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Phonon drag effect in single-walled carbon nanotubes

V. W. Scarola and G. D. Mahan
Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
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A variational solution of the coupled electron-phonon Boltzmann equations is used to calculate the phonon
drag contribution to the thermopower in a one-dimensional system. A simple formula is derived for the
temperature dependence of the phonon drag in metallic single-walled carbon nanotubes. Scattering between
different electronic bands yields nonzero values for the phonon drag as the Fermi level varies.
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I. INTRODUCTION

Since their discovery,1 carbon nanotubes have provided
testbed for fundamental and applied physics. Character
tion of these new systems is crucial for future progress. T
thermopower of a material is an intrinsic quantity whi
yields important information related to the electronic ba
structure, electron-phonon coupling parameters, and re
ation rates of the system. Recent experiments on mat
single walled carbon nanotubes2–8 have found surprisingly
large values for the thermoelectric power (;50 mV/K) un-
der various ambient conditions. When the thermopowe
plotted versus temperature most of the data show a quas
ear behavior at temperatures greater than 200 K. T
mopower linear in temperature suggests that conduc
through metallic tubes dominates the thermopower at th
temperatures. However, some data show nonlinearities be
;200 K. Here a peak in the thermopower is observed. T
origin of this peak is the subject of much debate. Seve
effects that could lead to such behavior have been discu
in the literature. These include parallel transport throu
semiconducting tubes,2 a one-dimensional Kondo effect4

and the phonon drag effect. Semiconducting tubes are
expected to contribute much to the thermopower beca
metallic tubes have a larger electrical conductivity.3 The
Kondo effect has been invoked to explain the large peak
samples containing magnetic impurities. However, a sma
broad peak remains when the magnetic impurities are
moved and therefore does not explain the universality of
low temperature nonlinearity in samples without magne
impurities.

Turning to the phonon drag effect, very little theoretic
work has been done to calculate the phonon drag contr
tion to the thermopower in metallic carbon nanotubes. Ro
low-temperature estimates often quote the result

Sdrag}Cv , ~1!

whereCv is the lattice specific heat. However, this formu
assumes that phonons scatter electrons within one para
band and that electron-phonon scattering acts as the d
nant phonon decay mechanism. Applying Eq.~1! to nano-
tubes with two bands, particle and hole, yields a negligi
contribution to the thermopower due to drag because
particle and hole contributions cancel.

The objective of this work is to extract the temperatu
dependence of the phonon drag contribution to the th
0163-1829/2002/66~20!/205405~7!/$20.00 66 2054
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mopower for a one-dimensional~1D! system, within the lin-
ear band approximation. We consider a model wher
mechanisms other than electron-phonon scattering limit p
non lifetimes. We derive an expression for the phonon d
in these systems using a solution of the coupled electr
phonon Boltzmann equations. We find thatinterband scatter-
ing gives a non-zero contribution to the thermopower wh
the Fermi level doesnot lie at the band crossing. Interban
transitions near the Fermi level contribute appreciably to
phonon drag thermopower. Our results can be summarize
the following formula.

Stotal5AT1
B

Tm11

sgn~2m!

e2cumu/vkBT21
S 11

cumu
vkBTD ~2!

in the limit

kBT!umu!
kBTDv

2c
,

whereA andB are fitting parameters,m is the energy differ-
ence between the Fermi level and the band crossing,v the
electron speed,c a typical phonon speed, andTD the Debye
temperature.m parametrizes the temperature dependence
the phonon relaxation time. In metals one typically findsm
;1 at temperatures near the Debye temperature. The
linear in temperature is the usual diffusive contribution f
metals and the second term is our result for the phonon d
part at low temperatures. This formula yields a peak, due
phonon drag. We therefore associate the phonon drag e
with the low temperature nonlinearities observed in th
mopower measurements on single-walled carbon nanotu

The plan of the paper is as follows. In Sec. II we outli
the basic theory of thermopower measurements in metals
Sec. III Bailyn’s theory of phonon drag in metals is r
viewed. In Sec. IV we apply Bailyn’s theory to a simple 1
model of single walled,~10,10! armchair carbon nanotubes
Here we derive an expression for the phonon drag in th
systems. In Sec. V we extract a simple formula by makin
low temperature approximation. In Sec. VI we conclude
discussing the limits of our approximations.

II. THERMOPOWER DUE TO ELECTRON DIFFUSION
AND PHONON DRAG

The application of a temperature gradient to a metal le
to the diffusion of charge carriers from the warm to the co
©2002 The American Physical Society05-1
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end of the sample. The thermopower measures the ch
build up across the sample. It is given byS
5 lim

DT→0
DV/DT, whereDV andDT are the potential and

temperature differences across the sample, respectively.
thermopower due to diffusionSdiff can be calculated from th
standard set of transport coefficients. The transport co
cients can in turn be derived from the Boltzmann equat
for the electron distribution function. A general argume
leads to the Mott expression for the thermopower due
diffusion

Sdiff5
2p2

3

kB
2T

ueu S ] ln s

]E D
EF

, ~3!

whereE is the energy,s the electrical conductivity, andEF
the Fermi energy. When there is more than one band pre
the thermopower due to each band adds

Sdiff5

(
l

s lSdiff
l

(
l

s l

, ~4!

wherel is the band index.
We apply the above equations to the case of metallic

bon nanotubes by considering electrons in one dimens
The electronic states fill two overlapping, parabolic ban
the particle and hole bands, up to the Fermi level. With o
one parabolic band we expect the diffusive part of the th
mopower in a metal to vary linearly with temperature. T
factor (] ln s/]E)EF depends on the details of the syste
including the density of states. However, with two ban
present, the thermopower due to states filling the hole b
cancels the contribution from the particle band when
Fermi level lies at the band crossing. Within this approxim
tion we have no net contribution to the thermopower in
metallic tube.

When the Fermi level is allowed to move within the rig
p bands the resulting thermopower is nonzero.3 Recent cal-
culations show that an enhancement in the density of st
due to impurities3,9,10 or tube-tube interactions2,11,12 may
generate large contributions to the thermopower through
term (] ln s/]E)EF . We therefore consider the following stan
dard form for the diffusive contribution to the thermopow
in metals:

Sdiff5AT, ~5!

where the constantA is a fitting parameter which may var
with the Fermi level. Recent experiments on mats of sin
walled, carbon nanotube bundles do indeed show this be
ior at large temperatures (T.200 K).3,13

An anomalous peak in the thermopower appears at
temperatures in several different experiments on sin
walled and multiwalled carbon nanotubes. In standard th
mopower measurements of 3D metals such behavior is o
associated with the phonon drag effect whereby the pho
flux from the hot end of the sample to the cold end dra
20540
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additional charge carriers to the cold end of the sample
momentum transfer. This effect adds to the thermopowe
conventional metals

Stotal5Sdiff1Sdrag. ~6!

Standard, low temperature estimates of the phonon drag
tribution to the thermopower rely on the relation

Sdrag.
2Cvt

3nueu
, ~7!

whereCv is the lattice specific heat,n the carrier density, and
the t is the transfer factor.t is a rough estimate of the prob
ability that a phonon collides with an electron relative to
scattering events. In one dimension the lattice specific he
nearly linear in temperature14,15 and does not provide the
nonlinear temperature dependence required to explain
peak observed in measurements on carbon nanotub16

Moreover, if we consider only intraband scattering, the co
tributions from states filling the electron and hole ban
should cancel to give no net drag.

The above formula for the drag contribution cannot
applied to metallic carbon nanotubes for two reasons. T
derivation of the above formula18 relies on a free, electronic
band structure where transitions lie only within the parabo
bands. It also assumes that the dominant decay mecha
for phonons is electron-phonon scattering. Below we der
a new formula for the low temperature phonon drag con
bution to the thermopower in one dimension. We find a no
zero contribution to the phonon drag part of the thermopow
when we include transitions between two linear bands
assume that the dominant decay mechanism for phonon
not electron-phonon scattering.

III. BAILYN FORMALISM FOR PHONON DRAG

The phonon drag contribution to the thermopower in
metal may be calculated by solving the coupled electr
phonon Boltzmann equations. In this section we briefly
view Bailyn’s formalism for calculating the phonon dra
Following Ref. 19 we write the Boltzmann equation for th
electron distribution function,f, in the relaxation time ap-
proximation. Using first order perturbation theory for th
electron transition probabilities one finds

S ] f

]t D
coll

5 (
kW8,l 8

CkW ,kW8 j„d~2 !dkW8,kW1qW3$2N~qW j ! f ~12 f 8!

1@N~qW j !11# f 8~12 f !%1d~1 !dkW8,kW1qW$2@N~qW j !

11# f ~12 f 8!1N~qW j ! f 8~12 f !%…2~ f 2 f 0!/t~kW !,

~8!

whereN(qW j ) is the phonon distribution function,v5cuqu is
the frequency of a phonon with speedc, f 0 is the Fermi-
Dirac distribution function, andt(kW ) is the relaxation time
due to the electron-electron interaction. We define the ene
delta functions
5-2
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d~6 ![d@E~kW8l 8!2E~kW l !6\v#. ~9!

The factorCkW ,kW8 j is related to the electron-phonon matr
elements

CkW ,kW8 j5
M~qW j !

2\v~qW j !
, ~10!

where M(qW j )[u^kW8l 8u¹W U•eW (qW j )ukW l &u2/MNc is the square
of the matrix element for the scattering of an electron fro
wave vectorkW and bandl to wave vectorkW8 and bandl 8 by
a phonon of wave vectorqW and polarizationj. Here¹W U is the
gradient of the ion potential,Nc the number of cells in the
periodic block,M the ion mass, andeW (qW j ) the phonon polar-
ization vector. The above matrix element ignores Umkla
scattering.20

From the above expression for the electron distribut
function we can read off the necessary terms for the pho
Boltzmann equation. The second and third terms show g
in the phonon distribution. The first and fourth terms sh
losses in the phonon distribution function. This gives

2S ]N~qW j !

]t
D

drift

5S ]N~qW j !

]t
D

coll

5(
kW ,kW8

CkW ,kW8 j„d~2 !dkW8,kW1qW

3$2N~qW j ! f ~12 f 8!1@N~qW j !11# f 8

3~12 f !%2d~1 !dkW8,kW1qW$2@N~qW j !

11# f ~12 f 8!1N~qW j ! f 8~12 f !%…

2@N~qW j !2N0#/t~qW !, ~11!

wheret(qW ) is the phonon relaxation time andN0 is the Bose
distribution. The above two equations for the electron a
phonon distribution functions can be solved using a va
tional procedure. From the relevant transport coefficients
phonon drag contribution to the thermopower can be
tracted. The most general form for which was derived in R
21.

Sdrag5
2ueukB

sd (
qW j

]N0~qW j !

]T (
kW l ;kW8 l 8

a~qW j ;kW l ,kW8l 8!@vW kW ltkW l

2vW kW8 l 8tkW8 l 8#•VW qW j . ~12!

Heres is the electrical conductivity,d the dimensionality of
the system, the two results from a sum over the spin deg
of freedom,vW kW l is the electron group velocity, andVW qW j is the
phonon group velocity. The factora is the relative probabil-
ity that theqW j phonon will scatter an electron from the sta
kW l to the statekW8l 8, relative to all other possible phono
collisions.

Details of the electron-phonon interaction are included
a. Symbolically
20540
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tep

21

( tep
211tp

21
, ~13!

wheretep is the phonon relaxation time due to the electro
phonon interaction andtp is the phonon relaxation time du
to any other interaction. This may include phonon-phon
phonon-boundary, phonon-impurity, or phonon-defect sc
tering. Using the above results for the phonon relaxat
rates Bailyn finds22

a~qW j ;kW l ,kW8l 8!5
I kW l ,kW8 l 8

T

\vtp~qW !

]N0

]T
1 (

kW l ,kW8 l 8
I kW l ,kW8 l 8

, ~14!

where

I kW l ,kW8 l 85
1

2\vkBT
f 0@E~kW l !#$1

2 f 0@E~kW8l 8!#%N0~qW j !M~qW j !d~2 !dkW8,kW1qW .

~15!

Equations~12!, ~14!, and ~15! constitute Bailyn’s theory of
phonon drag in metals. The remainder of this article will
concerned with the application of this formalism to the ca
of metallic carbon nanotubes.

IV. BAILYN FORMALISM APPLIED TO METALLIC
CARBON NANOTUBES

We consider a one-dimensional lattice lying on thez axis
with left and right moving electrons with the band structu
of a ~10,10! armchair carbon nanotube. It is assumed that
electron relaxation time has a weak wave vector depende
for transitions about theK point (2p/3a for lattice spacing
a) so thatt(kW l 12p/3a);t(2p/3a). Our expression for the
phonon drag part of the thermopower then reads

Sdrag5
2ueukBt

s (
q j

]N0~q j !

]T

3 (
kW l ;kW8 l 8

a~q, j ;kW l ,kW8l 8!@vW kW l2vW kW8 l 8#•VW q j . ~16!

We note in passing that ignoring all but electron-phon
scattering reduces the drag to Eq.~1! when we takea
5dkW8,kW1qW .18 The resulting sum overk,k8 becomes\v. We
assert that this limit is not applicable to metallic carb
nanotubes.

To make progress we evaluate Eq.~16! using approxima-
tions valid for metallic carbon nanotubes. In these system
is reasonable to assume that at small wave vectors and e
gies only acoustic phonons scatter electrons and that t
dispersion is linear.23 We then have

VW q j5cjsgn~q!ẑ, ~17!
5-3
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wherecj is the phonon speed in thej th band. The electronic
band structure consists of two nearly linear bands crossin
zero energy, Fig. 1. This approximation holds as long as
Fermi level lies no more than;1 eV from the band cross
ing. Above 1 eV other bands will complicate the spectru
For carrier excitations around the K point we have

E~kl !5 l\vk, ~18!

wherev is the Fermi speed andl 511,21 labels the two
bands. With the linear band approximation the electron gr
velocity is then

vW kl5
1

\

]E~kl !

]k
ẑ5v l ẑ. ~19!

Substituting the electron and phonon velocities into the
pression forSdrag gives

Sdrag5
2ueukBtv

s (
q j

cjsgn~q!
]N0~q j !

]T

3 (
kl;k8 l 8

a~q j ;kl,k8l 8!@ l 2 l 8#. ~20!

Note that the above expression for the phonon drag vani
when only intraband scattering is allowed, i.e.,l 5 l 8. In what
follows we consider only interband scattering,lÞ l 8. Define
the transfer factor to be

t~q![ (
kl;k8 l 8

a~q j ;kl,k8l 8!@ l 2 l 8#, ~21!

wherea is given by Eqs.~14! and ~15!. The drag then has
the simple form

Sdrag5
2ueukBtv

s (
q j

cjsgn~q!
]N0~q j !

]T
t~q!. ~22!

To find t(q) we need to evaluate the followin
expression:

FIG. 1. The linear band model depicting energy along they axis
and wave vector along thex axis. The two bands shown,l 511 and
21, cross at zero energy. The arrows indicate possible interb
transitions from an initial electron statek to a final statek8. The
dashed line indicates the position of the Fermi energy relative to
band crossing point, defined to bem.
20540
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a@ l 2 l 8#52

(
kk8

I k,1;k8,212(
kk8

I k,21;k8,1

T

\vtp~q!

]N0

]T
1 (

kW l ,kW8 l 8
I kW l ,kW8 l 8

. ~23!

To simplify the expression fort(q) we make an assumptio
regarding the available phonon scattering processes. N
that phonons traveling along a single nanotube may sca
through many different mechanisms. The large amount
surface area exposes the phonons to impurities, defects
neighboring tubes. Furthermore, small tube lengt
;10 mm, allow for phonon-boundary scattering. We co
sider here two simple forms for the phonon relaxation tim
valid at low and high temperatures, respectively. At low te
peratures, the phonon decay mechanism is a competition
tween boundary and defect scattering which add no temp
ture dependence to the phonon relaxation time. At h
temperatures, near room temperature, one expects pho
phonon scattering to contribute significantly to phonon d
cay. Anharmonic scattering will require three phonons. T
third being an optical mode at long wavelengths. The sc
tering rate will be proportional to the number of availab
optical phonons. One can then show that the relaxation t
is inversely proportional to temperature, at large tempe
tures. We therefore take the following form for the phon
relaxation time

tp5t0S f

T D m

, ~24!

wheref is a characteristic temperature,m50 for boundary/
defect scattering, andm51 for phonon-phonon scattering
Comparison with experiment will require a more accura
expression fortp .

We now invoke the assumption that mechanisms ot
than electron-phonon scattering limit the phonon lifetim
i.e., tp is small.24 More precisely

T

\vtp~q!

]N0

]T
@ (

kl,k8 l 8
I kl,k8 l 8 . ~25!

The above approximation enters phonon drag studies
quantum wires in GaAs. Analogous results for the phon
drag were also obtained in Ref. 25. The transfer factor
comes

t~q!.
2\vtp~q!

T
]N0

]T

3F (
k,1;k8,21

I k,1;k8,212 (
k,21;k8,1

I k,21;k8,1G .

~26!

To further evaluate the transfer factor we return to the ma
element in Eq.~15!. Working with the deformable ion mode
at low wave vectors (q!qDebye) one finds21

M~q j !5D j~\v j !
2, ~27!

whereD j is a constant depending on the ion mass, the
formation energy, and other tube parameters including
radius and lattice spacing. This constant has been evalu
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e
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for ~10,10! carbon nanotubes.26 The low wave vector ap-
proximation made above has been motivated by meas
ments of the Debye temperature. It has been measured
near 1000 K in metallic carbon nanotubes.17 It will be shown
that, at low temperatures, the temperature dependence o
drag does not depend on the precise form of the matrix
mentsM.

The transfer factor contains two terms of the form

(
k,k8

I kl,k8 l 85
M~q j !

2kBT\v (
k,k8

f 0@E~kl !#

3$12 f 0@E~k8l 8!#%N0~q j !d~2 !dk8,k1q

5
M~q j !

2kBT\v (
k

f 0@E~kl !#

3$12 f 0@E~k1q,l 8!#%N0~q j !

3d@E~k1q,l 8!2E~kl !2\v#, ~28!

where the Fermi-Dirac distribution function isf 0(E)
5@e(E2m)/kBT11#21. The energy delta function in Eq.~28!
needs to be evaluated for two cases. The first case isl 51
and l 8521. We then have

E~k1q,21!2E~k,1!2\v5\@2v~k1q!2vk2cuqu#50.
~29!

This has a solutionka[2(uqu/2)sgn(q)1c/v. The second
case isl 521 andl 851. The solution for this case iskb[
2(uqu/2)sgn(q)2c/v. Upon a change of variables in th
energy delta function of Eq.~28! the sum can be evaluated
The transfer factor now becomes

t~q!5
tp~q!

]N0

]T

S M~q j !

kBT2 D S N0~q j !L

4p\v D3@ f 0~\vka!$1

2 f 0~\vkb!%2 f 0~2\vkb!$12 f 0~2\vka!%#,

~30!

where L is the tube length. Substituting the transfer fac
into our expression for the drag, Eq.~22!, gives

Sdrag5
ueutv

sT2

L

2pkB\v (
q j

cjsgn~q!M~q j !tp~q!N0~q j !

3@ f 0~\vka!$12 f 0~\vkb!%

2 f 0~2\vkb!$12 f 0~2\vka!%#. ~31!

To evaluate the sum overj it is convenient to assume tha
only one linear phonon branch contributes to the th
mopower. The inclusion of other linear modes with appro
mately the same phonon speed will simply add to the ove
constant. Passing to the continuum limit and imposing a
bye cutoffqD one can show that
20540
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Sdrag5
ueutcL2

2p2sT2kB\
E

0

qD
dqM~q!tp~q!N0~q!3@ f 0~\vka!$1

2 f 0~\vkb!%2 f 0~2\vkb!$12 f 0~2\vka!%#. ~32!

To further simplify the drag formula we make a change
variables with the following definitions:

u[
\cq

2kBT S v
c

21D ,

f̄ ~x![
1

e(x2m/kBT)21
,

g[
v1c

v2c
. ~33!

The drag can then be written as

Sdrag.
ueutcL2

p2s\2Tv
E

0

TDv/2cT

du
Mtp

e2uc/v21

3@ f̄ ~2ug!$12 f̄ ~2u!%2 f̄ ~u!$12 f̄ ~ug!%#,

~34!

where the Debye temperature is defined as usualTD
[\cqD /kB . In the above we have used the fact that f
~10,10! arm chair carbon nanotubesc520.353103 m/s23 for
the longitudinal acoustic mode whereasv58.43105 m/s.
This givesv/c;100. Equation~34! is our primary result and
contains several interesting features. First note that whem

50 we havef̄ (2x)512 f̄ (x), in which case the two terms
in the integral cancel giving no contribution to the the
mopower. If we takem.0 then the second term dominate
giving a negative contribution to the thermopower. Similar
if we take m,0 we get a positive contribution to the the
mopower.

The overall sign ofSdrag can be deduced from Fig. 1. Fo
m.0, interband transitions above the crossing point are
vored. Transitions withq.0 yield a positive change in the
electron group velocity which, from Eq.~16!, give an overall
negative sign to the drag. Form,0, interband transitions
below the crossing point are favored which give and ove
positive sign to the drag.

The Debye temperature plays a small role because
kernel of the integral is sharply peaked. As long as the p
upk5m/kBT lies within the range of integration the Deby
temperature can be set to infinity. When the peak crosses
range of integration,m;kBTDv/2c, Sdrag falls to zero. For,
m.kBTDv/2c the set of transitions favored by the electro
distribution require wave vectors above the Debye cut
qD .

Figure 2 shows the temperature dependence ofSdrag. To
evaluate the integral we have taken the deformable
model, Eq.~27!. We have also taken a temperature indep
dent phonon relaxation time,m50 in Eq. ~24!. For large
temperaturesSdrag flattens because we assume here thattp
does not depend on temperature. In real samples it is lik
5-5
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that, for large temperatures, phonon-phonon scattering
impose a temperature dependence to the phonon relax
time. We would then see a change in the drag at large t
peratures. In Fig. 3 we compare the temperature depend
of the drag for the two casesm50 andm51 in Eq. ~24!.
Here we have takenf5100 K, v/c5100, m50.436 eV,
and TD51000 K. A suppression of the drag at large te
peratures clearly induces a peak, similar to those observe
experiments. The low temperature behavior can be extra
with a few approximations.

V. THE LOW-TEMPERATURE LIMIT

A low-temperature approximation to the integral formu
for Sdrag, Eq. ~34!, can be obtained for nonzero values ofm.

FIG. 2. The phonon drag contribution to the thermopower p
ted, in units of the constantB, as a function of temperature. Th
Fermi energy is chosen to bem520.43 eV. The ratio between th
electron and phonon speeds is taken to bev/c5100. The solid line
shows the result from the full formula, Eq.~34! with TD

51000 K. The dashed line shows the simplified approximation,
second term in Eq.~2!. For purposes of comparison, a temperatu
independent phonon relaxation time is assumed,m50 in Eq. ~24!.

FIG. 3. The phonon drag contribution to the thermopower p
ted versus temperature for two different cases. The solid line sh
the drag when a temperature independent phonon scattering m
nism dominates phonon decay,m50 in Eq. ~24!. The dashed line
shows the drag when phonon-phonon scattering dominates,m51.
The Fermi level is chosen to bem520.5 eV. The parameterB is
the same for both curves. We also takev/c5100 andf5100 K.
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For m,0 the second term in the integrand vanishes. We t
have

Sdrag.
ueutcL2

p2s\2Tv
E

0

TDv/2cT

du
Mtp

e2uc/v21

3@ f̄ ~2ug!$12 f̄ ~2u!%#. ~35!

As mentioned earlier the factorf̄ (12 f̄ ) in the integral is a
sharply peaked function centered at the valueupk'm/kBT.
Thus

Sdrag.
ueutcL2

p2s\2Tv

M~2m/\v !tp~2m/\v !

e2upkc/v21

3E
0

TDv/2cT

du@ f̄ ~u!$12 f̄ ~ug!%#. ~36!

The integral can now be performed giving

E
0

TDv/2cT

du@ f̄ ~u!$12 f̄ ~ug!%#511
mc

vkBT
1q~$g21%2!.

~37!

The above argument remains the same for the casem.0
except for an overall sign change. The low-temperature d
contribution to the thermopower becomes the second term
Eq. ~2!, where the temperature independent factorB
[(ueutcL2/p2s\2v)M(2m/\v)t0(2m/\v)fm may be
taken as a fitting parameter. Note that the low-tempera
limit is easily reached becausev/c@1. Figure 2 compares
the above approximation to the full formula given by E
~34!.

Fermi statistics restricts the interband transitions to
near the Fermi level, thereby excluding all but a narro
range of phonon wave vectors. Eq.~2! therefore applies to
systems with any, nonsingularq dependence in the electron
phonon matrix elements. Only the constantB will change
with different forms of electron-phonon coupling.

Fitting Eq. ~2! to measurements ofStotal versus tempera-
ture yields a rough estimate ofm. Figure 4 shows the tota
thermopower for three possible values ofm. Motivated by
experiments on mats of single-walled carbon nanotubes3 we
assume that the parameterA changes sign with the Ferm
level. We have kept the ratiouA/Bu fixed. In experiments we
expect the parametersA and B to have a nontrivial depen
dence onm due to sample dependent variations in the ph
non and electronic density of states.

VI. CONCLUSION

We have shown that within a one dimensional model p
non drag resulting from interband transitions between t
linear bands gives a nonlinear temperature dependence t
thermopower when the Fermi level does not lie at the ba
crossing. Assuming that mechanisms other than the elect
phonon interaction contribute to phonon scattering we de
a simple expression for the phonon drag contribution to
thermoelectric power in a model that approximates para
eters found in single walled~10,10! carbon nanotubes. Th
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strength of the effect depends strongly on the position of
Fermi level.

The above results suggest that the phonon drag effect
good candidate for recent, low-temperature anomalies
thermopower measurements on single-walled carbon n
tubes. We note, however, that, as is typical in theories of

FIG. 4. The total thermopower, Eq.~2!, plotted versus tempera
ture for two values of the Fermi level,m520.5 and 0.5 eV. The
ratio of the two-fitting parameters is taken to beuA/Bu5105. The
top curve has a positive value forA while the bottom curve has a
negative value forA. We also havev/c550, f5100 K, andm
51. The central line is them50 case in Eq.~34!, whereA50. For
m50 transitions above and below the Fermi level cancel to give
net thermopower.
,
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phonon drag effect in conventional metals, the size of
fitting parameter B is difficult to estimate from first
principles.

In applying the above formalism to low-temperatu
peaks in thermopower measurements under different amb
conditions it is important to account for different scatteri
mechanisms. Different scattering mechanisms in nanotu
can exhibit drastically different behavior, in analogy to t
wide variety of phonon drag effects seen in conventio
metals with different alloys. In this work we have assum
that the electron relaxation timet is independent of tempera
ture and thattp goes as 1/Tm. From Fig. 4 we see tha
phonon-phonon scattering induces a peak inStotal. The m
51 case therefore appears be a good approximation for
samples of Ref. 3. Figure 3 also demonstrates that a temp
ture independent scattering mechanism (m50) produces
only a knee inStotal. Weak inflections in the thermopowe
have also been observed in many thermopower meas
ments on carbon nanotubes. Other conditions may favo
decay mechanism which can significantly alter the tempe
ture dependence of the drag thermopower. Detailed comp
son with experiment will require suitable choices for t
temperature dependence of the phonon lifetime.
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