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Phonon drag effect in single-walled carbon nanotubes
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A variational solution of the coupled electron-phonon Boltzmann equations is used to calculate the phonon
drag contribution to the thermopower in a one-dimensional system. A simple formula is derived for the
temperature dependence of the phonon drag in metallic single-walled carbon nanotubes. Scattering between
different electronic bands yields nonzero values for the phonon drag as the Fermi level varies.
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[. INTRODUCTION mopower for a one-dimensionélD) system, within the lin-
ear band approximation. We consider a model wherein
Since their discovery,carbon nanotubes have provided a mechanisms other than electron-phonon scattering limit pho-
testbed for fundamental and applied physics. Characterizazon lifetimes. We derive an expression for the phonon drag
tion of these new systems is crucial for future progress. Thén these systems using a solution of the coupled electron-
thermopower of a material is an intrinsic quantity which phonon Boltzmann equations. We find thaerband scatter-
yields important information related to the electronic banding gives a non-zero contribution to the thermopower when
structure, electron-phonon coupling parameters, and relathe Fermi level doesot lie at the band crossing. Interband
ation rates of the system. Recent experiments on mats dfansitions near the Fermi level contribute appreciably to the
single walled carbon nanotutfe8 have found surprisingly phonon drag thermopower. Our results can be summarized in
large values for the thermoelectric power %0 xV/K) un-  the following formula.
der various ambient conditions. When the thermopower is
plotted versus temperature most of the data show a quasilin- B sgn— ) clul
ear behavior at temperatures greater than 200 K. Ther- Siota= AT+ ( ok T) ()
mopower linear in temperature suggests that conduction B
through metallic tubes dominates the thermopower at thesg the limit
temperatures. However, some data show nonlinearities below
~200 K. Here a peak in the thermopower is observed. The kg Tpv
origin of this peak is the subject of much debate. Several ke T<|u|< oc
effects that could lead to such behavior have been discussed
in the literature. These include parallel transport throughyhereA andB are fitting parameters, is the energy differ-
semiconducting tubes,a one-dimensional Kondo effett, ence between the Fermi level and the band crossine
and the phonon drag effect. Semiconducting tubes are n@flectron speed; a typical phonon speed, afd, the Debye
expected to contribute much to the thermopower becausgmperaturem parametrizes the temperature dependence of
metallic tubes have a larger electrical conductiitfhe the phonon relaxation time. In metals one typically fimds
Kondo effect has been invoked to explain the large peak in_1 at temperatures near the Debye temperature. The term
samples containing magnetic impurities. However, a smallelinear in temperature is the usual diffusive contribution for
broad peak remains when the magnetic impurities are reémetals and the second term is our result for the phonon drag
moved and therefore does not explain the universality of theyart at low temperatures. This formula yields a peak, due to
low temperature nonlinearity in samples without magneticohonon drag. We therefore associate the phonon drag effect
Impurities. with the low temperature nonlinearities observed in ther-
Turning to the phonon drag effect, very little theoretical mopower measurements on single-walled carbon nanotubes.
work has been done to calculate the phonon drag contribu- The plan of the paper is as follows. In Sec. Il we outline

tion to the thermopower in metallic carbon nanotubes. Rouglhe pasic theory of thermopower measurements in metals. In

Tm+l eZC|,u\/kaT_ 1

low-temperature estimates often quote the result Sec. Ill Bailyn's theory of phonon drag in metals is re-
viewed. In Sec. IV we apply Bailyn’s theory to a simple 1D
Sarag*Cy » (1) model of single walled(10,10 armchair carbon nanotubes.

Here we derive an expression for the phonon drag in these

whereC, is the lattice specific heat. However, this formula systems. In Sec. V we extract a simple formula by making a
assumes that phonons scatter electrons within one paraboliew temperature approximation. In Sec. VI we conclude by
band and that electron-phonon scattering acts as the domiiscussing the limits of our approximations.
nant phonon decay mechanism. Applying Ef). to nano-
tubes with two bands, particle and hole, yields a negligible Il. THERMOPOWER DUE TO ELECTRON DIEEUSION
contribution to the thermopower due to drag because the AND PHONON DRAG
particle and hole contributions cancel.

The objective of this work is to extract the temperature The application of a temperature gradient to a metal leads
dependence of the phonon drag contribution to the therto the diffusion of charge carriers from the warm to the cold
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end of the sample. The thermopower measures the chargelditional charge carriers to the cold end of the sample via
build up across the sample. It is given by  momentum transfer. This effect adds to the thermopower in

=lim,,  AV/AT, whereAV andAT are the potential and conventional metals

temperature differences across the sample, respectively. The

thermopower due to diffusio can be calculated from the Stotar™ St + Strag: 6)
standard set of transport coefficients. The transport CoefﬁStandard, low temperature estimates of the phonon drag con-
cients can in turn be derived from the Boltzmann equationyjpytion to the thermopower rely on the relation

for the electron distribution function. A general argument

leads to the Mott expression for the thermopower due to —C,t

diffusion Sirag™ m, 7

whereC, is the lattice specific heat,the carrier density, and
thet is the transfer factott is a rough estimate of the prob-
ability that a phonon collides with an electron relative to all
whereE is the energyg the electrical conductivity, anBF  scattering events. In one dimension the lattice specific heat is
the Fermi energy. When there is more than one band presenearly linear in temperatuté™ and does not provide the
the thermopower due to each band adds nonlinear temperature dependence required to explain the
peak observed in measurements on carbon nanotfibes.
Moreover, if we consider only intraband scattering, the con-

— 72 KET (dIno
= , ()
EF

St~ 3 Tel | 7B

| L .
Z 71 Syt tributions from states filling the electron and hole bands
Syi=———, (4) should cancel to give no net drag.
E o The above formula for the drag contribution cannot be

[ applied to metallic carbon nanotubes for two reasons. The
derivation of the above formutérelies on a free, electronic
wherel is the band index. band structure where transitions lie only within the parabolic
We apply the above equations to the case of metallic cathands. It also assumes that the dominant decay mechanism

bon nanotubes by considering electrons in one dimensiofer phonons is electron-phonon scattering. Below we derive
The electronic states fill two overlapping, parabolic bandsg new formula for the low temperature phonon drag contri-
the particle and hole bands, up to the Fermi level. With onlypution to the thermopower in one dimension. We find a non-
one parabolic band we expect the diffusive part of the therzero contribution to the phonon drag part of the thermopower
mopower in a metal to vary linearly with temperature. Thewhen we include transitions between two linear bands and

factor (91In o/dE)er depends on the details of the system,assume that the dominant decay mechanism for phonons is
including the density of states. However, with two bandsnot electron-phonon scattering.

present, the thermopower due to states filling the hole band
cancels the contribution from the particle band when the
Fermi level lies at the band crossing. Within this approxima-
tion we have no net contribution to the thermopower in @ The phonon drag contribution to the thermopower in a
metallic tube. metal may be calculated by solving the coupled electron-
When the Fermi level is allowed to move within the rigid phonon Boltzmann equations. In this section we briefly re-
« bands the resulting thermopower is nonzéRecent cal-  view Bailyn's formalism for calculating the phonon drag.
culations show that an enhancement in the density of state=ollowing Ref. 19 we write the Boltzmann equation for the
due to impuritied®!° or tube-tube interactioR$*** may  electron distribution functionf, in the relaxation time ap-
generate large contributions to the thermopower through thproximation. Using first order perturbation theory for the
term (¢ In o/JdE)gr. We therefore consider the following stan- electron transition probabilities one finds
dard form for the diffusive contribution to the thermopower
in metals: (&f)
coll

I1l. BAILYN FORMALISM FOR PHONON DRAG

=2 Cipr(8(—) 8 g {—N(aj)F(1—f")

ot |2’,|’

Suir =AT, ©)
where the constam is a fitting parameter which may vary +[IN(aj) + 1] (1)} + 6(+) Scr k+qf — [N(aj)
with the Fermi level. Recent experiments on mats of single Y Sivgroa e ”
walled, carbon nanotube bundles do indeed show this behav- FLFA=T)+N@EDFA=HH = (F=fo)l 7(k),
ior at large temperature§ & 200 K) 313 (8)

An anomalous peak in the thermopower appears at low . o . )
temperatures in several different experiments on singlewhereN(aj) is the phonon distribution functiom = c|q| is
walled and multiwalled carbon nanotubes. In standard therthe frequency of a phonon with speedf, is the Fermi-
mopower measurements of 3D metals such behavior is ofteDirac distribution function, and(k) is the relaxation time
associated with the phonon drag effect whereby the phonodue to the electron-electron interaction. We define the energy
flux from the hot end of the sample to the cold end dragselta functions
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S(=)=8[EK'l")—E(K) *hw]. 9)
The factorCy i/; is related to the electron-phonon matrix
elements

_ M)

k= —, (10
“I 2hw(a))

where M(qj)=|(k'l’|[VU-€(qj)|KI}|2MN, is the square
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-1
ep

a=—
-1 -1
E Tep + Ty

where 7., is the phonon relaxation time due to the electron-
phonon interaction and,, is the phonon relaxation time due
to any other interaction. This may include phonon-phonon,
phonon-boundary, phonon-impurity, or phonon-defect scat-
tering. Using the above results for the phonon relaxation
rates Bailyn find&

T

, (13

of the matrix element for the scattering of an electron from

wave vectork and band to wave vectok’ and band’ by

a phonon of wave vectar and polarizatior. HereVU is the
gradient of the ion potential. the number of cells in the

periodic block,M the ion mass, ané(ﬁj) the phonon polar-

gL

ization vector. The above matrix element ignores Umklappynhere

scattering’®

From the above expression for the electron distribution
function we can read off the necessary terms for the phonon Iy g/ =
Boltzmann equation. The second and third terms show gains
in the phonon distribution. The first and fourth terms show

losses in the phonon distribution function. This gives

(=5, AR,

X{=N(qj)f(1—f")+[N(qj)+1]f’
X(1=)} = 8(+) & vl —[N(Q))
+1]f(1—f)+N(q) ' (1-)})

—[N(qj)—Nol/(q),

IN(qj)
ot

IN(qj)
at

=2 Ciirj(8(—=) 8% iag
k,k’

(11)

wherer(q) is the phonon relaxation time amd, is the Bose

THEIRE . (14
a(qj; ) - (9_N0+ N (14)
hory(q 9T g
1 ~
me[E(kl)]{l
— fl E(K'1) IINo(A))M(Q)) (=) 8¢ +q -
(15

Equations(12), (14), and (15) constitute Bailyn’s theory of
phonon drag in metals. The remainder of this article will be
concerned with the application of this formalism to the case
of metallic carbon nanotubes.

IV. BAILYN FORMALISM APPLIED TO METALLIC
CARBON NANOTUBES

We consider a one-dimensional lattice lying on #hexis
with left and right moving electrons with the band structure
of a(10,10 armchair carbon nanotube. It is assumed that the
electron relaxation time has a weak wave vector dependence

distribution. The above two equations for the electron andor transitions about th& point (27/3a for lattice spacing
phonon distribution functions can be solved using a variaa) so thatr(lzl +27/3a) ~ 7(27/3a). Our expression for the
tional procedure. From the relevant transport coefficients thehonon drag part of the thermopower then reads
phonon drag contribution to the thermopower can be ex-

tracted. The most general form for which was derived in Ref.

21.

2|elkg
od Z

aj

INo(a))
T

> a(qikLK ) [vg T

drag— .
Kk

_JR’|'T|Z'|']'\7CEJ" (12)

Hereo is the electrical conductivityd the dimensionality of

the system, the two results from a sum over the spin degreerl.}%l

of freedom,v is the electron group velocity, ar\?iqgj is the
phonon group velocity. The facter is the relative probabil-

2|e| kBT
drag—

dNo(dj)
T

qj

X > a(q,];kLK ) [vg—vin]-Vej. (16)
kl;k"1"

We note in passing that ignoring all but electron-phonon
scattering reduces the drag to E{) when we takea
= 8¢ k+g- 2 The resulting sum ovek,k’' becomegiw. We
assert that this limit is not applicable to metallic carbon
notubes.
To make progress we evaluate Efj6) using approxima-

tions valid for metallic carbon nanotubes. In these systems it

ity that theﬁj phonon will scatter an electron from the state is reasonable to assume that at small wave vectors and ener-

kl to the statek’l’, relative to all other possible phonon
collisions.

gies only acoustic phonons scatter electrons and that their
dispersion is linea?® We then have

Details of the electron-phonon interaction are included in

a. Symbolically

Vg;=c;sgna)z, (17
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I=-1 I=+1

2 Ik,l;k’,fl_E Ik,fl;k’,l

Z [—1"1=2 kk’ kk’
all=l"]=2—=—7

KLK'I!
! + IQ ‘V ’
hoty(q) T IZI%I’ Kkl

. (23

To simplify the expression for(q) we make an assumption
regarding the available phonon scattering processes. Note
that phonons traveling along a single nanotube may scatter
FIG. 1. The linear band model depicting energy alongytaeis ~ through many different mechanisms. The large amount of
and wave vector along theaxis. The two bands showh=+1 and  surface area exposes the phonons to impurities, defects, and
—1, cross at zero energy. The arrows indicate possible interbandeighboring tubes. Furthermore, small tube lengths,

transitions from an initial electron stateto a final statek’. The  ~10 um, allow for phonon-boundary scattering. We con-
dashed line indicates the position of the Fermi energy relative to thgider here two simple forms for the phonon relaxation time,
band crossing point, defined to he valid at low and high temperatures, respectively. At low tem-

peratures, the phonon decay mechanism is a competition be-
wherec; is the phonon speed in thjéh band. The electronic tween boundary and defect scattering which add no tempera-
band structure consists of two nearly linear bands crossing dtire dependence to the phonon relaxation time. At high
zero energy, Fig. 1. This approximation holds as long as théemperatures, near room temperature, one expects phonon-
Fermi level lies no more than-1 eV from the band cross- phonon scattering to contribute significantly to phonon de-
ing. Above 1 eV other bands will complicate the spectrum.cay. Anharmonic scattering will require three phonons. The

For carrier excitations around the K point we have third being an optical mode at long wavelengths. The scat-
tering rate will be proportional to the number of available
E(kh)=1%vk, (18  optical phonons. One can then show that the relaxation time

is inversely proportional to temperature, at large tempera-
wherev is the Fermi speed and= +1,—1 labels the two tures. We therefore take the following form for the phonon
bands. With the linear band approximation the electron groupelaxation time
velocity is then

¢ m
1 GE(KI) i TO(?) ’ 2
- J - -
V=g g 2 viz (19 where ¢ is a characteristic temperatura=0 for boundary/

defect scattering, anth=1 for phonon-phonon scattering.
Substituting the electron and phonon velocities into the exComparison with experiment will require a more accurate
pression forSy,q gives expression forr, .
We now invoke the assumption that mechanisms other

2|elkg v INg(qj) than electron-phonon scattering limit the phonon lifetime,
rag= —— % Cjsgria) —=— i.e., 7, is small** More precisely
T 9N
% E a(qj,kl,k’l’)[l—l'] (20) —thp(q) ﬁ>k|%|; Ikl,k/ll. (25)
kiK1 '

. ~ The above approximation enters phonon drag studies of
Note that the above expression for the phonon drag vanishefjantum wires in GaAs. Analogous results for the phonon

when only intraband scattering is allowed, iles|”. Inwhat  drag were also obtained in Ref. 25. The transfer factor be-
follows we consider only interband scattering;1’. Define  comes

the transfer factor to be

2hwTy(q)
I(Q)Z—&l\f Z ek, —1— 2/ e — 1 1]
ta)= > a(qjkLk'I)[1-1"], (21) T2 kLk?, 1 koolkil

(26)

To further evaluate the transfer factor we return to the matrix
element in Eq(15). Working with the deformable ion model
at low wave vectorsq<pep,d one find$*

where a is given by Eqs(14) and (15). The drag then has
the simple form

2|elkgTv dNo(q])
Sta™ 5 2 CiSUND) —r—t@. (@) M(aj)=D;(hw))?, (27)

whereDj is a constant depending on the ion mass, the de-
To find t(q) we need to evaluate the following formation energy, and other tube parameters including the
expression: radius and lattice spacing. This constant has been evaluated
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for (10,10 carbon nanotube$. The low wave vector ap-
proximation made above has been motivated by measureSy,;=——————
ments of the Debye temperature. It has been measured to be ~ 27 0T kgfi Jo
near 1000 K in metallic carbon nanotuldést will be shown _ by £ byfq_ £ (_ a
that, at low temperatures, the temperature dependence of the o(hvk)} = Fo(=hvk®){1=To(—hvk}]. (32
drag does not depend on the precise form of the matrix elefo further simplify the drag formula we make a change of

lelrcL?  [ap
| ®dam@ my@no@xtotoksia

mentsM.
The transfer factor contains two terms of the form

M(qj)

2 ke =i T 2, Tl EKD]
X{1=fo[E(K'T)}No(A]) 8(—) Sy ke q
M
S fE(KD)]
x{1=fo[ E(k+0,1) JNo(a))
X S[E(k+q,1")—E(kh)—fiw], (28

where the Fermi-Dirac distribution function igq(E)
=[elE-#/keT+ 17171 The energy delta function in E¢28)
needs to be evaluated for two cases. The first case s
andl’'=—1. We then have

E(k+q,—1)—E(k,1)—w=4[ —v(k+q)—vk—c|q|]=0.
(29

This has a solutiork?= —(|q|/2)sgn@) +c/v. The second
case isl=—1 andl’=1. The solution for this case =
—(|q|/2)sgn@) —c/v. Upon a change of variables in the
energy delta function of Eq28) the sum can be evaluated.
The transfer factor now becomes

rp(q>/M<qj>)(
MNo | kgT?
JT

—fo(fivk®)} — fo( — k") {1—fo( —fivk™)}],
(30

No(gj)L
47hy

t(q)= X[fo(hvk®{1

variables with the following definitions:

ncq (v
u= —~—1/,
2kgT\ C
f(X)E e(X*,u./kBT)_l’
v+cC
Y=."¢ (33

The drag can then be written as

le|rcL? [Tpvl2cT M,
2 22 du— 3
moh“Tv Jo esuclv—1

X[ f(— uy){1- £(

drag™

—ul=fw{l-fup}l,
(34

where the Debye temperature is defined as ushgl
=hcqp/kg. In the above we have used the fact that for
(10,10 arm chair carbon nanotubes- 20.35x 10° m/s>® for
the longitudinal acoustic mode whereas=8.4x10° m/s.
This givesv/c~100. Equatior(34) is our primary result and
contains several interesting features. First note that when

=0 we havef(—x)=1-1f(x), in which case the two terms

in the integral cancel giving no contribution to the ther-
mopower. If we takeu>0 then the second term dominates,
giving a negative contribution to the thermopower. Similarly,
if we take u<0 we get a positive contribution to the ther-
mopower.

The overall sign ofSy,4 can be deduced from Fig. 1. For
©>0, interband transitions above the crossing point are fa-
vored. Transitions witlg>0 yield a positive change in the
electron group velocity which, from E@16), give an overall
negative sign to the drag. Far<<0, interband transitions

wherelL is the tube Iength. Substituting the transfer faCtOfbek)W the Crossing point are favored which give and overall

into our expression for the drag, E@®2), gives

el v

= 2kafw 2, ¢;sgra) M(Q) 7p(Q)No(a)

drag—

X[ fo(hvk®){1—fo(hvkP)}
—fo(—hvkP){1—fo(—AvK?)}]. (31

To evaluate the sum ovérit is convenient to assume that

positive sign to the drag.

The Debye temperature plays a small role because the
kernel of the integral is sharply peaked. As long as the peak
up=u/kgT lies within the range of integration the Debye
temperature can be set to infinity. When the peak crosses the
range of integrationu~kgTpuv/2¢, Syaqfalls to zero. For,
n>kgTpuv/2c the set of transitions favored by the electron
distribution require wave vectors above the Debye cutoff
dp -

Figure 2 shows the temperature dependencg;f. To

only one linear phonon branch contributes to the therevaluate the integral we have taken the deformable ion

mopower. The inclusion of other linear modes with approxi-

model, Eq.(27). We have also taken a temperature indepen-

mately the same phonon speed will simply add to the overallent phonon relaxation timen=0 in Eq. (24). For large
constant. Passing to the continuum limit and imposing a DetemperaturesS;,,q flattens because we assume here that

bye cutoffqp one can show that

does not depend on temperature. In real samples it is likely
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For <0 the second term in the integrand vanishes. We then

3 T T T T
have
n=-0.43 eV ]
le| rcL? fTDU/ZCT Mr,
_-—-2 T = — drag— m20h2To Jo gucly _ q
e
c\ng —-——— Approximate Formula X [f( - U'Y){l_ f(— U)}] (39
AN Full Formula ' As mentioned earlier the factd(1—f) in the integral is a
sharply peaked function centered at the valyg~ u/kgT.
Thus
L Il L 1 L 1 ) 1 ) 2
% 100 200 800 400 500 S lel7cL® M@2plhv) mp(2pltiv)
TIK drag 2 52Ty e2Upclv _ 1
FIG. 2. The phonon drag contribution to the thermopower plot- Tpv/2eT _
ted, in units of the constarB, as a function of temperature. The Xf dul f(uW{1—f(uy)}]. (36)
0

Fermi energy is chosen to he=—0.43 eV. The ratio between the
electron and phonon speeds is taken twbe=100. The solid line
shows the result from the full formula, Eq34) with T,

=1000 K. The dashed line shows the simplified approximation, the [Tpv/2cT  __ _ uc

second term in Eq2). For purposes of comparison, a temperature f duff(u{l—f(uy)}]=1+ kT Y{y—1}%.
independent phonon relaxation time is assunmed,0 in Eq. (24). B 37)

that, for large temperatures, phonon-phonon scattering Mmayhe gpove argument remains the same for the gas®

itmpos\(lava temlgetrr?ture depenr?ence .tot:]he dphonotnl rela)f[ati%@(cept for an overall sign change. The low-temperature drag
Ime. YWe wou én see a change in the drag at large teme, i ytion to the thermopower becomes the second term in
. (2), where the temperature independent fac®r

peratures. In Fig. 3 we compare the temperature dependen
of the drag for the two cases=0 andm=1 in Eq. (24). — (le| e L2/ w20 h2) M(2ulhv) ro(2ulfiv) 4™ may  be

Here we have takerp=100 K, v/c=100, ©=0.436 eV, L

and Tp=1000 K. A suppression of the drag at large tem_tgkgn as a fitting parameter. Note that_the low-temperature
peratures clearly induces a peak, similar to those observed |finit iS easily reached becausdc>1. Figure 2 compares
experiments. The low temperature behavior can be extract (32) above approximation to the full formula given by Eq.

with a few approximations. - o ) ) N )
Fermi statistics restricts the interband transitions to lie

V. THE LOW-TEMPERATURE LIMIT near the Fermi level, thereby excluding all but a narrow
range of phonon wave vectors. EQ) therefore applies to

A low-temperature approximation to the integral formulaSystems with any, nonsingulardependence in the electron-
for Surag, EQ. (34), can be obtained for nonzero valuesaf phonon matrix elements. Only the const&htwill change
with different forms of electron-phonon coupling.

The integral can now be performed giving

1.00 —
I ] Fitting EqQ. (2) to measurements @&, versus tempera-
0.80 | ‘/ ture yields a rough estimate @f. Figure 4 shows the total
| thermopower for three possible values @f Motivated by
! experiments on mats of single-walled carbon nanottibes
2 0.60 | assume that the paramet@rchanges sign with the Fermi
» I ;' “ 1 level. We have kept the ratié\/B| fixed. In experiments we
0.40 || N . expect the parametes and B to have a nontrivial depen-
‘! \\\\ ] dence onu due to sample dependent variations in the pho-
0.0 |" e ) non and electronic density of states.
!
000 I VI. CONCLUSION
0 100 200 300 400 500 We have shown that within a one dimensional model pho-

T non drag resulting from interband transitions between two

FIG. 3. The phonon drag contribution to the thermopower plot-lin€ar bands gives a nonlinear temperature dependence to the

ted versus temperature for two different cases. The solid line showdermopower when the Fermi level does not lie at the band

the drag when a temperature independent phonon scattering mecH#0SSing. Assuming that mechanisms other than the electron-
phonon interaction contribute to phonon scattering we derive

nism dominates phonon decay=0 in Eq.(24). The dashed line ) ! g\
shows the drag when phonon-phonon scattering dominates],. a simple expression for the phonon drag contribution to the
thermoelectric power in a model that approximates param-

The Fermi level is chosen to he=—0.5 eV. The parameteB is
the same for both curves. We also take= 100 and¢ =100 K. eters found in single walledl0,10 carbon nanotubes. The
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2 — T T T T T T phonon drag effect in conventional metals, the size of the
| ) fitting parameter B is difficult to estimate from first
p=-0.5¢V principles.
1+ . In applying the above formalism to low-temperature

peaks in thermopower measurements under different ambient
conditions it is important to account for different scattering

kS =0 . . . . .
o 0 mechanisms. Different scattering mechanisms in nanotubes
i | can exhibit drastically different behavior, in analogy to the
1=0.50V wide variety of phonon drag effects seen in conventional

4+ . metals with different alloys. In this work we have assumed
that the electron relaxation timeis independent of tempera-
ture and thatr, goes as ™. From Fig. 4 we see that
2 A TS S Y Y RO N phonon-phonon scattering induces a pealSig,. The m
0 00 200 300 400 500 =1 case therefore appears be a good approximation for the
T samples of Ref. 3. Figure 3 also demonstrates that a tempera-

FIG. 4. The total thermopower, E(®), plotted versus tempera- tureé independent scattering mechanism=(0) produces

ture for two values of the Fermi levely=—0.5 and 0.5 eV. The ONly & knee inS,. Weak inflections in the thermopower
ratio of the two-fitting parameters is taken to B&/B|=10°. The  have also been observed in many thermopower measure-

top curve has a positive value férwhile the bottom curve has a ments on carbon nanotubes. Other conditions may favor a
negative value forA. We also havev/c=50, $=100 K, andm  decay mechanism which can significantly alter the tempera-
=1. The central line is the =0 case in Eq(34), whereA=0. For  ture dependence of the drag thermopower. Detailed compari-
n=0 transitions above and below the Fermi level cancel to give nsson with experiment will require suitable choices for the

net thermopower. temperature dependence of the phonon lifetime.
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