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Phase diagram of bilayer composite fermion states
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We construct a class of composite fermion states for bilayer electron systems in a strong transverse magnetic
field, and determine quantitatively the phase diagram as a function of the layer separation, layer thickness, and
electron density, while neglecting interlayer tunneling. We find, in general, that there are several transitions,
and that the incompressible phases are separated by compressible ones. The paired states of composite fermi-
ons, described by Pfaffian wave functions, are also considered.
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[. INTRODUCTION spin independent, the ground state is an eigenstate of spin.
Only the wave functions with a well-defined spin quantum
Multicomponent fractional quantum Hall effect is of rel- number are valid variational wave functiori$n principle,
evance to situations when there exists more than one specidge to the spin-orbit coupling, other wave functions may also
of electron, distinguished by, for example, their spin or thebecome relevant. However, the spin-orbit coupling is weak
layer index. There has been substantial interest in multicomin GaAs and almost invariably neglected in theoretical con-
ponent states of fractional quantum Hall efféEQHE) in siderations. Some examples of states that have a well-
recent years both because of their experimental realizationggefined spin quantum number, i.e., satisfy the Fock condi-
and because of theoretical progress in the understanding tibns, are the fully polarized statg,;, at »=1/3 (it is
their structure. The focus in this article will be on multicom- identical to Laughlin’s fully polarized wave function except
ponent states in a bilayer system. For simplicity, we will that the spin is pointing in the plane, giving zet@ompo-
assume that the Zeeman energy is sufficiently large so thatent, rather than normal to the plarend the spin-singlet
the electron spin is completely frozen, which is a good apstateys s, at v=2/5.
proximation in the limit of large magnetic fields. Later, the multicomponent wave functions were also con-
Multicomponent FQHE states were first considered insidered for bilayer systems. The wave function in E2).
1983, when Halperihgeneralized Laughlin’s wave function also applies to bilayer systems, but wittandd playing the
for the v=1/3 FQHE(Ref. 2 to states containing more than role of pseudospinorsindicating the occupation of the left

one component of electron, and right layers, respectively. When the layer separatien
zero, the problem is equivalent to that of spinful electrons in
Xm' v mlAZi} AW ] a single layer with the Zeeman energy set to zero, because
Ny N, the interelectron interaction is pseudospin independent, given
= H (Zj_zk)m, H (Wr_Ws)m”H (Zj_Wr)m by
j<k=1 r<s=1 J.r

e2
VE(r)=— &)

1M N,
xexr{—Z(E 22+ 3, |wr|2”. &
=1 r=1

Here,z=x—iy andw=x—iy denote the positions of the
two components of electrons, labeled by subscrjpitsand
r,s. The exponentsn” andm’ are odd integers, to ensure
proper antisymmetry, andh is an arbitrary integeiN; and
N, are the numbers of electrons in the two layers.

independent of the layer index of the particles. In this limit,
again only a limited class of the above wave functions has
the correct symmetry. However, for finitg, the effective
two-dimensional interelectron interaction is explicitly pseu-
dospin dependent: For electrons in the in the same layer, it is

These wave functions were first applied to mixed spin )
FQHE states, i.e., when electrons with both spins are rel- Vii(r)=V (r)=e— @)
evant.(Such a possibility arises in GaAs because the Zeeman 1 H er

splitting is much smaller than the characteristic Coulomb
interaction energy for typical parametersthe function but for electrons in different layers, it is
Xm'.mr.m 1S ONly the spatial part; the full wave function is

given by 2

Vi ()= —— 5)

Al ml {2} AW} Ugl - Uy dids . dy] () e\r’+d*

whereA is the antisymmetrization operator ancandd are  Here,r is the projection of the distance in the plane gnd
up and down spinors. When the interelectron interaction iand | denote the two layers. Thus, for finite none of the
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Halperin’s wave functions can be ruled out for symmetrytions. Laughlin’s wave function is obtained for the special
reasons alone. The simplest nontrivial state is the stagg, casen=1, and represents one filled composite-fermion Lan-
which describes an incompressible stateatl/2. A FQHE  dau level. In the limitv— 1/2p, the composite-fermion filling
at v=1/2 has indeed been obser¥édn a certain range of factor approaches— =, i.e., the effective magnetic field ex-
layer separation in bilayer systems, believed to be well deperienced by the composite fermiois; = p ¢y /n, vanishes.
scribed byys 31.° (Note that the filling factor is defined to be They form a Fermi sea hefé!® as confirmed
the total filling, e.g.,y=1/2 corresponds to a filling factor of experimentally* In this limit, ®., becomes the wave func-
1/4 in each individual layerAnother interesting example is tion of a Fermi sea at zero magnetic field, afgh, describes
the QHE statey; ; ; at v=1. It is a nontrivial state for a a compressible Fermi sea of composite fermions. It is a re-
bilayer system. For a single layer=1 QHE occurs even for markable feature of the composite-fermion theory that it
noninteracting electrons, because a gap opens up due to Layields a description not only of all of the incompressible
dau level quantization. For the bilayer system, however, th&QHE states, but also of the compressible liquids in the low-
FQHE atv=1 originates due to interactions, as can be seemst Landau level.
by noting that each layer has=1/2, for which there is no The multicomponent generalization of the composite fer-
gap for independent electrons. There is experimental evimion theory for the mixed spin states in a single layer has
dence for this state alfo(Distinguishing the bilayen=1  been considered extensively in the past®The generalized
from the single layew=1 is subtle, due to the unavoidable wave functions are
presence of some tunneling in the real experimental system,
and a systematic study of the evolution of the state as a () _ 2
function of various parameters is necessary for its unambigu- "Dn/(T2p#1+ 1)_PLLL(D”T v”uﬂk (zj=20%, ()
ous identification. Further discussion and references to the
relevant literature can be found in Ref) Recently, there Wheren=n;+n andz; labelall particles. Heren, andn,
has been a revival of interest in tire=1 bilayer state because are the numbers of occupied spin-up and spin-down
of experimental observatiochshat have been interpreted in composite-fermion Landau levels. This wave function satis-
terms of a Josephson-like collective tunneﬁng fies the Fock conditions for all choices of andn , with
The physics of multicomponent FQHE states is expecte@ach choice giving a FQHE state with a definite total spin,
to be intimately connected to and derived from the physics ofamely, N/2)(n;—n )/(n;+n,). In the limit of vanishing
the FQHE in single-component systems. However, LaughZeeman energy, the ground state has the smallest total spin:
lin's wave function, which forms the basis of the states dis-the total spin isS=0 whenn is an even integer, witm,
cussed above, describes only a subset of the observed states; =n/2; when n is an odd integer, we have;=(n
atv=n/(2pn=1) in a single-layer system. The wave func- +1)/2 andn =(n—1)/2, with S=N/2n, N being the total
tions in Eq. 1 therefore also describe only a subset of a larggrumber of particles. As the Zeeman energy is increased, at
class of bilayer states. To take a simple example of states neertain critical values of the Zeeman energyincreases by
described byy m m, considerm=0, i.e., two uncoupled one unit whilen, decreases by one unit. At very large Zee-
layers, and assume equal density in the two layers. Thean energies, a fully polarized state is obtained. This de-
above wave function only applies to FQHE atn?/ with m’ scription is in excellent agreement with transport and optical
an odd integer, even though in reality FQHE will occur at aexperiments? and also with exact diagonalization studies on
much larger class of fractions given by=2n/(2pn=1).  small system$’ It has also been extended to finite tempera-
Further, Halperin's wave functions are not applicable to com+ures in a Hamiltonian formulatioh. It ought to be noted
pressible states, which, as we shall see, play an importaihat the wave function&ﬁ?gé;‘,ﬁll) describe only uniform lig-
role in the bilayer phase diagram. uid states; another structure, a charge/spin density waves of
The general theory of the FQHE in a single layer is for-composite fermions, has been discussed in the context of
mulated in terms of a particle called the composite fermioncertain experimental anomali&s.Halperin’s X2p+120+1.2
which is the bound state of an electron anpi Guantum state atv=2/(4p+1) is obtained as a special case \Mr[h
mechanical vortice!¥’ The states of composite fermions are =1 andn ,=1; the other composite-fermiol€F) states are
described by the wave functith not expressible in the form of a Halperin wave function.
Our objective in this work is to generalize the composite
fermion theory to bilayer systems and determine the phase
(6) dia : d ; e ’
gram of bilayer composite fermion states within the as
sumption that the interlayer tunneling is negligible. The gen-
which is interpreted ag* =n filled Landau levels of com- eralization of the composite-fermion theory from single to
posite fermionsyp* being the filling factor of composite fer- two layers is, to an extent, straightforward as we show be-
mions. Hered, is the wave function ofn filled Landau low. Much work on possible bilayer states has been done in
levels of electrons, and the Jastrow facﬂ>J-r<k(zj—zk)2F’ the past using the composite-fermion Chern-Simons or other
attaches P vortices to each electron to convert it into a field-theoretic approaché$ but these studies do not tell us
composite fermiort* The symbolP,,, denotes the projec- which states would actually occur in nature and in what pa-
tion of the product wave function into the lowest electronicrameter range. Our goal is to obtain a quantitative descrip-
Landau level. These wave functions are known to be extion. We determine the phase diagram of composite-fermion
tremely accurate representations of the actual wave funcstates as a function of two important parameters of the prob-

Uni2pn+ 1)= PLLL(bnjl;[k (zj—2z)?°
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lem, the layer thicknes#/ and the layer spacingj(defined to

be the distance between the centers of the two layBrse to Vi mm=1 Z=wo™y, [{zd v, [{wd],  ®

its variational nature, the study cannot rule out other states, "

but we believe that the states considered here exhaust tijgere the fully antisymmetric wave functiofi, describes a
physically relevant uniform liquid states in the parameterIOWSSI Landau-level projected single-layer state at filling fac-
ranges considered. An important feature of the resultanfor v. The state described by, - m Will be denoted by
phase diagram is that the incompressible CF phases are oftep, ,»,|m). When both ¢,, and ¢, are incompressible,
separated by compressible phases, i.e., as a function of tl'e%rl;2|m) is also expected to describe an incompressible

interlayer _spacing, _the tra_nsmon typ|_cally occurs _from 8state. However, if one or both af,. and ;. are compress-
compressible state into an incompressible state or vice versa. . 2

In general, several phase transitions are possible at a givéh v
fraction. Many of these phase transitions occur in presentlS special cases for=1/m’ and v,=1/m".
accessible experimental regimes and ought to be observable. The physical interpretation ofi ,v,|m) is as follows. In
There has also been exact diagonalization work on two? single-layer system, the CF state is obtained by taking an
layer system&22-24t is restricted to extremely small sys- electron stateb,, and then muItllpIylng it by a Jastrow factor
tems, because of the drastically enlarged Hilbert speae- that attaches 2 quantum vortices to each electron. In the
pared to the single-layer problenand is therefore limited in present  case, W? start  with  an _electron state
its applicability. The exact diagonalization approach is alsg?n,[1Zi}1Pn,[{w}], i.e., a state that has, filled Landau
suitable only for incompressible states. Nonetheless, thedevels in layer 1 anah, in layer 2. Now, because of the layer
studies provide indications regarding the range of parametefgdex, we have more flexibility in how vortices are attached.
where some of the states, for example, thel/2 bilayer  First of all, because of antisymmetry within each layer, we
FQHE state, are strongest. Wherever a comparison may BBUst attach an even number of vorti¢@p, and 2p,, giving
made, our results below are generally consistent with they="n1/(2pin;+1) and v,=n,/(2p,n,+1)] in the rela-
earlier results. We also compare our results with availabldive coordinates of a pair of electrons within each layer.
experiments av=1/2 andv=1. However, the number of vortices in the relative coordinates
The plan of the paper is as follows. In the next section, weof aninterlayerpair of electrons can be a third integer, which

describe the generalization of the composite-fermion theor§!0€s not have to be evefithe pseudospin part of the full
to two-layer system. Section Iil discusses the details of outvave function in Eq(2) takes care of the antisymmetry with

computational method. In Sec. IV, we display the quantita-reSpeCt to the exchange of electrons in different layérs.
ther words, we can attach to each electron two types of

tive phase diagram of bilayer CF states in the density-laye\f/) ¥ N n by other electrons in th me laver and
separation g-d) plane for several quantum-well thicknessestr(])e gter%r?[ eesse:en g Oeleectr?)r?g i:tl’sle otheer ‘T’: e? ayera
at total fillings v=1/2, 1/3, 1, and 2/5. In Sec. V our results yp y yer.

. . S . . In the symmetric gauge, the wave function describes a
are compared with exact diagonalization studies and eXPeriiniform state of electrons in two disks, one in each layer.

ment. Section VI considers bilayer CF states with Pfaffianryg gjzes of the disks are determined by the largest powers
structure in each layer. The paper is concluded in Sec. VII. z; andw, , which also give the number of single-particle
orbitals in the lowest Landau level in the interior of the disk
(apart from an unimportant correction on the order of unity
Il. COMPOSITE-FERMION THEORY FOR BILAYER The largest powers of; and w, are N;/v;+mN, and

SYSTEMS N,/v,+mN;y, respectively. HereN; and N, are the num-

In the case of a bilayer system, we already know thebers of electrons in the first and second layers, respectively.
answer in two limits. When the layers are far apart, the bin order to ensure that the electrons in the two layers occupy
layer state is given simply by two independent single-layethe same ared\; andN, must be related by
composite fermion states. In the other limit, when the layer — —
separatiord— 0, the bilayer problem is identical to the prob- Nivy "+ mMNo=Novy "+ mN;. 9
lem of spinful electrons in a single layeke., pseudospin  The filling factors of the individual layers are given by
acts like the real spjnwith the Zeeman energy set equal to

le, so is (1, v,|m). Halperin's wave functions are obtained

zero. As discussed above, the nature of the CF states is well _1_—_1+m& (10
understood in this limit. At even numerator fractions, the e N’

ground state is §seudgspin singlet, and at odd numerator

fractions it is partially polarized. For the pseudospin singlet _1_—_l+mm (11)
state the densities in the two layers are equal; when the po- V2 =2 N,’

larization is not zero, the densities depend on the direction of

the total spin, with equal densities obtained when the totaf! Wi alize in th t of th ficle to the situati
pseudospin is pointing parallel to the plane. € specialize n the rest of the article to the situation

To investigate the intermediate situation, we consider thd/hen the individual densn.les n th? two I.ayers a.relequ'_al, €.,
following class of wave functions, which we expect to be N1=N,. From the preceding considerations, this impligs
particularly favorable energetically, =v,=v, v1=v,=v/2, and the total filling factor is given by

nd the total filling factor iv= v+ vs.
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2v

1+my

must be an eigenstate of the pseudospin. Here, we have ne-

glected the lowest Landau-level projection, which is not rel-

evant to the present discussion because it preserves the spin
uantum number. As discussed earlier, this state is an eigen-

V= V1+ Vo= (12)

Since we are interested in enumerating the states at a giv
total filling factor v, we write

14

R — (13

Thus, for a giverw, the possible states are
r Y 14
2—mv’2—mvm ' (14)

A. Primary bilayer fractions

For a single layer, the primary FQHE statés occur at
fractions

n
2pn+1’

(15

We note here that negative values rofare also allowed?
These produce the primary bilayer states

n n
= m (16)
2pn+1 2pn+1
at filling factors
2n
17

" (2p+rmin+1

The numerator may be either evefor In[#1) or one

(which is possible whehn|=1). We will only consider the
primary bilayer states below.
States for which the numerator of is odd and greater

than 1 make use of single-layer states at fiIIiEgsvhich are
not primary FQHE states. Consider, for example;, 3/7, for
which the possible bilayer states are

)

LI ]

3 3
11'11

33

3 3
8’8

14’14

(18

ate of the pseudospin fan=m., where

m.=2p, n# 1,

(20

me=2p+1, n=1.

For n#1, the state am=m, is a pseudospin singlé},*®
whereas fon=1, the state atn=m,, which corresponds to
v=1/(2p+1), has nonzero pseudospin. The latter are just
the Halperinyy, m m States, which we know to be pseudospin
eigenstates? The states withm>m, are clearly unphysical
because they correspond to stronger interlayer correlations
than intralayer correlations.

Note that a special case is the compressible state at
=2/(2p+m), corresponding to the limh=c«. Here, form
=m.=2p, we haver=1/2p, where the pseudospin unpolar-
ized composite-fermion Fermi sea is obtairt@f (Here, the
limit n—o can be taken along even integer valueof

The overall picture that we expect on the basis of the
above considerations is as follows. The vale=0 de-
scribes far-separated independent layers. The integé&
expected to increase in unit steps as the layer spacing is
reduced untim=m, is reached. This gives us the limit when
the two layers are very close. The valuesnefm; are not
physically relevant.

B. Spherical geometry

The spherical geomett§?” will be used in all our calcu-
lations, which is suited for an investigation of the bulk prop-
erties of the various CF states, due to the lack of edges. It
considersN electrons on the surface of a sphere of radius
in the presence of a radial magnetic field produced by a
magnetic monopole at the center. A monopole of strewggth
an integer or a half integer, produces a flux afé® (¢g
=hcl/e). The single-particle eigenstates are the monopole
harmonics.Yq n.m,® given by[with the binomial coefficient
(4) to be set equal to zero if eithg>y or <0],

Yq,n,m(Q) = Nqnm( — 1)Q+n—meiq¢ju?+mvlq—m

<z vl

n
S

2g+n
gtn—m-—s

The first and third states are not likely to occur because the

constituent, single-layer states do not belong to a primary

sequence.
Not all primary bilayer states are physical though. In fact

X (v*v)""3(u*u)?, (21
where() represents the angular coordinateand ¢ of the

‘electron, and

some of them can be ruled out by demanding that the inter-

layer correlations not be stronger than the intralayer correla-

u= cog 0/2)exp —i¢/2), (22

tions for any realistic situation. Which states are ruled out is

determined by considering thie—0 limit, where the state
olm =11 @-wo"ll z-20%yil{z})

X L[s (W, — W) 2Pyl {w,}] (19)

v=sin( 8/2)exp(i ¢/2). (23

Here, n is the Landau levelLL) index (n=0,1,...), the
orbital angular momentum ig|| +n, andm is thez compo-
nent of the angular momentunot to be confused with the
exponent in Halperin’s wave functionThe degeneracy of
the lowest LL is 2g|+ 1, and it increases by 2 in each suc-
cessive higher LL.
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The composite fermion wave function can be generalizediples, quantities like the ground-state energies or the energy
straightforwardly to the spherical geometry. Tindilled LL gaps. For an approximate calculation of such quantities in a
state @, occurs atq,=(N—n?)/2n. The Jastrow factor Hamiltonian approach, we refer the reader to the literafre.

IT; (zj—w;,) is replaced byll; ,(uju,—vju,), which corre- Fortunately, itis possible to obtain exact results for the
sponds tag;=N/2. Noting that theg of the product is equal variational wave functions using a numerical Monte Carlo
to the sum of they’s of individual factors, the state method®® Quantitative results are obtained without making

any approximations, and the results can, in principle, be
made as accurate as we wish by running the Monte Carlo
sufficiently long. In practice, reasonably accurate results,
correct up to three to four significant digits, can be obtained
for up to a total of AN~70 electrons. This turns out to be
(2pn+mn+1)N—(2pn+n?) sufficient to extrapolate to the thermodynamic limit in many .
= . (25)  cases of interest to obtain results that can be compared di-
2n rectly to experiment.
Indeed, the ratio of the total number of particles to the flux, In a purely two-dimensional system, the interaction is
2N/2Q, gives the correct filling factow=2n/(2pn+mn  given by V?°(r)=e’/€|r;—r,|, wheree is the dielectric

_non 24
2pn+1'2pn+1 m (24)

occurs alQ=mq;+2pg;+q,, i.e., at

+1) in the thermodynamic limit B— oo, constant of the background material. For this interaction, the
energies scale witle?/ely, wherel,=\%c/eB is the mag-
C. Charge of elementary excitations netic length; the only density dependence is through the

) . ) . magnetic length. However, realistically, the electron wave
We will only consider the ground-state wave functions infnction has a finite width normal to the plane of confine-

this article, but it is straightforward to calculate the charge of,ent which alters the form of the effective two-dimensional
the elementary excitation of the incompressible bilayerneraction at short distances. We incorporate in our calcula-

states. Begin with the state in EQ4) and add one electron jonq the effect of finite thickness by working with an effec-
to each layer, while holding the flux at the value given in Ed.je two-dimensional interaction given by

(25). Now the wave function is given by

N+1 e? |§(21)|2|§(22)|2
V(ir)=—1 d d , 29
jlrll (ujvr_Ujur)[PLLLCDipCDq’]L[PLLL(Dip(Dq’]Ra ) 6f Zlf 22[r2+(zl_22)z]1/2 29

(26) where £(z) is the transverse wave functiotHere, the real

whereL andR denote the left and the right layers. Tgis of quantity z is the distance along the normal direction, not to

the interlayer and intralayer Jastrow factors now increase, sB& confused with the complex numbgrdenoting the posi-
the q for @, calledq’, must decrease to tion of a particle within the plangThe functional form of¢

is determined by self-consistently solving the Sclinger
N—=nZ2 m and Poisson equations, taking into account the interaction
q'=—;""35"P (27)  effects through the local-density approximatidrDA) in-
cluding the exchange-correlation potenffallhe only input
in order to leave the tot&) invariant. Atq’, the total number parameters are the electron densityand the shape of the
of states in the lowest-LL's is 2gq'n+n?=N—mn—2np, confinement potential, which will be assumed to be a square
which implies that forN+1 electrons, there arenp+mn  quantum well for each layer in this article. The barrier
+1 electrons in ther{+1)st LL. Each one corresponds to heights of the wells are taken to be 276 meV in the calcula-
an excited composite fermion in the full wave function. tion, although the results are not significantly different from
Since a unit charge was added in each layer, the charge can infinite barrier. The effect of interlayer interaction is ne-

responding to each composite fermion is glected in the LDA evaluation of. For further details, we
refer the reader to Ref. 31. The self-consistent local-density
ot = e 28) approximation is expected to be accurate on the level of
2np+mn+1° 20%. The treatment of the uniform positive background

charge is somewhat complicated due to the finite thickfiess
fortunately, since we are only interested in energy differ-
ences, we do not need to consider the neutralizing back-
Despite their simple interpretation, the wave functions ofground charge explicitly.
composite fermions are too complicated for exact analytical The filling factor is defined to be the ratio of the total
treatment. Even for the simplest case, namely, the Laughlinumber of electrons,q, to the total flux through the surface
wave function, it has not been possible to obtain any numef the sphere measured in units ¢f, N,=2Q. However,
bers by any analytical method. This is hardly surprising, befor a given wave function, the ratio ifN2dependent, and has
cause the composite-fermion wave functions describe arder 1N deviations from its thermodynamic value, A
strongly correlated state of electron@Me note that the difficulty arises because the different states that correspond
Chern-Simons field, theoretical technique for dealing withto the same thermodynamicdo not have the sameNZN ,
composite fermion$?is not able to obtain, from first prin- for finite systems. In other words, they have slightly

IIl. COMPUTATIONAL DETAILS
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FIG. 1. The energies of the bilayer states (1/3])3and
(1/2,1/22) atv=1/2 as a function of 1/2, where N is the total
number of particles. The energies are measured relative to the state
(1/4,1/40) with AE=E(,Jjm — E(u4,140) - The layer thickness and
the layer separation are taken to be zero in this plot. In this and in
subsequent figures the energies are given in unie/ad 5, where
o= Vhc/eB is the magnetic length anelis the dielectric constant
of the background material.
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FIG. 3. Same as Fig. 2 for filings=2/5 and 1/2.

different densities in finite systems. We correct for this by
expressing the energies in units ef/ro,, wherer, is the
interparticle separation, and then replacetdr o by its ther-
modynamic value. This is equivalent to multiplying the dis-
tancer in the expression of the interelectron interaction by
the factorpn/p, Wherepy is the density of the finite sys-
tem. We find that, after correcting for the density in this

AE [e%/el]

-0.15

0.00

-0.10

-0.20

o (1/5,1/5 1)
—-—-- (1/6,1/6 |0)

/Z

v=1

e—a 1,1 [1)

XX (1/2,1/2 [0)']
—-—- (1/2,1/2]0)
0 1 2 3 4
d/l,

manner, the energy differences are only weakly dependent on
N and give reliable thermodynamic extrapolations, as shown
in Fig. 1. (In fact, the density correction makes only a small
correction to the energy differences for the large systems
considered.The distance between the particles is measured
along the chord.

The energy of the composite-fermion wave functions will
be evaluated by the Monte Carlo method, with the lowest LL
projection handled by the standard method described in the
literature®® We compute the energy per particle to within
0.01% using 10 Monte Carlo iterations. This is done for
several system sizes up tiNz72.

IV. RESULTS AND DISCUSSION

We have evaluated the energies of various candidate
ground states at=1/3, 2/5, 1/2, and 1 as a function bf
and determined the thermodynamic value of the energy dif-

FIG. 2. The thermodynamic energies of various bilayerference. The energy difference has been calculated relative to
composite-fermion states at=1/3 and 1, measured relative to the the uncorrelated sta¥ (,, .50y in €ach case. We have stud-

energy of the uncorrelated state/2,»/2|0) as a function of layer

ied a large class of confinement potentials, but will present

separation. Each layer is taken to be strictly two-dimensional in thidyelow results only for three quantum-well thicknesses as a

plot. The various statesy(v|m) are explained in the text.

function of the electron density. The distartteeparating the
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FIG. 4. The phase diagram of bilayer CF stategs-atl/3 in the FIG. 5. The phase diagram of bilayer CF stategs-atl/2 in the

p-d plane, whereg is the total electron density amtis the distance p-d plane.

between the two layergneasured from center to centefhe phase

diagram is given for three quantum-well widths, 10 nm, 15 nm, andaccessible parameter range. In recent experin'?emmes as

20 nm. The dashed line shows the minimum distance between theyy as 1.45 for the ratial/l, have been obtained by gating
layers, which is equal to the width of the individual single quantum-the sample and varying the density. For zero thickness, the
well layer. phase boundaries in thed plane would be vertical.

layers is measured from center to center; its minimum value It must be stressed that, due to its variational nature, our
is therefore equal to the width of each quantum-well layer.
Figures 2 and 3 show the energy differenceE v=2/5
=Eim —E2.20) of the various states at sev_eral filling 4l ]
factors as a function of the layer separatibth, with each 20nm
layer taken to be a strictly two-dimensional electron gas. It is 3t /7/51 6:7/6 _
2

clear thatall states of the type i, v|m) are, in general,
physically relevant providedn<=m,. For »=1/3, we have
m.=3; for v=2/5,1/2,3/7, we haven.=2; and forv=1,
m.=1. For larged/ly, the ground state, as expected, is =T
(v/2,v12|0) and agl/l is decreasedn increases in steps of : '
unity. For the states studied here, the transition occurs from
an incompressible state into a compressible state and vice
versa. This, however, is not a general feature. For example,
the bilayer states at=4/9 are (2/9,2/®), (2/7,2/71), and
(2/5,2/43), which are all incompressible.

At a fixed filling factor, asd/l is varied, many transitions
are predicted to occur, with FQHE disappearing for a while
and then reappearing. This is reminiscent of the case of tran-
sitions between CF states with different spin-polarizations in
a single layer as a function of the Zeeman energy. There,
however, the transition is always believed to be from one
incompressible state to another. y

In order to make contact with experiment, we have con- 1} e
sidered the effects of finite width. For each value of the - , ,
density and well width, a crossover value afl, is deter- 0 1 2 3 4
mined as in Figs. 2 and 3 from which the phase diagram is d/l,
obtained. The phase diagrams are shown in Figs. 4, 5, 6, and
7. The transitions occur in the regiatl ,~1—3, which is FIG. 6. The phase diagram of bilayer CF statega®/5 in the
an experimentally p-d plane.
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study cannot rule out other phases. For example, the bilayer v=1
quantum Wigner crystal phase has not been considéred.
However, we believe that the wave functions considered in 20nm z
this work exhaust the likely uniform liquid states. oL

V. COMPARISON WITH EXPERIMENT AND EXACT 1t s e
DIAGONALIZATION STUDIES

Some of the FQHE states have been investigated in the 0
past in exact diagonalization studi@s?*® These studies 15nm e
typically deal with a total of RI=6 electrons, i.e., three
electrons per layer; the enlarged Hilbert space due to the
additional layer index makes it difficult to increase the num-
ber of particles in the exact diagonalization study of the bi- Tr 7
layer problem. As a result, it is not clear to what extent the 7

7/
7/
7/

p[1 0''em™
\

results are indicative of the thermodynamic limit. Also, these 0 ——=
studies are not able to effectively investigate compressible 10nm
states or higher-order incompressible FQHE states. o L y:
As for the incompressible states, there is general agree- i
ment between our study and the earlier ones whenever a s
comparison is possible. For example, the regions of stability 1 7
of (1/5,1/30) and (1/3,1/R) in Ref. 23 are in rough agree- s
ment with ours. Atv=1/2, both Refs. 23 and 24 find that the 0 Lb—=="
largest overlap between the exact state and the Halperin 0 1 2
(1/3,1/31) state occurs at arourdfl,~ 1.5, which lies in dii,
the parameter range where we find the (1/31y3to be
stable. Atv=1, our Coulomb result./l,~1.2 compares
well with d. /1y~ 1.3 obtained in Ref. 33; they find, however,
a stronger dependence with the quantum-well width than w . - .
do. (Part of the difference might arise from their use of a sine?‘.”‘yer’ Wh.'Ch ought to be verifiable from the detailed proper-
function for the transverse wave functions as opposed to OL}YI’eiOf tﬁ Is state. fi 5= 2/3. H h | bi
self-consistent LDA. In some cases, however, there areIa epostta?(rasczsrz (z 1}gtig)3t '(852 1 /il)erzﬁzj ? ;ize)va_?:]e"
quantiFat%% Qifferences. For example, Yoshioka, MacDonaIdlagt one needs some ,expl,anatio,n Nai,vely it m,ight.seem un-
and Girvirtfind (for a pure two-dimensional systerthat at 5 physical because it appears to have stronger interlayer corre-

=173, the (L/5,1/) state is stable in the region 1. ations than intralayer correlations. However, we note that
<d/ly< i i ) ' '
d/1,<4, as opposed to our study that finds the regime OLere is notb,, but ratherﬂj<k(zj—zk)2rb_l. In other words,

stability to be 3.6<d/l,<4.0, or, for the (1/3,1/3) state at : . i
»=1/2, the overlap does not diminish substantially even fotthe 1 in (1,12) refers to the state/(2n+1) withn=—1; it
d/l, up to 42324 is thev* = — 1 state of composite fermions carrying two flux

Table | compares our theoretical results with experimentsquanta. This is the valid pseudospin-singlet state indig
For v=1/2, the theoretical valuel/l;~3.0 is in excellent =0 limit."*We have not studied=2/3 in this work because
agreement with experimef(Note that the geometry studied (1,32) involves reverse-flux attachment, for which our
in this work is closer to the experiment of Ref. 4 than of Ref.method for treating the lowest Landau-level projection does
3.) However, forv=1, the theoretical valued{l,~1.2) is ot work fqr technical reasons. However, it appears that
substantially smaller than the experimental valuegl { while the b|Ia_yer state at=2/3 is incompressible for the
~1.7-2.0). There may be several possible origins of thistWo extreme limits c_)f far-separated a_nd very close .Iayers, a
discrepancy. The most likely cause is that at smaller value§ompressible state is to be expected in an intermediate range
of d/1,, the effect of interlayer tunneling, neglected in theory,©f 1ayer separation. In the experimental studies of Suen
is not negligible. Indeed, Schliemaret al> find that the
critical d./l, increases with the tunneling gap. Also, when
the two layers are close, the interlayer interaction may als
affect the LDA form ofé.

Another interesting feature of our results is that there is a
range of parameters, witd/I,<2, where thev=n/(2n

FIG. 7. The phase diagram of bilayer CF stategatl in the
p-d plane.

TABLE |. The experimental and theoretical values for the criti-
8a| bilayer separationl. /I where the transition takes place at
=1/2 andv=1.

d./ly (experiment  d./ly (present theory Reference

+1) FQHE is stable and at the same time the1/2 FQHE 1 2.0 1.2 34
also occurs. It may seem that the system behaves as a single 1.7 1.2 35
layer except that it also shows FQHE =&t 1/2. This has 1 1.8 1.2 36
been seen experimentafly.However, the nature of the 152 3.0 2.9 4

=n/(2n+1) FQHE is quite different from that in a single
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et al*” and Manoharaet al,>? there is evidence for a direct composite-fermion Fermi sea has lower energy than the
transition between a two-component incompressible 2/3 statgaired composite-fermion state in the lowest Landau
and a single-component, incompressible 2/3 state as a funtevel **° Here we check whether or not inter-layer correla-
tion of the interlayer tunnelingwhich determines the gap tions stabilize the intralayer paired states and thus energeti-
between the symmetric and antisymmetric bandSur cally favor the paired bilayer state.

theory, on the other hand, neglects any interlayer tunneling We have calculated the thermodynamic energies of the
and deals only with various kinds of two-component statespossible paired bilayer states at total fillings1/2, 1/3, 1,

It is not possible to draw any definitive conclusions in thisand 2/5 as a function of the interlayer widtl,. The

regard from exact diagonalization studfés. crosses in Figs. 2 and 3 show the energy of the paired bilayer
states measured relative to the uncouptedO bilayer states
VI. PAIRED COMPOSITE-FERMION STATES of Eq. (14) as a function ofd/l,. (We include in Figs. 2 and

) ) o 3 only those paired states that are competitive with the CF
As mentioned earlier the _varlatlonal nature_of our StUdybiIayer states. On the basis of these studies, we conclude
does not exclude other candidate states. To this end we COf4t the paired CF states of E§2) are not the ground states
sider another class of states that involve intralayer pairing ok any |ayer separation for any of the filling factors consid-
composite fermions. Such a pairing is described by a Pfaffiagqq.

variational wave functior® studied by several groups in the
context of single-layer FQHE at=1/2 andv=5/23°%The VIl. CONCLUSION

Pfaffian wave function at=1/2p is written as . . . .
P We have generalized the composite-fermion theory to bi-

layer systems in the absence of interlayer tunneling. We have
Wbl iz =11 (z—z)*Pi[M], (30 studied a class of wave functions at primary bilayer fractions
=) and made detailed theoretical predictions regarding the phase
where Pf[M] is the Pfaffian of theNxN antisymmetric diagram of the bilayer states in the density-layer separation

matrix M with componentsvl;; = (z,—z;) ~* defined as plane. One feature that comes out of our study is that the
phase diagram often contains alternating stripes of compress-
PfIM]xA[M1 M3, - My-1n], (31)  ible and incompressible phases. Our results are generally

consistent with previous theoretical and experimental studies

whereA is the antisymmetrization operat&f[M] is a real .
whenever a comparison could be made.

space BCS wave function and ss‘/e? can be viewed as a
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