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When confined to two dimensions and exposed to a strong
magnetic field, electrons screen the Coulomb interaction in a
topological fashion; they capture an even number of quantum
vortices and transform into particles called ‘composite fermions’
(refs 1–3). The fractional quantum Hall effect4 occurs in such a
system when the ratio (or ‘filling factor’, n) of the number of
electrons and the degeneracy of their spin-split energy states (the
Landau levels) takes on particular values. The Landau level filling
n ¼ 1=2 corresponds to a metallic state in which the composite
fermions form a gapless Fermi sea5–8. But for n ¼ 5=2, a fractional
quantum Hall effect is observed instead9,10; this unexpected result
is the subject of considerable debate and controversy11. Here we
investigate the difference between these states by considering the
theoretical problem of two composite fermions on top of a fully
polarized Fermi sea of composite fermions. We find that they
undergo Cooper pairing to form a p-wave bound state at n ¼ 5=2,
but not at n ¼ 1=2. In effect, the repulsive Coulomb interaction
between electrons is overscreened in the n ¼ 5=2 state by the
formation of composite fermions, resulting in a weak, attractive
interaction.

The most important property of composite fermions is that they
do not experience the external magnetic field B but rather a
drastically reduced magnetic field B* ¼ B 2 2prf0. Here r is the
two-dimensional density of fermions, 2p is the number of vortices
carried by the composite fermion, often intuitively envisioned as 2p
flux quanta, and f0 ¼ h=e is a flux quantum. In effect, each electron
absorbs 2p flux quanta of the external field to turn into a composite
fermion. Electrons confined in two dimensions have unusual
properties in a magnetic field; considerable progress towards under-
standing these properties has been made by modelling the compo-
site fermion (CF) system as a non-interacting gas of composite
fermions1,2. In particular, the fractional quantum Hall effect
(FQHE)4 is a manifestation of the integral quantum Hall effect of
composite fermions3, and the metallic, non-FQHE state at the half-
filled lowest Landau level is a Fermi sea of composite fermions5–8.

The Landau level (LL) filling n ¼ 5=2 ¼ 2 þ 1=2 corresponds to a
half-filled second LL. Here, both spin states of the lowest LL are
completely occupied, contributing 2 to the filling factor. The fully

occupied LL is treated as inert in this work, and the electrons in the
partially filled second LL are assumed to be fully spin-polarized.
These are valid approximations in sufficiently high magnetic fields.
In complete analogy to the half-filled lowest LL, the model of non-
interacting composite fermions would predict a Fermi sea of
composite fermions at n ¼ 5=2 as well. However, experiments
reveal a FQHE state here9,10. In fact, 5/2 is the only even-denomi-
nator fraction to be observed in a single-layer system, and its
physical origin has been a subject of debate and controversy11.

To understand the fundamental difference between n ¼ 5=2 and
n ¼ 1=2, it is necessary to go beyond the model of non-interacting
composite fermions. Our theoretical investigations of the inter-CF
interaction employ the Jain wavefunctions for composite fer-
mions1–3. These wavefunctions not only give an accurate quantita-
tive account of the inter-CF interaction, but even capture the subtle,
interaction-driven Wigner and Bloch instabilities of the CF liquid at
small filling factors12,13; such instabilities are analogous to those
believed to occur for the ordinary electron gas (jellium) at low
densities14.

Central to this work is the following question, analogous to the
Cooper problem for ordinary superconductivity: if we begin by
assuming a Fermi sea of composite fermions both at n ¼ 1=2 and
n ¼ 5=2 and add two composite fermions at the Fermi surface, will
they form a bound state? We find that the CF-Fermi sea is unstable
to pairing of composite fermions at n ¼ 5=2 but not at n ¼ 1=2, as
shown schematically in Fig. 1. We stress that, in contrast to the
Bardeen–Cooper–Schrieffer (BCS) theory, we do not assume any
attractive interaction, phonon-mediated or otherwise; the only
interaction in the problem is the repulsive Coulomb interaction
between electrons. However, the Coulomb interaction translates
into a weak attractive interaction between composite fermions at
n ¼ 5=2.

We work in the spherical geometry15,16, in which N electrons are
considered to move on the surface of a sphere under the presence of
a radial magnetic field produced by a magnetic monopole of
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Figure 1 Density of states (DOS) for electrons and composite fermions at zero effective
magnetic flux. Left panel, electrons at B ¼ 0. Centre panel, composite fermions at
n ¼ 1=2. Right panel, pairing of composite fermions at n ¼ 5=2. The composite fermions
are shown as electrons carrying two flux quanta.
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Figure 2 The interaction energy of pairs of electrons and pairs of composite fermions at
zero effective magnetic flux as a function of angular momentum L. The results are shown
for a system with N ¼ 27 particles. Top panel, electrons; middle panel, composite
fermions at n ¼ 1=2; bottom panel, composite fermions of n ¼ 5=2. The quantity
l 0 ¼ Î ~=eB is the magnetic length, r 0 ¼ ðprÞ2 1=2 is the average interparticle
separation, and e is the dielectric constant of the background material (e ¼ 12:8 for
GaAs).
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strength Q at the centre. The flux through the surface of the sphere is
2Qf0, where 2Q is an integer, according to Dirac’s quantization
condition. The composite fermion theory maps the problem of
interacting electrons at Q to that of composite fermions at
Qp ¼ Q 2 N þ 1 (assuming here and below composite fermions
of vorticity 2p ¼ 2). The Jain wavefunctions for interacting elec-
trons at Q are given by ΨQ ¼ PLLLΦ

2
1ΦQp, where ΦQp are wavefunc-

tions of non-interacting electrons at Qp, Φ1 is the wavefunction of
the fully occupied lowest Landau level at Q1 ¼ ðN 2 1Þ=2, and PLLL is
the lowest LL projection operator. Due to the rotational symmetry,
the total orbital angular momentum L is a good quantum number,
preserved in going from ΦQp to ΨQ.

We are interested in composite fermions in a vanishing effective
magnetic field, that is, when Qp ¼ 0, which is obtained at
Q ¼ N 2 1. Here, for N ¼ n2, the ground state ΨQ (ΦQp ) has
uniform density (L ¼ 0), as it contains n filled shells of composite
fermions (electrons). We approach the CF Fermi sea as the N → `
limit of the filled-shell states. The systems with a CF pair occur at
Qp ¼ 0 for N ¼ n2 þ 2, corresponding to the situation when two
CF particles are added to the (n þ 1)st shell. The individual angular
momenta of the additional particles are l ¼ n, implying that
there is one multiplet at each total angular momentum
L ¼ 1; 3;…; Lmax ¼ 2n 2 1 with a degeneracy of 2L þ 1. The wave-
function of a CF pair at Bp ¼ 0 for a given L is ΨCF-pair

L ¼
PLLLΦ

2
1Φ

el-pair
L , where ΦL

el-pair is the wavefunction of an electron pair
at B ¼ 0. We will also consider a pair of CF holes, corresponding to
two holes in the nth shell at Qp ¼ 0. ΨL

CF-pair contains no adjustable
parameter.

For ΦL
el-pair, the Coulomb energy of the electron pair, which is

proportional to the average inverse distance between the two
electrons in the otherwise empty shell, decreases with L, in accord-
ance with Hund’s rule of atomic physics17. This implies that the
smallest L (L ¼ 1 for fully polarized particles) corresponds to the
smallest distance between two electrons of a pair. By analogy, the
size of the CF pair in ΨL

CF-pair also increases with L. We have
confirmed this by monitoring the influence of an additional
short-range interaction to the pair energy.

As it stands, ΨCF-pair
L is written in the lowest Landau level, that is,

for n ¼ 1=2. In order to treat n ¼ 5=2, we use the method of Park et
al.18 to map the problem of the Coulomb interaction in the second
(s ¼ 1) Landau level into that of an effective interaction V eff(r) in
the lowest (s ¼ 0) Landau level. V eff(r) is chosen so that the two
interactions have the same Haldane pseudopotentials15, that is,
V 1;m ¼ V eff

0;m. The parameters Vs,m are the interaction energies of
two particles in sth LL in relative angular momentum m state (in the
planar geometry) and completely specify the interparticle interac-
tion in the sth Landau level.

The energy of ΨCF-pair
L , E(L), is evaluated in a Monte Carlo

approach19. Figure 2 shows the energy of the pair as a function of
L for electrons at B ¼ 0, and for composite fermions at n ¼ 1=2 and
5/2. The interaction energy between the two added electrons
decreases with increasing L at B ¼ 0, as expected. Similar behaviour
is found for composite fermions at n ¼ 1=2. However, the opposite
behaviour is seen at n ¼ 5=2, indicating an attractive interaction
between composite fermions at n ¼ 5=2. The largest binding energy
is obtained for the L ¼ 1 channel. This qualitative difference
between n ¼ 1=2 and n ¼ 5=2 is the principal result of this work.

The estimation of the thermodynamic limit of the binding energy
from our finite-size study can be difficult. When the pair interaction
energy is not small compared to the inter-shell spacing, many shells
would participate in the pair wavefunction, and our approximation
of restricting the pair to the lowest unoccupied shell would break
down. A determination of the appropriate ‘parent’ wavefunction
Φel-pair is obviously quite complicated in this regime, and conse-
quently, so is obtaining ΨCF-pair. However, past studies20 have shown
that distinct excitations in Φ with the same quantum numbers may
produce the same excitation Ψ, because the Hilbert space at n ¼ 1=2
is greatly restricted compared to that at zero magnetic field. There-
fore, as a first step, we proceed without any explicit consideration of
shell mixing. We have studied up to n ¼ 6 filled shells; both CF-
particle pairs and CF-hole pairs are considered for up to n ¼ 5 and
only the latter for n ¼ 6. Figure 3 shows that despite a substantial
decrease with N, the binding energy ∆½L ¼ 1ÿ ¼ E½L ¼ 1ÿ 2 E½Lmaxÿ
at n ¼ 5=2 still extrapolates to a non-zero negative value of −0.0035
(60.0013) e2/el0 as N → `, where l0 ¼ Î ~=eB and e is the dielectric
constant of the background material. After taking account of the
transverse width of the electron wavefunction21,22, the binding
energy in the L ¼ 1 channel is estimated to be −0.0025 (60.0015)
e2/el0 for densities in the range (0.5–3.0) × 1011 cm−2. Following
the weak-coupling BCS theory, it is natural to identify 2j∆j with
the energy gap of the FQHE state at n ¼ 5=2. For the parameters
of the experiment of Pan et al.10, our calculated 2j∆j for L ¼ 1 is
0.5 (60.3) K, which turns out to be on the same order of magnitude
as the measured gap of about 0.1 K. While this is encouraging, we
note that the effect of shell mixing is an important issue, and
must be considered to ascertain the quantitative reliability of our
preliminary estimate.

The appearance of pairing may seem surprising in a model with
strong repulsive interaction. However, the Coulomb repulsion is
overcome through the formation of composite fermions, which
screens out the Coulomb interaction quite effectively, to the extent
that a total neglect of the interaction between composite fermions is
sufficient for many purposes. Furthermore, the screening takes
place in a topologically rigid manner, independent of the interaction
strength or the Landau level index, through the binding of precisely
two vortices to each electron. Therefore, it is plausible that some-
times an overscreening of the Coulomb interaction occurs, produ-
cing an effectively attractive interaction between composite
fermions. The reason that there is an attraction at n ¼ 5=2 but not
at n ¼ 1=2 is that the matrix elements for the Coulomb interaction
in the second Landau level are weaker than in the lowest LL because
of the greater spread of the electron wavefunction in the former,
especially at short distances. For example, V 1;1=V 0;1 ¼ 0:93. This
slight softening of the inter-electron repulsive interaction in the
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Figure 3 The binding energy of the composite fermion (CF) pair in the L ¼ 1 channel at
n ¼ 1=2 and 5/2 as a function of 1/N. The binding energy is defined as the energy of the
pair at L ¼ 1 relative to its energy at Lmax. The filled (empty) symbols are for CF-particles
(CF-holes) on top of the CF-Fermi surface. As expected from particle–hole symmetry,
satisfied by the wavefunctions considered here to an excellent approximation, the binding
energies for the CF-particles and CF-holes fall on the same line.
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second LL is sufficient to make the inter-CF interaction weakly
negative.

There has been earlier work on pairing of composite fermions.
Greter, Wen and Wilczek23 argued for p-wave pairing of composite
fermions at n ¼ 1=2 and 5/2 within a Chern–Simons formulation of
composite fermions. The Chern–Simons method, however, is quan-
titatively unreliable in this application because of its inadequacy in
describing the energetics or the short-distance behaviour. Even
within this approach, Bonesteel24 has noted that a pair-breaking
term not considered in ref. 23 may potentially alter its conclusion.
Greiter et al. further suggested that the paired CF state may be
described in terms of a Pfaffian wavefunction written by Moore and
Read25. Recent exact diagonalization26,27 and variational18 studies
have provided support for the validity of a Pfaffian-like wavefunc-
tion at n ¼ 5=2.

The pairing of composite fermions at n ¼ 5=2 has a topological
origin, and occurs in spite of strong repulsive interaction between
electrons. The repulsion is circumvented because the objects that
pair up are not electrons but composite fermions. We speculate that
a fundamental reorganization of the state, for example, the creation
of new quasiparticles, must happen in any system in order for
pairing to ensue, starting from repulsive interactions alone. This is
indeed the case in several theoretical models of high-temperature
superconductivity, where the pairing is believed also to be caused by
repulsive interactions. M
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Compact solid-state lamps based on light-emitting diodes
(LEDs)1,2 are of current technological interest as an alternative
to conventional light bulbs. The brightest LEDs available so far
emit red light and exhibit higher luminous efficiency than
fluorescent lamps. If this luminous efficiency could be transferred
to white LEDs, power consumption would be dramatically
reduced, with great economic and ecological consequences. But
the luminous efficiency of existing white LEDs is still very low,
owing to the presence of electrostatic fields within the active
layers3. These fields are generated by the spontaneous and piezo-
electric polarization along the [0001] axis of hexagonal group-III
nitrides—the commonly used materials for light generation4–6.
Unfortunately, as this crystallographic orientation corresponds to
the natural growth direction of these materials deposited on
currently available substrates7. Here we demonstrate that the
epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a
non-polar direction allows the fabrication of structures free of
electrostatic fields, resulting in an improved quantum efficiency.
We expect that this approach will pave the way towards highly
efficient white LEDs.
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Figure 1 Calculated band profiles in (5 nm GaN)/(10 nm Al0.1Ga0.9N) quantum wells.
These profiles were obtained by self-consistent effective mass Schrödinger–Poisson
calculations. The transition energies given take into account both strain and Coulomb
interaction. a, The very large electrostatic fields in the [0001] orientation (polarization
charges were taken from ref. 4) result in a quantum confined Stark effect and poor
electron–hole overlap. b, The [11̄00] orientation is free of electrostatic fields, thus true
flat-band conditions are established.
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