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Phase diagram of bilayer composite fermion states
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Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park,
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~Received 20 November 2000; published 7 August 2001!

We construct a class of composite fermion states for bilayer electron systems in a strong transverse magnetic
field, and determine quantitatively the phase diagram as a function of the layer separation, layer thickness, and
electron density, while neglecting interlayer tunneling. We find, in general, that there are several transitions,
and that the incompressible phases are separated by compressible ones. The paired states of composite fermi-
ons, described by Pfaffian wave functions, are also considered.
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I. INTRODUCTION

Multicomponent fractional quantum Hall effect is of re
evance to situations when there exists more than one sp
of electron, distinguished by, for example, their spin or t
layer index. There has been substantial interest in multic
ponent states of fractional quantum Hall effect~FQHE! in
recent years both because of their experimental realizati
and because of theoretical progress in the understandin
their structure. The focus in this article will be on multicom
ponent states in a bilayer system. For simplicity, we w
assume that the Zeeman energy is sufficiently large so
the electron spin is completely frozen, which is a good
proximation in the limit of large magnetic fields.

Multicomponent FQHE states were first considered
1983, when Halperin1 generalized Laughlin’s wave functio
for then51/3 FQHE~Ref. 2! to states containing more tha
one component of electron,
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Here, z5x2 iy and w5x2 iy denote the positions of th
two components of electrons, labeled by subscriptsj ,k and
r ,s. The exponentsm9 and m8 are odd integers, to ensur
proper antisymmetry, andm is an arbitrary integer.N1 and
N2 are the numbers of electrons in the two layers.

These wave functions were first applied to mixed s
FQHE states, i.e., when electrons with both spins are
evant.~Such a possibility arises in GaAs because the Zeem
splitting is much smaller than the characteristic Coulo
interaction energy for typical parameters.! The function
xm8,m9,m is only the spatial part; the full wave function
given by

A†xm8,m9,m@$zi%,$wr%#u1u2 . . . uN1
d1d2 . . . dN2

‡, ~2!

whereA is the antisymmetrization operator andu andd are
up and down spinors. When the interelectron interaction
0163-1829/2001/64~8!/085313~10!/$20.00 64 0853
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spin independent, the ground state is an eigenstate of s
Only the wave functions with a well-defined spin quantu
number are valid variational wave functions.~In principle,
due to the spin-orbit coupling, other wave functions may a
become relevant. However, the spin-orbit coupling is we
in GaAs and almost invariably neglected in theoretical co
siderations.! Some examples of states that have a we
defined spin quantum number, i.e., satisfy the Fock con
tions, are the fully polarized statex1,1,1 at n51/3 ~it is
identical to Laughlin’s fully polarized wave function exce
that the spin is pointing in the plane, giving zeroz compo-
nent, rather than normal to the plane! and the spin-singlet
statex3,3,2 at n52/5.

Later, the multicomponent wave functions were also co
sidered for bilayer systems. The wave function in Eq.~2!
also applies to bilayer systems, but withu andd playing the
role of pseudospinors, indicating the occupation of the lef
and right layers, respectively. When the layer separationd is
zero, the problem is equivalent to that of spinful electrons
a single layer with the Zeeman energy set to zero, beca
the interelectron interaction is pseudospin independent, g
by

V2D~r !5
e2

er
~3!

independent of the layer index of the particles. In this lim
again only a limited class of the above wave functions h
the correct symmetry. However, for finited, the effective
two-dimensional interelectron interaction is explicitly pse
dospin dependent: For electrons in the in the same layer,

V↑↑~r !5V↓↓~r !5
e2

er
~4!

but for electrons in different layers, it is

V↑↓~r !5
e2

eAr 21d2
. ~5!

Here, r is the projection of the distance in the plane and↑
and↓ denote the two layers. Thus, for finited, none of the
©2001 The American Physical Society13-1
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Halperin’s wave functions can be ruled out for symme
reasons alone. The simplest nontrivial state is the statex3,3,1,
which describes an incompressible state atn51/2. A FQHE
at n51/2 has indeed been observed3,4 in a certain range of
layer separation in bilayer systems, believed to be well
scribed byx3,3,1.

5 ~Note that the filling factor is defined to b
the total filling, e.g.,n51/2 corresponds to a filling factor o
1/4 in each individual layer.! Another interesting example i
the QHE statex1,1,1 at n51. It is a nontrivial state for a
bilayer system. For a single layer,n51 QHE occurs even for
noninteracting electrons, because a gap opens up due to
dau level quantization. For the bilayer system, however,
FQHE atn51 originates due to interactions, as can be s
by noting that each layer hasn51/2, for which there is no
gap for independent electrons. There is experimental
dence for this state also.6 ~Distinguishing the bilayern51
from the single layern51 is subtle, due to the unavoidab
presence of some tunneling in the real experimental sys
and a systematic study of the evolution of the state a
function of various parameters is necessary for its unamb
ous identification. Further discussion and references to
relevant literature can be found in Ref. 7.! Recently, there
has been a revival of interest in then51 bilayer state becaus
of experimental observations8 that have been interpreted i
terms of a Josephson-like collective tunneling9.

The physics of multicomponent FQHE states is expec
to be intimately connected to and derived from the physics
the FQHE in single-component systems. However, Lau
lin’s wave function, which forms the basis of the states d
cussed above, describes only a subset of the observed s
at n5n/(2pn61) in a single-layer system. The wave fun
tions in Eq. 1 therefore also describe only a subset of a la
class of bilayer states. To take a simple example of states
described byxm8,m9,m , considerm50, i.e., two uncoupled
layers, and assume equal density in the two layers.
above wave function only applies to FQHE at 2/m8, with m8
an odd integer, even though in reality FQHE will occur a
much larger class of fractions given byn52n/(2pn61).
Further, Halperin’s wave functions are not applicable to co
pressible states, which, as we shall see, play an impor
role in the bilayer phase diagram.

The general theory of the FQHE in a single layer is fo
mulated in terms of a particle called the composite fermi
which is the bound state of an electron and 2p quantum
mechanical vortices.10 The states of composite fermions a
described by the wave function10

cn/(2pn11)5PLLLFn)
j ,k

~zj2zk!
2p ~6!

which is interpreted asn* 5n filled Landau levels of com-
posite fermions,n* being the filling factor of composite fer
mions. HereFn is the wave function ofn filled Landau
levels of electrons, and the Jastrow factor) j ,k(zj2zk)

2p

attaches 2p vortices to each electron to convert it into
composite fermion.11 The symbolPLLL denotes the projec
tion of the product wave function into the lowest electron
Landau level. These wave functions are known to be
tremely accurate representations of the actual wave fu
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tions. Laughlin’s wave function is obtained for the spec
casen51, and represents one filled composite-fermion La
dau level. In the limitn→1/2p, the composite-fermion filling
factor approachesn→`, i.e., the effective magnetic field ex
perienced by the composite fermions,B* 5rf0 /n, vanishes.
They form a Fermi sea here,12,13 as confirmed
experimentally.14 In this limit, F` becomes the wave func
tion of a Fermi sea at zero magnetic field, andc1/2p describes
a compressible Fermi sea of composite fermions. It is a
markable feature of the composite-fermion theory that
yields a description not only of all of the incompressib
FQHE states, but also of the compressible liquids in the lo
est Landau level.

The multicomponent generalization of the composite f
mion theory for the mixed spin states in a single layer h
been considered extensively in the past.15–18The generalized
wave functions are

cn/(2pn11)
(n↑ ,n↓)

5PLLLFn↑ ,n↓)j ,k
~zj2zk!

2p, ~7!

wheren5n↑1n↓ andzj label all particles. Here,n↑ andn↓
are the numbers of occupied spin-up and spin-do
composite-fermion Landau levels. This wave function sa
fies the Fock conditions for all choices ofn↑ and n↓ , with
each choice giving a FQHE state with a definite total sp
namely, (N/2)(n↑2n↓)/(n↑1n↓). In the limit of vanishing
Zeeman energy, the ground state has the smallest total
the total spin isS50 when n is an even integer, withn↑
5n↓5n/2; when n is an odd integer, we haven↑5(n
11)/2 andn↓5(n21)/2, with S5N/2n, N being the total
number of particles. As the Zeeman energy is increased
certain critical values of the Zeeman energyn↑ increases by
one unit whilen↓ decreases by one unit. At very large Ze
man energies, a fully polarized state is obtained. This
scription is in excellent agreement with transport and opti
experiments,19 and also with exact diagonalization studies
small systems.15 It has also been extended to finite tempe
tures in a Hamiltonian formulation.17 It ought to be noted
that the wave functionscn/(2pn11)

(n↑ ,n↓) describe only uniform liq-
uid states; another structure, a charge/spin density wave
composite fermions, has been discussed in the contex
certain experimental anomalies.20 Halperin’s x2p11,2p11,2p
state atn52/(4p11) is obtained as a special case withn↑
51 andn↓51; the other composite-fermion~CF! states are
not expressible in the form of a Halperin wave function.

Our objective in this work is to generalize the compos
fermion theory to bilayer systems and determine the ph
diagram of bilayer composite fermion states within the
sumption that the interlayer tunneling is negligible. The ge
eralization of the composite-fermion theory from single
two layers is, to an extent, straightforward as we show
low. Much work on possible bilayer states has been done
the past using the composite-fermion Chern-Simons or o
field-theoretic approaches,21 but these studies do not tell u
which states would actually occur in nature and in what
rameter range. Our goal is to obtain a quantitative desc
tion. We determine the phase diagram of composite-ferm
states as a function of two important parameters of the pr
3-2
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PHASE DIAGRAM OF BILAYER COMPOSITE FERMION STATES PHYSICAL REVIEW B64 085313
lem, the layer thicknessW and the layer spacingd ~defined to
be the distance between the centers of the two layers!. Due to
its variational nature, the study cannot rule out other sta
but we believe that the states considered here exhaus
physically relevant uniform liquid states in the parame
ranges considered. An important feature of the resul
phase diagram is that the incompressible CF phases are
separated by compressible phases, i.e., as a function o
interlayer spacing, the transition typically occurs from
compressible state into an incompressible state or vice ve
In general, several phase transitions are possible at a g
fraction. Many of these phase transitions occur in prese
accessible experimental regimes and ought to be observ

There has also been exact diagonalization work on t
layer systems.5,22–24 It is restricted to extremely small sys
tems, because of the drastically enlarged Hilbert space~com-
pared to the single-layer problem!, and is therefore limited in
its applicability. The exact diagonalization approach is a
suitable only for incompressible states. Nonetheless, th
studies provide indications regarding the range of parame
where some of the states, for example, then51/2 bilayer
FQHE state, are strongest. Wherever a comparison ma
made, our results below are generally consistent with
earlier results. We also compare our results with availa
experiments atn51/2 andn51.

The plan of the paper is as follows. In the next section,
describe the generalization of the composite-fermion the
to two-layer system. Section III discusses the details of
computational method. In Sec. IV, we display the quant
tive phase diagram of bilayer CF states in the density-la
separation (r-d) plane for several quantum-well thickness
at total fillingsn51/2, 1/3, 1, and 2/5. In Sec. V our resul
are compared with exact diagonalization studies and exp
ment. Section VI considers bilayer CF states with Pfaffi
structure in each layer. The paper is concluded in Sec. V

II. COMPOSITE-FERMION THEORY FOR BILAYER
SYSTEMS

In the case of a bilayer system, we already know
answer in two limits. When the layers are far apart, the
layer state is given simply by two independent single-la
composite fermion states. In the other limit, when the la
separationd→0, the bilayer problem is identical to the prob
lem of spinful electrons in a single layer~i.e., pseudospin
acts like the real spin!, with the Zeeman energy set equal
zero. As discussed above, the nature of the CF states is
understood in this limit. At even numerator fractions, t
ground state is a~pseudo!spin singlet, and at odd numerato
fractions it is partially polarized. For the pseudospin sing
state the densities in the two layers are equal; when the
larization is not zero, the densities depend on the directio
the total spin, with equal densities obtained when the to
pseudospin is pointing parallel to the plane.

To investigate the intermediate situation, we consider
following class of wave functions, which we expect to
particularly favorable energetically,
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C ( n̄1 ,n̄2um)5)
r , j

~zj2wr !
mcn̄1

@$zk%#cn̄2
@$ws%#, ~8!

where the fully antisymmetric wave functioncn̄ describes a
lowest Landau-level projected single-layer state at filling fa
tor n̄. The state described byC ( n̄1 ,n̄2um) will be denoted by

( n̄1 ,n̄2um). When both cn̄1
and cn̄2

are incompressible

( n̄1 ,n̄2um) is also expected to describe an incompressi
state. However, if one or both ofcn̄1

andcn̄2
are compress-

ible, so is (n̄1 ,n̄2um). Halperin’s wave functions are obtaine
as special cases forn̄151/m8 and n̄251/m9.

The physical interpretation of (n̄1 ,n̄2um) is as follows. In
a single-layer system, the CF state is obtained by taking
electron stateFn and then multiplying it by a Jastrow facto
that attaches 2p quantum vortices to each electron. In th
present case, we start with an electron st
F n̄1

@$zj%#F n̄2
@$wr%#, i.e., a state that hasn̄1 filled Landau

levels in layer 1 andn̄2 in layer 2. Now, because of the laye
index, we have more flexibility in how vortices are attache
First of all, because of antisymmetry within each layer,
must attach an even number of vortices@2p1 and 2p2, giving
n̄15n̄1 /(2p1n̄111) and n̄25n̄2 /(2p2n̄211)] in the rela-
tive coordinates of a pair of electrons within each lay
However, the number of vortices in the relative coordina
of an interlayerpair of electrons can be a third integer, whic
does not have to be even.@The pseudospin part of the fu
wave function in Eq.~2! takes care of the antisymmetry wit
respect to the exchange of electrons in different layers.# In
other words, we can attach to each electron two types
vortices, one seen by other electrons in the same layer
the other type seen by electrons in the other layer.

In the symmetric gauge, the wave function describe
uniform state of electrons in two disks, one in each lay
The sizes of the disks are determined by the largest pow
of zj andwr , which also give the number of single-partic
orbitals in the lowest Landau level in the interior of the di
~apart from an unimportant correction on the order of unit!.
The largest powers ofzj and wr are N1 / n̄11mN2 and
N2 / n̄21mN1, respectively. Here,N1 and N2 are the num-
bers of electrons in the first and second layers, respectiv
In order to ensure that the electrons in the two layers occ
the same area,N1 andN2 must be related by

N1n̄1
211mN25N2n̄2

211mN1 . ~9!

The filling factors of the individual layers are given by

n1
215 n̄1

211m
N2

N1
, ~10!

n2
215 n̄2

211m
N1

N2
, ~11!

and the total filling factor isn5n11n2.
We specialize in the rest of the article to the situati

when the individual densities in the two layers are equal, i
N15N2. From the preceding considerations, this impliesn̄1

5 n̄2[n̄, n15n25n/2, and the total filling factor is given by
3-3
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n5n11n25
2n̄

11mn̄
. ~12!

Since we are interested in enumerating the states at a g
total filling factor n, we write

n̄5
n

22mn
. ~13!

Thus, for a givenn, the possible states are

S n

22mn
,

n

22mn UmD . ~14!

A. Primary bilayer fractions

For a single layer, the primary FQHE statescn̄ occur at
fractions

n̄5
n̄

2pn̄11
. ~15!

We note here that negative values ofn̄ are also allowed.11

These produce the primary bilayer states

S n̄

2pn̄11
,

n̄

2pn̄11
UmD ~16!

at filling factors

n5
2n̄

~2p1m!n̄11
. ~17!

The numerator may be either even~for un̄uÞ1) or one
~which is possible whenun̄u51). We will only consider the
primary bilayer states below.

States for which the numerator ofn is odd and greate
than 1 make use of single-layer states at fillingsn̄, which are
not primary FQHE states. Consider, for example,n53/7, for
which the possible bilayer states are

S 3

14
,

3

14U0D ,S 3

11
,

3

11U1D ,S 3

8
,
3

8 U2D . ~18!

The first and third states are not likely to occur because
constituent, single-layer states do not belong to a prim
sequence.

Not all primary bilayer states are physical though. In fa
some of them can be ruled out by demanding that the in
layer correlations not be stronger than the intralayer corr
tions for any realistic situation. Which states are ruled ou
determined by considering thed→0 limit, where the state

~ n̄,n̄um!5)
j ,r

~zj2wr !
m)

j ,k
~zj2zk!

2pc n̄@$zj%#

3)
r ,s

~wr2ws!
2pc n̄@$wr%# ~19!
08531
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must be an eigenstate of the pseudospin. Here, we have
glected the lowest Landau-level projection, which is not r
evant to the present discussion because it preserves the
quantum number. As discussed earlier, this state is an ei
state of the pseudospin form5mc , where

mc52p, n̄Þ1,
~20!

mc52p11, n̄51.

For n̄Þ1, the state atm5mc is a pseudospin singlet,15,16

whereas forn̄51, the state atm5mc , which corresponds to
n51/(2p11), has nonzero pseudospin. The latter are j
the Halperinxm,m,m states, which we know to be pseudosp
eigenstates.25 The states withm.mc are clearly unphysica
because they correspond to stronger interlayer correlat
than intralayer correlations.

Note that a special case is the compressible staten
52/(2p1m), corresponding to the limitn̄5`. Here, form
5mc52p, we haven51/2p, where the pseudospin unpola
ized composite-fermion Fermi sea is obtained.15,16 ~Here, the
limit n→` can be taken along even integer values ofn.!

The overall picture that we expect on the basis of
above considerations is as follows. The valuem50 de-
scribes far-separated independent layers. The integerm is
expected to increase in unit steps as the layer spacin
reduced untilm5mc is reached. This gives us the limit whe
the two layers are very close. The values ofm.mc are not
physically relevant.

B. Spherical geometry

The spherical geometry26,27 will be used in all our calcu-
lations, which is suited for an investigation of the bulk pro
erties of the various CF states, due to the lack of edge
considersN electrons on the surface of a sphere of radiusR
in the presence of a radial magnetic field produced b
magnetic monopole at the center. A monopole of strengthq,
an integer or a half integer, produces a flux of 2qf0 (f0
5hc/e). The single-particle eigenstates are the monop
harmonics,Yq,n,m ,26 given by@with the binomial coefficient
(b

g) to be set equal to zero if eitherb.g or b,0],

Yq,n,m~V!5Nqnm~21!q1n2meiqf juj
q1mv j

q2m

3(
s50

n

~21!sS n
sD S 2q1n

q1n2m2sD
3~v* v !n2s~u* u!s, ~21!

whereV represents the angular coordinatesu andf of the
electron, and

u[ cos~u/2!exp~2 if/2!, ~22!

v[ sin~u/2!exp~ if/2!. ~23!

Here, n is the Landau level~LL ! index (n50,1, . . . ), the
orbital angular momentum isuqu1n, andm is thez compo-
nent of the angular momentum~not to be confused with the
exponent in Halperin’s wave function!. The degeneracy o
the lowest LL is 2uqu11, and it increases by 2 in each su
cessive higher LL.
3-4
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The composite fermion wave function can be generali
straightforwardly to the spherical geometry. Then-filled LL
state Fn occurs at qn5(N2n2)/2n. The Jastrow factor
) j ,r(zj2wr) is replaced by) j ,r(ujv r2v jur), which corre-
sponds toqJ5N/2. Noting that theq of the product is equa
to the sum of theq’s of individual factors, the state

S n

2pn11
,

n

2pn11 UmD ~24!

occurs atQ5mqJ12pq11qn , i.e., at

Q5
~2pn1mn11!N2~2pn1n2!

2n
. ~25!

Indeed, the ratio of the total number of particles to the fl
2N/2Q, gives the correct filling factorn52n/(2pn1mn
11) in the thermodynamic limit 2N→`.

C. Charge of elementary excitations

We will only consider the ground-state wave functions
this article, but it is straightforward to calculate the charge
the elementary excitation of the incompressible bila
states. Begin with the state in Eq.~24! and add one electron
to each layer, while holding the flux at the value given in E
~25!. Now the wave function is given by

)
j ,r 51

N11

~ujv r2v jur !@PLLLF1
2pFq8#L@PLLLF1

2pFq8#R ,

~26!

whereL andR denote the left and the right layers. Theq’s of
the interlayer and intralayer Jastrow factors now increase
the q for F, calledq8, must decrease to

q85
N2n2

2n
2

m

2
2p ~27!

in order to leave the totalQ invariant. Atq8, the total number
of states in the lowest-n LL’s is 2q8n1n25N2mn22np,
which implies that forN11 electrons, there are 2np1mn
11 electrons in the (n11)st LL. Each one corresponds t
an excited composite fermion in the full wave functio
Since a unit charge was added in each layer, the charge
responding to each composite fermion is

e* 5
e

2np1mn11
. ~28!

III. COMPUTATIONAL DETAILS

Despite their simple interpretation, the wave functions
composite fermions are too complicated for exact analyt
treatment. Even for the simplest case, namely, the Laug
wave function, it has not been possible to obtain any nu
bers by any analytical method. This is hardly surprising,
cause the composite-fermion wave functions describ
strongly correlated state of electrons.~We note that the
Chern-Simons field, theoretical technique for dealing w
composite fermions13,28 is not able to obtain, from first prin
08531
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ciples, quantities like the ground-state energies or the en
gaps. For an approximate calculation of such quantities
Hamiltonian approach, we refer the reader to the literature29!

Fortunately, itis possible to obtain exact results for th
variational wave functions using a numerical Monte Ca
method.30 Quantitative results are obtained without maki
any approximations, and the results can, in principle,
made as accurate as we wish by running the Monte C
sufficiently long. In practice, reasonably accurate resu
correct up to three to four significant digits, can be obtain
for up to a total of 2N;70 electrons. This turns out to b
sufficient to extrapolate to the thermodynamic limit in ma
cases of interest to obtain results that can be compared
rectly to experiment.

In a purely two-dimensional system, the interaction
given by V2D(r jk)5e2/eur j2r ku, where e is the dielectric
constant of the background material. For this interaction,
energies scale withe2/e l 0, where l 05A\c/eB is the mag-
netic length; the only density dependence is through
magnetic length. However, realistically, the electron wa
function has a finite width normal to the plane of confin
ment, which alters the form of the effective two-dimension
interaction at short distances. We incorporate in our calcu
tions the effect of finite thickness by working with an effe
tive two-dimensional interaction given by

V~r !5
e2

e E dz1E dz2

uj~z1!u2uj~z2!u2

@r 21~z12z2!2#1/2
, ~29!

wherej(z) is the transverse wave function.~Here, the real
quantityz is the distance along the normal direction, not
be confused with the complex numberzj denoting the posi-
tion of a particle within the plane.! The functional form ofj
is determined by self-consistently solving the Schro¨dinger
and Poisson equations, taking into account the interac
effects through the local-density approximation~LDA ! in-
cluding the exchange-correlation potential.31 The only input
parameters are the electron densityr and the shape of the
confinement potential, which will be assumed to be a squ
quantum well for each layer in this article. The barri
heights of the wells are taken to be 276 meV in the calcu
tion, although the results are not significantly different fro
an infinite barrier. The effect of interlayer interaction is n
glected in the LDA evaluation ofj. For further details, we
refer the reader to Ref. 31. The self-consistent local-den
approximation is expected to be accurate on the leve
20%. The treatment of the uniform positive backgrou
charge is somewhat complicated due to the finite thicknes16;
fortunately, since we are only interested in energy diff
ences, we do not need to consider the neutralizing ba
ground charge explicitly.

The filling factor is defined to be the ratio of the tot
number of electrons, 2N, to the total flux through the surfac
of the sphere measured in units off0 , Nf52Q. However,
for a given wave function, the ratio is 2N dependent, and ha
order 1/N deviations from its thermodynamic value,n. A
difficulty arises because the different states that corresp
to the same thermodynamicn do not have the same 2N/Nf
for finite systems. In other words, they have sligh
3-5
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FIG. 1. The energies of the bilayer states (1/3,1/3u1) and
(1/2,1/2u2) at n51/2 as a function of 1/2N, where 2N is the total
number of particles. The energies are measured relative to the
(1/4,1/4u0) with DE[E( n̄,n̄um)2E(1/4,1/4u0) . The layer thickness and
the layer separation are taken to be zero in this plot. In this an
subsequent figures the energies are given in units ofe2/e l 0, where
l 05A\c/eB is the magnetic length ande is the dielectric constan
of the background material.

FIG. 2. The thermodynamic energies of various bilay
composite-fermion states atn51/3 and 1, measured relative to th
energy of the uncorrelated state (n/2,n/2u0) as a function of layer
separation. Each layer is taken to be strictly two-dimensional in

plot. The various states (n̄,n̄um) are explained in the text.
08531
different densities in finite systems. We correct for this
expressing the energies in units ofe2/r 0, where r 0 is the
interparticle separation, and then replacinge2/r 0 by its ther-
modynamic value. This is equivalent to multiplying the di
tancer in the expression of the interelectron interaction
the factorArN /r, whererN is the density of the finite sys
tem. We find that, after correcting for the density in th
manner, the energy differences are only weakly dependen
N and give reliable thermodynamic extrapolations, as sho
in Fig. 1. ~In fact, the density correction makes only a sm
correction to the energy differences for the large syste
considered.! The distance between the particles is measu
along the chord.

The energy of the composite-fermion wave functions w
be evaluated by the Monte Carlo method, with the lowest
projection handled by the standard method described in
literature.30 We compute the energy per particle to with
0.01% using 107 Monte Carlo iterations. This is done fo
several system sizes up to 2N572.

IV. RESULTS AND DISCUSSION

We have evaluated the energies of various candid
ground states atn51/3, 2/5, 1/2, and 1 as a function ofN,
and determined the thermodynamic value of the energy
ference. The energy difference has been calculated relativ
the uncorrelated stateC (n/2,n/2u0) in each case. We have stud
ied a large class of confinement potentials, but will pres
below results only for three quantum-well thicknesses a
function of the electron density. The distanced separating the

ate

in

r

is

FIG. 3. Same as Fig. 2 for fillingsn52/5 and 1/2.
3-6
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layers is measured from center to center; its minimum va
is therefore equal to the width of each quantum-well laye

Figures 2 and 3 show the energy differenceDE
5E(n̄,n̄um)2E(n/2,n/2u0) of the various states at several fillin
factors as a function of the layer separationd/ l 0 with each
layer taken to be a strictly two-dimensional electron gas. I
clear thatall states of the type (n̄,n̄um) are, in general,
physically relevant providedm<mc . For n51/3, we have
mc53; for n52/5,1/2,3/7, we havemc52; and for n51,
mc51. For larged/ l 0, the ground state, as expected,
(n/2,n/2,u0) and asd/ l 0 is decreased,m increases in steps o
unity. For the states studied here, the transition occurs f
an incompressible state into a compressible state and
versa. This, however, is not a general feature. For exam
the bilayer states atn54/9 are (2/9,2/9u0), (2/7,2/7u1), and
(2/5,2/5u3), which are all incompressible.

At a fixed filling factor, asd/ l 0 is varied, many transitions
are predicted to occur, with FQHE disappearing for a wh
and then reappearing. This is reminiscent of the case of t
sitions between CF states with different spin-polarizations
a single layer as a function of the Zeeman energy. Th
however, the transition is always believed to be from o
incompressible state to another.

In order to make contact with experiment, we have co
sidered the effects of finite width. For each value of t
density and well width, a crossover value ofd/ l 0 is deter-
mined as in Figs. 2 and 3 from which the phase diagram
obtained. The phase diagrams are shown in Figs. 4, 5, 6,
7. The transitions occur in the regiond/ l 0'123, which is
an experimentally

FIG. 4. The phase diagram of bilayer CF states atn51/3 in the
r-d plane, wherer is the total electron density andd is the distance
between the two layers~measured from center to center!. The phase
diagram is given for three quantum-well widths, 10 nm, 15 nm, a
20 nm. The dashed line shows the minimum distance between
layers, which is equal to the width of the individual single quantu
well layer.
08531
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accessible parameter range. In recent experiments,8 values as
low as 1.45 for the ratiod/ l 0 have been obtained by gatin
the sample and varying the density. For zero thickness,
phase boundaries in ther-d plane would be vertical.

It must be stressed that, due to its variational nature,

d
he
-

FIG. 5. The phase diagram of bilayer CF states atn51/2 in the
r-d plane.

FIG. 6. The phase diagram of bilayer CF states atn52/5 in the
r-d plane.
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study cannot rule out other phases. For example, the bil
quantum Wigner crystal phase has not been considere32

However, we believe that the wave functions considered
this work exhaust the likely uniform liquid states.

V. COMPARISON WITH EXPERIMENT AND EXACT
DIAGONALIZATION STUDIES

Some of the FQHE states have been investigated in
past in exact diagonalization studies.22–24,5 These studies
typically deal with a total of 2N56 electrons, i.e., three
electrons per layer; the enlarged Hilbert space due to
additional layer index makes it difficult to increase the nu
ber of particles in the exact diagonalization study of the
layer problem. As a result, it is not clear to what extent
results are indicative of the thermodynamic limit. Also, the
studies are not able to effectively investigate compress
states or higher-order incompressible FQHE states.

As for the incompressible states, there is general ag
ment between our study and the earlier ones whenev
comparison is possible. For example, the regions of stab
of (1/5,1/5u0) and (1/3,1/3u2) in Ref. 23 are in rough agree
ment with ours. Atn51/2, both Refs. 23 and 24 find that th
largest overlap between the exact state and the Halp
(1/3,1/3u1) state occurs at aroundd/ l 0'1.5, which lies in
the parameter range where we find the (1/3,1/3u1) to be
stable. At n51, our Coulomb resultdc / l 0'1.2 compares
well with dc / l 0'1.3 obtained in Ref. 33; they find, howeve
a stronger dependence with the quantum-well width than
do. ~Part of the difference might arise from their use of a s
function for the transverse wave functions as opposed to
self-consistent LDA.! In some cases, however, there a
quantitative differences. For example, Yoshioka, MacDona
and Girvin23 find ~for a pure two-dimensional system! that at
n51/3, the (1/5,1/5u1) state is stable in the region 1.
,d/ l 0,4, as opposed to our study that finds the regime
stability to be 3.0,d/ l 0,4.0, or, for the (1/3,1/3u1) state at
n51/2, the overlap does not diminish substantially even
d/ l 0 up to 4.23,24

Table I compares our theoretical results with experime
For n51/2, the theoretical valued/ l 0'3.0 is in excellent
agreement with experiment.4 ~Note that the geometry studie
in this work is closer to the experiment of Ref. 4 than of R
3.! However, forn51, the theoretical value (d/ l 0'1.2) is
substantially smaller than the experimental values (d/ l 0
'1.722.0). There may be several possible origins of t
discrepancy. The most likely cause is that at smaller val
of d/ l 0, the effect of interlayer tunneling, neglected in theo
is not negligible. Indeed, Schliemannet al.33 find that the
critical dc / l 0 increases with the tunneling gap. Also, wh
the two layers are close, the interlayer interaction may a
affect the LDA form ofj.

Another interesting feature of our results is that there i
range of parameters, withd/ l 0<2, where then5n/(2n
11) FQHE is stable and at the same time then51/2 FQHE
also occurs. It may seem that the system behaves as a s
layer except that it also shows FQHE atn51/2. This has
been seen experimentally.37 However, the nature of then
5n/(2n11) FQHE is quite different from that in a singl
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layer, which ought to be verifiable from the detailed prop
ties of this state.

Another case of interest isn52/3. Here, the relevant bi
layer states are (1/3,1/3u0), (1/2,1/2u1), and (1,1u2). The
last one needs some explanation. Naively, it might seem
physical because it appears to have stronger interlayer co
lations than intralayer correlations. However, we note thatc1
here is notF1, but rather) j ,k(zj2zk)

2F21. In other words,
the 1 in (1,1u2) refers to the staten̄/(2n̄11) with n̄521; it
is then* 521 state of composite fermions carrying two flu
quanta. This is the valid pseudospin-singlet state in thed/ l 0
50 limit.15 We have not studiedn52/3 in this work because
(1,1u2) involves reverse-flux attachment, for which o
method for treating the lowest Landau-level projection do
not work for technical reasons. However, it appears t
while the bilayer state atn52/3 is incompressible for the
two extreme limits of far-separated and very close layers
compressible state is to be expected in an intermediate ra
of layer separation. In the experimental studies of Su

TABLE I. The experimental and theoretical values for the cri
cal bilayer separationdc / l 0 where the transition takes place atn
51/2 andn51.

n dc / l 0 ~experiment! dc / l 0 ~present theory! Reference

1 2.0 1.2 34
1 1.7 1.2 35
1 1.8 1.2 36

1/2 3.0 2.9 4

FIG. 7. The phase diagram of bilayer CF states atn51 in the
r-d plane.
3-8
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et al.37 and Manoharanet al.,32 there is evidence for a direc
transition between a two-component incompressible 2/3 s
and a single-component, incompressible 2/3 state as a f
tion of the interlayer tunneling~which determines the ga
between the symmetric and antisymmetric bands!. Our
theory, on the other hand, neglects any interlayer tunne
and deals only with various kinds of two-component stat
It is not possible to draw any definitive conclusions in th
regard from exact diagonalization studies.24

VI. PAIRED COMPOSITE-FERMION STATES

As mentioned earlier the variational nature of our stu
does not exclude other candidate states. To this end we
sider another class of states that involve intralayer pairing
composite fermions. Such a pairing is described by a Pfaf
variational wave function,38 studied by several groups in th
context of single-layer FQHE atn51/2 andn55/2.39,16The
Pfaffian wave function atn̄51/2p is written as

c1/2p
P f @$zj%#5)

i , j
~zi2zj !

2pP f@M #, ~30!

where P f@M # is the Pfaffian of theN3N antisymmetric
matrix M with componentsMi j 5(zi2zj )

21 defined as

P f@M #}A@M1,2M3,4•••MN21,N#, ~31!

whereA is the antisymmetrization operator.P f@M # is a real
space BCS wave function and socn̄

P f can be viewed as a
p-wave paired quantum Hall state of composite fermions.
generalize the single-layer paired state to the case of a
layer system by substitutingcn̄

P f into Eq. ~8!:

C (1/2p,1/2pum)P
P f

5)
r , j

~zj2wr !
mc1/2p

P f @$zk%#c1/2p
P f @$ws%#.

~32!

These states will be denoted by (1/2p,1/2pum)P. It is well
known that at n51/2p in the single-layer case, th
en
an

st
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composite-fermion Fermi sea has lower energy than
paired composite-fermion state in the lowest Land
level.16,39 Here we check whether or not inter-layer corre
tions stabilize the intralayer paired states and thus energ
cally favor the paired bilayer state.

We have calculated the thermodynamic energies of
possible paired bilayer states at total fillingsn51/2, 1/3, 1,
and 2/5 as a function of the interlayer widthd/ l 0. The
crosses in Figs. 2 and 3 show the energy of the paired bila
states measured relative to the uncoupledm50 bilayer states
of Eq. ~14! as a function ofd/ l 0. ~We include in Figs. 2 and
3 only those paired states that are competitive with the
bilayer states.! On the basis of these studies, we conclu
that the paired CF states of Eq.~32! are not the ground state
at any layer separation for any of the filling factors cons
ered.

VII. CONCLUSION

We have generalized the composite-fermion theory to
layer systems in the absence of interlayer tunneling. We h
studied a class of wave functions at primary bilayer fractio
and made detailed theoretical predictions regarding the ph
diagram of the bilayer states in the density-layer separa
plane. One feature that comes out of our study is that
phase diagram often contains alternating stripes of compr
ible and incompressible phases. Our results are gene
consistent with previous theoretical and experimental stud
whenever a comparison could be made.
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