systems: Metal-band-insulator transition in an or-
dered periodic lattice arising from the chemical potential
moving into energy band gaps; interaction induced metal-
insulator transition as in the Mott transition; disorder-
induced quantum localization �i.e., Anderson localization
�11��; and quantum localization in aperiodic �but determinis-
tic� potentials in disorder-free lattice systems.

In this paper, we establish that very general aspects of the
metal-insulator transition phenomena �in the disorder-free
environment� can be directly experimentally studied in ape-

riodic cold-atom optical lattices with the tuning of the ex-
perimental parameters leading to the observation of both
band and quantum �Anderson-like� localization in the same
system but in different parameter regimes. Such an experi-
mental study of localization or insulating transitions in deter-
ministic aperiodic systems is impossible in solid-state lattice
systems, since disorder �which leads to direct Anderson lo-
calization� is invariably present in solid-state systems over-
whelming any subtle localization effects arising from deter-
ministic aperiodic potentials. In particular, all states are
localized in one-dimensional systems in the presence of any
disorder, whereas one-dimensional aperiodic potentials allow
for the existence of extended quantum eigenstates. This
makes one-dimensional optical lattice systems particularly
interesting from the perspective of localization studies in
deterministic aperiodic potentials, since such studies in the
corresponding one-dimensional solid-state systems are
essentially impossible due to disorder effects. We, therefore,
consider aperiodic quantum localization in one-dimensional
optical lattices, conclusively establishing the feasibility of
studying this unusual phenomenon in cold-atom optical
lattices.

The single-particle quantum localization problem in a de-
terministic quasiperiodic potential �i.e., two lattice potentials
with mutually incommensurate periods� has a long history
�12,13�. In particular, localization properties have been ex-
tensively studied in the Harper �or, equivalently, Aubry�
model, which has an intriguing self-dual point where the
eigenstates form a multifractal Cantor set spectra, and are
neither localized nor extended. Away from the dual point,
conventional wisdom dictates that all states, as a function of
the chemical potential, are either all extended or all local-
ized, depending on the mutual strengths of the potential and
hopping terms. Such Harper-model-type quasiperiodic poten-
tials, therefore, do not allow for the existence of a mobility
edge separating the extended states �above the mobility
edge� from the localized states �below the mobility edge�,
which is the hallmark of the Anderson localization transition
in three-dimensional disordered systems. Central to our work
is the conclusive theoretical demonstration of a class of one-
dimensional optical lattice systems where the deterministic
lattice potential does allow for the existence of a mobility
edge in one dimension �14�, which cannot happen through
Anderson localization with disorder. This class of models
distinguishes itself from other models discussed in the con-
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text of optical lattices �15� through the formation of a metal-
insulator mobility edge rather than a metal-band edge. We
find that: �1� Direct numerical simulation and an analytic
WKB approximation provide conclusive evidence for a rare
metal-insulator mobility edge in a one-dimensional model,
the nearly periodic Harper model. �2� Transport measure-
ments in suitably designed, one-dimensional optical lattices
can exhibit the mobility edge.

We consider spinless fermions �or equivalently hardcore
bosons sufficiently near the Tonks-Girardeau regime� in the
lowest band of a one-dimensional, tight-binding lattice with
external potentials:

− un+1 − un−1 + �Vn + VDfn + �n2�un = Eun, �1�

where the amplitudes un multiply the Wannier states at sites
n in the real-space wave function ��x�=�nunw�x−n�. We
work in units of the hopping matrix element, t=1, and lattice
spacing of the primary lattice defining the tight-binding
problem, a=1, unless otherwise noted. The statistics of spin-
less fermions implicitly allow for an arbitrary on-site inter-
action in the above single-band model. In the absence of
an external potential, the solutions form extended states,
un=u0 exp�in��, with band energies E=2 cos���, for
0����. The band edges lie at E= ±2. In the presence of
an oscillatory modulation of strength V, much weaker than
the primary lattice, we can ignore modifications to the
hopping. In this limit, we impose a secondary lattice:
Vn=V cos�2��n�−V. For � irrational, the additional poten-
tial establishes an incommensurate pseudorandom model, the
Harper model �for �=0 and VD=0�. The potential VDfn adds
disorder where fn is a random number satisfying 0� fn�1
for each site. The confinement potential, �n2, applies to op-
tical lattice systems.

According to the Aubry-Andre conjecture �16�, the Harper
model exhibits a metal-insulator transition at the self-dual
point V=2. For V�2, all states are extended, while for
V�2, all states localize �the states at V=2 are critical�.
The localized states are characterized by a nonzero Lyapunov
exponent �inverse localization length�, 	�E�, where
un�E��exp�−	n�, and gaps in the energy spectra. While
exceptions to the Aubry-Andre conjecture have been rigor-
ously proven for specific values of � �17�, we discuss an
additional and experimentally relevant counterexample de-
fined by �=m±
, for integer m and

N−1 � 
 � 1, �2�

with N sites. In the limit N→�, the secondary lattice defines
a slowly varying, nearly periodic potential. A similar, slowly
varying potential has been considered in the context of one-
dimensional localization in quasiperiodic systems �18�.

In the limit defined by Eq. �2�, the eigenstates of Eq. �1�
with �=0 and VD=0 display Anderson-like localization
where we expect to find only extended states. To see this,
consider 	 defined in the limit, N→� �19�:

	�Ej� =
1

N
�

n

ln�un+1

un
� =

1

�N − 1��j�l

ln�Ej − El� . �3�

The first equality allows us to use the transfer matrix method
to calculate 	 for large system sizes. The solid line in the top

panel of Fig. 1 plots the Lyapunov exponent vs energy for
N=107 and V=0.5. The additional potential, Vn, shifts the
lower band edge to E=−2−2V, while leaving the upper band
edge at E=2. We see extended states in the center of the
band, −2�E�2−2V, with 	=0, as expected from the
Aubry-Andre conjecture. However, near the band edges,
−2−2V�E�−2 and 2−2V�E�2, the states localize,
	�0. The points E=−2 and 2−2V define mobility edges,
which are unexpected in one dimension but found in three-
dimensional models with disorder. The localization is, in this
sense, Anderson-like. We find that, for N=107, the mobility
edges persist for rational and irrational values of 
 from 10−5

to 10−2. We conjecture that in the limit Eq. �2� irrational
numbers are approximated by rational numbers up to a num-
ber much smaller than N−1. For N→�, the spectra can con-
tain an infinite number of infinitely small gaps, and therefore
localized states, eliminating the distinction between an in-
commensurate and a commensurate system �12,17�.

The unexpected insulating behavior coincides with a dev-
il’s staircase-like structure in part of the energy spectrum
�12,14�. The second equality in Eq. �3� shows that a degen-
eracy at Ej supports nonzero 	�Ej�. The lower panel of Fig. 1
plots the level number as a function of energy as determined
by the exact diagonalization of Eq. �1� for N=3000, V=0.5,
VD=0, and �=0. The top line �
=0.005� shows smaller gaps
and narrower steps than the bottom line �
=0.05�, suggesting
that the localized states develop a gapless insulator in the
limits 
→0 and 

N−1.

We can understand the insulating states in a “semiclassi-
cal” approximation where 
 plays the role of �. We analyze
the behavior of each regime as a function of energy. At low
energies, E�−2, the slowly varying potential confines low-
energy states near the potential minima defined by Vn. Very
little tunneling between minima forces localization. Interme-
diate energies, −2�E�2−2V, see a smaller barrier between
minima allowing for extended states, and therefore, the
first mobility edge at E=−2. A second mobility edge forms at

FIG. 1. �Color online� Top panel: Lyapunov exponent vs energy
for the nearly periodic Harper model, Eq. �1� with V=0.5, 

=0.005, and �=0. The solid �dot-dashed� line shows the disorder-
free, VD=0 �disordered, VD=1� case. Bottom panel: Level number
vs energy of the disorder-free, nearly periodic Harper model for two
characteristic values of 
 with V=0.5, N=3000, and �=0. The
lower curve is shifted downward by 100 levels for clarity.
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E=2−2V when states localize at the secondary lattice
maxima. At first this seems counterintuitive, but can be un-
derstood in a WKB approximation based on the slowly vary-
ing nature of Vn. A similar analysis was performed for a
different model in Ref. �18�. Our results show that the high-
energy states, E�2−2V, moving energetically above the lat-
tice, slow when passing secondary lattice maxima to force
localization. We have checked that our analysis based on the
WKB approximation reproduces the solid line in the upper
panel of Fig. 1. As an additional check we can, in a con-
tinuum approximation �12,20�, define a position variable,
n→ x̃, and a difference operator, un+1+un−1→2 cos�p�u�x̃�
�with p	 i� /�x̃�, to give the semiclassical Hamiltonian:
HCL=−2 cos�p�+V�x̃�, with the replacement Vn→V�x̃�. The
phase trajectories of HCL produce extended and localized
states �and therefore, mobility edges� in the regimes obtained
in Fig. 1.

We now discuss the possibility of observing this unique
type of localization. In the solid state, a necessary correction
to the Harper model includes disorder where we add to Vn a
potential of the form VDfn. For V=0 �and �=0� this defines
the one-dimensional Anderson model where we expect all
states to localize for arbitrary VD. However, for V�0, the
states �otherwise extended in the VD=0 case� have a small
localization length, which could allow some remnant of a
mobility edge. The dot-dashed line in the upper panel of Fig.
1 plots 	 for the same parameters as the solid line, but with
VD=1.0. We find that a finite amount of disorder obscures the
position of the remnant-mobility edges, while localizing all
states.

In what follows, we consider an essentially disorder-free
manifestation of Eq. �1�: one-dimensional, cold-atom optical
lattices. The interference of appropriately detuned
lasers of wavelength �=2a can give rise to our tight-binding
lattice with a sufficiently strong lattice height VL. To create
a secondary modulating potential, Vn, consider an additional
pair of lasers at angles � and �−� to the primary
lattice with wavelength �� and amplitude VL�. The additional
lasers interfere to modulate the energy of the nth
site by VL� cos�2�n��
−�

� �w�u��2 cos�2�u��du−VL�, where
�= �� /���cos���. For small angles we can retrieve, up to an
overall constant, our nearly periodic Harper model with
m=� /�� an integer and 
�−��2 /2��. For realistic param-
eters, VL=5ER, VL�=0.1ER, �=5°, and �=�� �where ER is the
photon recoil energy�, we find t�0.065ER, V�0.055ER, and

�0.004 yielding the appropriate parameter regime. Further-
more, we find that, in the limit of Eq. �2�, fluctuations in the
relative phase do not alter the position of the mobility edge.
We now include an important modification to the model,
which accounts for realistic finite size effects.

A crucial addition to the Harper model in optical lattices
is the parabolic confinement, �n2, which leads to a finite
particle number. We find that weak confinement leaves the
mobility edges intact. To see this, consider the local
Lyapunov exponent, 	L�Ej�= �2NCL+1�−1�n=−NCL

NCL ln�un+1 /un�,
where the semiclassical limits of the parabolic trap define the
number of states participating in transport, 2NCL+1. The
classical turning points give NCL=2�xCL�E�� and Eq. �2� be-
comes �2NCL�−1�
�1. To determine xCL, we set p=0 in

HCL with V�x̃�=V cos�2��x̃�−V+�x̃2. For ��10−5, we
find 2NCL�103. In the limit �→0, we retrieve the usual
Lyapunov exponent, 	L→	. Figure 2 plots the local
Lyapunov exponent as a function of energy for N=107,

=0.005, V=0.5, VD=0, and �=10−5. The mobility edges
remain even with a reduced number of states comprising the
system. The inset shows the normalized density profile as a
function of the site number for three different chemical
potentials, �. At zero temperature, we include states with
E��. For �=0.5 �dashed-dotted line�, we find extended
states with some modulation due to Vn. For �=1.5 �dashed
line�, we have crossed the mobility edge and the density pins
to unity at some lattice sites. The formation of a mesoscopic
version of the Anderson-like gapless insulator fixes the den-
sity. For �=3.0, we enter the band-insulator regime, which
fixes a large fraction of the states at integer density.

Dipole oscillations in harmonically confined atomic gases
serve as a direct probe of localization �7,8�. A small shift in
the center-of-mass results in harmonic oscillations in the ab-
sence of an external lattice. The presence of one or more
weak lattices allows for weakly localized states, which can
suppress oscillations and lead to an effective underdamping
of the center-of-mass motion. The addition of strongly local-
ized states can, in the absence of dissipation, eventually pin
the center-of-mass to effectively overdamp the center-of-
mass oscillations. Strong experimental and theoretical evi-
dence supports the possibility that band localization has in-
deed been observed in fermionic, one-dimensional optical
lattices �7�. Similar evidence also suggests such behavior for
strongly interacting bosons �8�.

We now study the onset of the gapless Anderson-like in-
sulator and its effect on center-of-mass oscillations. Consider
the center-of-mass to be displaced � lattice sites at some
initial time T=0. For extended states, the center-of-mass po-

sition, X̄�T�, averages to zero for long times, while localized

states should pin the center-of-mass position, X̄��. The
center-of-mass position can, for some parameters, demon-
strate complex, damping-like behavior as function of time
making a damping constant ill defined. To extract a simple
quantity to be compared with experiment, we calculate the

long-time average of the center-of-mass position, �X̄
�, as a

FIG. 2. �Color online� The local Lyapunov exponent vs energy
for the same parameters as the upper panel of Fig. 1, but with an
additional parabolic confinement �=10−5 and no disorder, VD=0.
The inset shows the normalized density of the same system as a
function of the lattice number for several different chemical
potentials.
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function of chemical potential by diagonalizing Eq. �1� with
a parabolic potential, �=10−5, for N=3000, �=−3, and VD
=0. As an intermediate step we require degenerate eigen-
states �localized at the edges� to simultaneously diagonalize
the parity operator, since our system possesses reflection
symmetry about the origin. The dashed line in Fig. 3 plots

�X̄
� as a function of the chemical potential in the absence of
a secondary lattice, V=0. For ��2, the extended states per-
form several oscillations about the trap center, but over long
times average to zero displacement. Above the band edge
�labeled B.E.�, for ��2, localized states near the edge pin
the center of mass near �. For ��3 the system never leaves
its initial position.

A second, weaker lattice causes a mobility edge to form
energetically below the band edge. The solid line in Fig. 3
plots the same as the dashed line but with a second lattice,
Vn, with V=0.5 for the chemical potentials near the upper

mobility edge �labeled M.E.�. �X̄
� remains zero where we
expect extended states but pins near � for ��2−2V. The
mesoscopic version of the gapless insulator results in the
early onset of pinning in the regime 2−2V���2 and Eq.

�2�. Furthermore, the localized states with the additional lat-
tice, V=0.5, also display weak periodicity in �X̄
� as a func-
tion of �. These oscillations correspond to the chemical po-
tential passing through peaks and valleys in the corrugated
confinement potential.

Fluctuations in the lattice depth can soften the otherwise
sharp mobility edge. The quantity of interest, 2V / t, can
fluctuate wildly with only moderate changes in VL at
extremely large lattice depths. To see this, consider an
approximate expression in terms of the hopping extracted
from an analysis of the related Mathieu problem,
V / t����V /4��VL /ER�−3/4 exp�2�VL /ER�. A relative error in
V and VL, RV and RVL

, respectively, propagates to a relative
error in 2V / t: �RV

2 +RVL

2 �3/4−�VL /ER�2�1/2. We have checked
that this formula is quantitatively accurate for VL�5ER by
comparing with the error derived numerically from the exact
tunneling. We find that for RV=RVL

=5%, the relative error in
2V / t remains below 20% for VL�20ER.

We note that the additional time dependence in the model
discussed possesses other applications. We take HCL as a
good approximation to the nearly periodic Harper model in
the limit Eq. �2�. In the presence of a pulsed secondary lat-
tice, V�� j��T− jT0�, where for integer j the secondary lat-
tice oscillates with period T0, we simulate the kicked Harper
model via HCL. The kicked Harper model exhibits chaotic
behavior with the “classical” to quantum crossover con-
trolled by 
.

We have explicitly demonstrated the existence of a mobil-
ity edge �and the associated, unusual metal-insulator transi-
tion in a deterministic disorder-free environment� in suitably
designed aperiodic cold-atom optical lattice systems. The de-
terministic aperiodic background potential in these optical
lattices leads to exotic and nontrivial energy eigenstates de-
pendent on the relationship between irrational numbers and
their rational approximations. The ensuing quantum localiza-
tion occurs in the absence of disorder, and therefore distin-
guishes itself from Anderson localization which, in the solid
state, masks the presence of mobility edges formed from
quasiperiodic potentials in one dimension.
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FIG. 3. �Color online� The long-time average of the center-of-
mass position as a function of the chemical potential after an initial
displacement of three sites, �=−3, with no disorder, VD=0. The
dashed line is calculated from the bare tight-binding model with no
secondary lattice, V=0, and �=10−5. B.E. labels the upper band
edge. The solid line is calculated for the same parameters, but with
V=0.5. The early onset of the gapless insulator occurs at the upper
mobility edge, labeled M.E., while the upper band edge remains at
�=2.
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