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Correlated spin-flip tunneling in a Fermi lattice gas
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We report the realization of correlated, density-dependent tunneling for fermionic 40K atoms trapped in an
optical lattice. By appropriately tuning the frequency difference between a pair of Raman beams applied to a
spin-polarized gas, simultaneous spin transitions and tunneling events are induced that depend on the relative
occupations of neighboring lattice sites. This correlated spin-flip tunneling (CSFT) is spectroscopically resolved
using gases prepared in opposite spin states, and the inferred Hubbard interaction energy is compared with a
tight-binding prediction. We measure the doublons created by the laser-induced correlated tunneling process using
loss induced by light-assisted collisions. Furthermore, by controllably introducing vacancies to a spin-polarized
gas, we demonstrate that correlated tunneling is suppressed when neighboring lattice sites are unoccupied. We
explain how the CSFT quench implemented here prepares and evolves a large number of resonating-valence-bond
(RVB) singlets in a Hubbard model, thus allowing exploration of RVB dynamics.
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I. INTRODUCTION

Measurements on ultracold atoms trapped in optical lattices
have emerged as a powerful approach to studying quantum
phase transitions and dynamics in strongly correlated systems.
Periodic driving forces and light-induced tunneling combined
with optical lattices have enabled experiments to achieve
physics beyond the minimal Hubbard model (see Ref. [1] for a
recent review). For example, magnetic phase transitions have
been probed [2,3], synthetic gauge fields realized [4–7], and
nontrivial band structures [8] have been created using periodic
driving and external fields in lattices.

In this work, we use applied laser fields to demonstrate and
study the dynamics of correlated tunneling that depends on
density and spin for fermionic atoms. Correlated tunneling,
known in solids as a bond-charge interaction, has been pro-
posed to play a role in high-temperature superconductivity [9]
and lattice stiffening in polyacetylene [10,11]. The influence
of correlated tunneling on transport properties has also been
intensively investigated in quantum dots, where it can be
manipulated by gate voltages and applied electromagnetic
fields [12]. Beyond mimicking these effects in optical lat-
tices, correlated tunneling for ultracold atoms has attracted
theoretical interest for inducing occupation-dependent gauge
fields [13], obtaining novel phases such as holon and doublon
superfluids [14], and realizing anyonic Hubbard models [15].
Thus far, two-body correlated tunneling has been realized in
double wells for bosons [16,17] and fermions [18]. However,
many-body density-dependent tunneling has been directly
observed only for bosonic atoms trapped in optical lattices
[19,20].
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Inspired by the theoretical proposals in Ref. [21], we imple-
ment an experimental approach to generate spin- and density-
dependent tunneling for fermionic atoms. This technique is
fundamentally different from those already used to realize
intersite interactions in two key ways. First, prior approaches
[16–20,22] conserve spin, whereas the spin flips induced via
our method can lead to more exotic physics. Second, the
intersite interaction generated in our work is between fermionic
atoms and spans the entire lattice, which leads to challenging
many-body physics due to the fermion sign problem [23]. Our
method is therefore able to prepare quantum many-body steady
and excited states beyond the scope of previous experiments
and exceeding the capabilities of current unbiased numerical
modeling tools in two and three spatial dimensions. Specif-
ically, we show that CSFT effectively creates singlet pairs
to dynamically build RVB correlations [24,25] in a Hubbard
model. Prior work created RVB singlets in four-site plaquettes
in an optical superlattice [26]. Here we demonstrate a method
to build up RVB correlations in large numbers of singlet pairs,
which can be used to explore the many-body RVB states
proposed by Anderson in the context of lattice models of
high-temperature superconductivity.

To implement spin- and density-dependent tunneling, we
apply a pair of Raman beams to a spin-polarized gas, for which
conventional tunneling is forbidden by the Pauli exclusion
principle. The Raman beams flip the atomic spins and induce
density-dependent tunneling. We spectroscopically resolve
these CSFT events, and the corresponding increase in doubly
occupied sites is measured using loss from light-assisted
collisions. Moreover, by varying the filling fraction in the
lattice, we directly verify the density dependence of spin
transitions.

The paper is organized as follows. In Sec. II we discuss
the experimental setup used to observe CSFT. In Sec. III we
discuss modeling of CSFT in the leading order dynamics. In
Sec. IV we present measurements of spin transfer fraction and
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FIG. 1. Schematic diagram of Raman transitions. A pair of Raman
beams, each detuned approximately 80 GHz from the 4S1/2 →
4P1/2 transition, with frequencies ω1,2 and wave vectors �k1,2 are
applied to drive transitions between the |↑〉 (red) and |↓〉 (blue)
states. The Raman wave-vector difference �δk = �k1 − �k2 lies along
the (−1, −1, 1) direction of the lattice. Selecting between two distinct
processes is achieved by fixing the laser beam frequency ω1 and tuning
ω2. (a) If the frequency difference matches the Zeeman energy (i.e.,
�ω = ω1 − ω2 = ω↑↓), then atoms flip their spin and remain on the
same site. (b) When the laser frequency difference accommodates the
Hubbard interaction energyU (�ω = ω↑↓ − U/h̄), then CSFT occurs
and atoms tunnel to neighboring occupied sites and flip their spin.
For |↓〉 as an initial state, the condition for resonant CSFT changes to
�ω = ω↑↓ + U/h̄.

double occupancy to observe CSFT, and we summarize and
discuss potential improvements to the experiment in Sec. V.

II. EXPERIMENTAL SETUP

These measurements are performed using a degenerate
Fermi gas composed of 40K atoms trapped in a cubic optical
lattice in a regime described by a single-band Fermi-Hubbard
model with tunneling energy t and interaction energy U

(see Appendix A for details of the experimental sequence). We
work in the U/t � 12 regime, for which the ground state of a
spin-mixed trapped gas possesses a Mott-insulator core [27].
Overall confinement is provided by a 1064 nm optical dipole
trap. After cooling the gas in the dipole trap and before slowly
superimposing the lattice, the gas is spin polarized in either the
|F = 9/2,mF = 9/2〉 or |F = 9/2,mF = 7/2〉 state, which
we label |↑〉 and |↓〉. The atom number and confinement are
tuned so that the central density is approximately one atom per
site, with the Fermi energy EF ≈ 7t . A pair of Raman beams
with wave vectors �k1 and �k2 intersecting at approximately 30◦
are focused onto the gas and pulsed to drive spin transitions
(Fig. 1). The frequency difference �ω = ω1 − ω2 between the
Raman beams is tuned near to the |↑〉 → |↓〉 resonance. After
a Raman pulse, the number of atoms in each band and spin
state is measured using band mapping with a magnetic-field
gradient applied during time-of-flight imaging. Atom number
loss and heating induced by the Raman pulse are discussed
in detail in Appendix A. We observe an approximately 20%
atom loss during a (typical) 50 m pulse due to off-resonant
light scattering, which occurs at a relatively high rate because
of the limited tuning range of the Raman laser. Heating from
the Raman pulse is comparable with that from other sources,
and we do not observe atoms excited to higher-energy bands.

The Raman beams can drive two resonant processes depend-
ing on �ω. If �ω is tuned to the energy difference between spin
states (�ω = ω↑↓), then on-site spin rotations occur without
induced tunneling and changes in site occupancies Fig. 1(a).
We define this process as the carrier transition. By tuning
the frequency difference between the beams to include U

(�ω − ω↑↓ = ±U/h̄), density-dependent tunneling is driven
as a sideband to the carrier [Fig. 1(b)]. Other processes, such as
interband transitions, are far off resonant for the experimental
parameters (see Appendix A).

III. CORRELATED SPIN-FLIP TUNNELING

To model the dynamics we consider an initially polarized
band insulator with driven spin-flip tunneling events. Working
in the large U limit, we use perturbation theory to find the
effective Hamiltonian term describing CSFT:

HCSFT =
∑

i,j∈n.n.

Kijni↑(1 − nj↓)c†j↑ci↓ + H.c. (1)

(see Appendix B for derivation). Here, i, j ∈ n.n. denotes a
sum over nearest-neighboring sites and permutations, c†iσ (ciσ )
creates (removes) a particle on site i in spin state σ , and niσ is
the number of particles on site i in state σ .

CSFT arises as a spin-flip transition to a virtual state
offset by U followed by a tunneling event. In contrast to
the conventional tunneling term −tc

†
i cj in the Fermi-Hubbard

model, this laser-induced correlated spin-flip tunneling is
density dependent and accompanied by a spin rotation. CSFT
occurs only when neighboring sites are occupied by atoms in
the same spin state or when a doublon (i.e., a |↑〉–|↓〉 pair) is
next to an empty site. Using a particle-hole transformation, we
show (see Appendix B) that Eq. (1) effectively creates singlets
to build RVB correlations [25].

The CSFT matrix element is complex and tunable. It is given
by (Appendix B)

Kij ≈ t�

2U
(e−i �δk· �Rj − e−i �δk· �Ri ), (2)

where the ratio t/U ≈ 0.04–0.08 is controlled by the lattice
potential depth s, �Ri is the location of site i, and �δk is the Raman
wave-vector difference. For our lattice, | �δk · ( �Ri − �Rj )| =
π/2

√
3 is the same for every lattice direction. The Rabi rate

for the carrier transition |�|/h̄ ≈ 2π×650 Hz is controlled by
the Raman laser intensity and measured via Rabi oscillations
(Appendix B), and therefore |Kij |/h̄ ≈ 2π×6–22 Hz for our
measurements.

Equation (1) is the leading order in a large U expansion
and has been projected into the subspace connected to the
initial spin-polarized |↑〉 state by resonant CSFT. Other terms
can, in principle, contribute to the dynamics. We have verified
that the dynamics of the full tight-binding CSFT model (i.e.,
without the large U approximation) are reproduced by Eq. (1)
by applying the time-evolving block decimation algorithm [28]
to 1D chains (see Appendix B).

The site-dependent Raman phase in Kij that arises from the
Raman wave-vector difference is critical to allow tunneling
to occur. When spin rotations are driven by long-wavelength
radiation or copropagating Raman beams, this phase factor is
absent, and tunneling is prevented. One reason for the absence
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FIG. 2. Spectroscopy of CSFT. (a) The fraction of atoms trans-
ferred between spin states by a 50 m Raman pulse is shown for an
initially |↑〉 (black squares, f↑) and |↓〉 (red circles, f↓) spin-polarized
state at s = 10 ER for varied �ω. For these measurements, N =
25400 ± 3900 atoms were cooled to T/TF = 0.24 ± 0.08 before
turning on the lattice. Each data point is the result from a single
experimental run, and the measurement uncertainty is not visible on
this scale. Nonzero transfer at large detuning is due to off-resonant
spontaneous Raman scattering. (b) The difference f↑ − f↓ for pairs
of points in (a) reveals the CSFT sidebands at approximately ±U .
The black line shows a fit to a sum of two Gaussian functions; the
individual Gaussians are displayed as shaded regions. The peak at
lower (higher) frequency corresponds to CSFT for an initially |↑〉
(|↓〉) spin-polarized state. (c) The interaction energy U inferred from
fits to data such as those shown in (b) for varied s. The error bars
are derived from the fit uncertainty. The dashed line is the value of U

from a standard tight-binding calculation.

of tunneling in this scenario can be understood as destructive
interference between multiple tunneling pathways caused by
the antisymmetrization of the fermionic wave functions (see
Appendix C). This effect is related to the behavior of clock
shifts for fermionic atoms [29–31]. In our case, the Raman
phase factor suppresses the destructive tunneling interference.

IV. OBSERVATION OF CORRELATED
SPIN-FLIP TUNNELING

A. Transfer fraction spectroscopy

We spectroscopically resolve CSFT and distinguish it from
on-site spin rotations by measuring the change in spin fraction
after a 50 m Raman pulse, which is comparable to the CSFT
π time. Sample data are shown in Fig. 2(a) for the fraction
f↓,↑ of atoms transferred between spin states at varied �ω

for s = 10 ER , where ER = h2/8md2 is the recoil energy,
m is the atomic mass, and d ≈ 390 nm is the lattice spacing.
Broadening of the carrier transition, which is consistent with
contributions from magnetic field and Raman phase noise
(see Appendix B), results in a feature that obscures CSFT. To
isolate CSFT, we therefore subtract the data taken at identical
�ω with opposite initial spin configurations. Since the carrier
frequency does not depend on the initial state, the contribution
from the broad carrier feature is canceled out by this procedure.
In contrast, the frequency offset of the CSFT sideband changes
sign with the initial spin configuration and is not removed by
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FIG. 3. Fraction of doubly occupied sites D measured after a
50 m Raman pulse at various detunings for s = 10 ER . The inset
shows sample LAC for (�ω − ω↑↓)/2π = 3.5 kHz fit to a double-
exponential decay with τD = 3.1 ± 0.77 ms and τS = 13.7 ± 2.5 ms.
The vertical error bars in D are derived from fits to similar data
acquired at different �ω, while the horizontal error bars show the
estimated 0.5 kHz uncertainty in the carrier transition from magnetic-
field drift. The solid line in the main panel is the fit from Fig. 2(a) for
|f↑ − f↓| plotted on the same scale as D.

the subtraction. The resulting line shape for f↑ − f↓ shown in
Fig. 2(b) therefore reveals the CSFT sidebands as peaks offset
at approximately ±U/h̄ ≈ ±2π×3.5 kHz from the carrier
transition.

To compare with the predicted sideband frequency, we fit
the f↑ − f↓ line shape to a sum of two Gaussian functions
with independent central frequencies and standard deviations
as free parameters. The interaction energy U determined from
this fit as half of the frequency separation of the peaks is
shown in Fig. 2(c) for data taken at different lattice potential
depths. The inferred U increases less rapidly with s than the
tight-binding prediction, which is shown as a dashed line. A
similar disagreement has been observed in other experiments
[32]. The source of this discrepancy is unresolved and cannot
be explained by renormalization of U by the Raman process,
which is approximately a 1% effect (see Appendix B).

B. Double occupancy spectroscopy

To isolate CSFT from other dynamics, we measure changes
in the doublon number. As doublon formation and decay are
strongly suppressed at high interaction strength in the standard
Hubbard model [33], doublon generation provides a signature
of CSFT dynamics. We probe doublon creation using loss
induced by light-assisted collisions (LAC) [34]. The carrier
frequency ω↑↓ is estimated using a Gaussian fit to Raman
spectroscopy taken using a 0.7 m pulse, which is too short to
drive CSFT. The inset to Fig. 3 shows sample LAC data taken
after a 50 m Raman pulse with (�ω − ω↑↓)/2π = 3.5 kHz,
which corresponds to the +U CSFT sideband. Immediately
following the Raman pulse, the lattice potential depth is rapidly
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increased to 29 ER to arrest further dynamics. We measure
the number of atoms remaining after a laser pulse 50 MHz
detuned from the 4S, F = 9/2 → 5P3/2, F = 11/2 transition
is applied to the gas. Two loss processes are evident as the
duration τ of the resonant laser pulse is changed. The loss on
a fast time scale τD corresponds to LAC removing atoms from
doubly occupied sites, while the decay over a slower time scale
τS results from single atoms ejected from the dipole trap via
spontaneous scattering. These data are fit to a double expo-
nential decay function N (τ ) = NDe−τ/τD + (N − ND )e−τ/τS

with N , ND , τD , and τS as free parameters to determine the
fraction of doubly occupied sites D = ND/N .

Measurements of D as �ω is changed show that a resonance
for doublon creation is centered near the CSFT spectroscopy
sideband peak at (�ω − ω↑↓) ≈ U/h̄ (Fig. 3). The doublon
dynamics near the resonance agree with the rate predicted by
HCSFT (see Fig. 7 in Appendix B) and indicate that D has
reached a steady state. We therefore compare the data with the
fit from Fig. 2(b) to |f↑ − f↓|, which can be interpreted as the
fraction of atoms that flip their spin during CSFT events. The
close agreement between the fit and D implies that each spin
flip is associated with the creation of a doublon.

C. Vacancy dependence of transfer fraction

Finally, we demonstrate the sensitivity of CSFT to site
occupancy by reducing the atom number and controllably
introducing vacancies before a Raman pulse on the CSFT
sideband (see Fig. 4 inset). Our technique involves three steps.
After turning on the lattice to s = 8 ER , atoms are transferred
from a spin-polarized initial state (either |↑〉 or |↓〉, as in
Fig. 2) to the F = 7/2,mF = 7/2 state via adiabatic rapid
passage (ARP) driven by a microwave-frequency magnetic
field. The power of the microwave field (swept across 0.4 MHz
in 0.5 m) is varied to control the probability of a transition
between hyperfine states. The fraction δN of atoms that are
not transferred to F = 7/2 are removed from the lattice with
a 0.5 m pulse of light resonant with the 4S, F =9/2→5P3/2,

F = 11/2 transition. A second ARP sweep (across 0.8 MHz in
1 m) returns all of the atoms shelved in the F = 7/2 manifold
to the initial spin state.

After this procedure, unoccupied sites are randomly
distributed through the spin-polarized atomic density distri-
bution. The presence of holes suppresses CSFT, which can
only occur when adjacent sites are occupied. We probe this
effect by measuring changes in |f↑ − f↓| for a 40 m Raman
pulse with �ω fixed on the ±U peaks of the CSFT sideband
(Fig. 4). Because the doublon population has saturated (see
Fig. 7 in Appendix B), |f↑ − f↓| coincides with the number
of nearest-neighbor pairs. As the number of atoms is reduced
and the hole density increases, |f↑ − f↓| decreases, indicating
that fewer atoms can participate in CSFT. The data shown
in Fig. 4 show good agreement with a prediction of the
probability for adjacent sites to be occupied (see Appendix D).
For this calculation, the density profile is computed using
entropy matching based on s, the overall confinement, and the
measured N and T/TF . The probability of adjacent sites being
occupied is determined by averaging over configurations that
involve randomly removing a fraction δN of atoms from the
simulated density profile.
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FIG. 4. Density dependence of CSFT. The CSFT spectroscopy
signal taken with fixed (�ω − �ω↑↓) ≈ ±U/h̄ is shown for varied
fraction δN of atoms randomly removed from an s = 8 ER lattice
gas. For these data, N = 47 000–81 000, and the gas was cooled to
T/TF ≈ 0.35 before turning on the lattice. Data obtained with the +U

sideband are shown as red circles and those for −U as black squares.
The sideband frequencies were determined using a double-Gaussian
fit to CSFT spectroscopy data, as in Fig. 2(b). The dashed line is a
prediction for the probability to find adjacent sites occupied based on a
calculation of the density profile after the removal procedure. The inset
shows the procedure for controllably introducing vacancies. Atoms
(shown as transparent) that are not shelved in the F = 7/2 state via
microwave transitions are removed using resonant light.

V. CONCLUSION

We have reported an observation of density-dependent tun-
neling in a many-body optical lattice Fermi-Hubbard model.
In the future, the spontaneous scattering rate and associated
heating and loss can be reduced by a factor of 50 (at constant
K) and rendered insignificant by using a laser tuned to an
optimal point between the D1 and D2 transitions, which
for 40K is at 768.67 nm [35]. Furthermore, reducing the
sources of carrier-broadening technical noise by a factor of
3.5 or using a Feshbach resonance to enhance U would
enable the CSFT and carrier transitions to be separately
resolved.

The technique we have developed may be used to directly
prepare and dynamically evolve RVB order or to observe other
exotic states, such as bond-ordered waves, triplet pairing, and
hole superconductivity [21]. The site-dependent phase of the
bond-charge interaction the Raman lasers introduce also leads
to a synthetic gauge field that was not explored in this work.
The unique properties of the occupation-dependent gauge field
created via this method can be used to simulate interacting
relativistic quantum field theories and correlated topological
insulators [21].
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APPENDIX A: EXPERIMENTAL SEQUENCE
AND PARAMETERS

Ultracold gases composed of ground-state 40K atoms in
the |F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 states
are cooled to temperatures below the Fermi temperature TF

in a crossed-beam 1064 nm optical dipole trap using standard
techniques. After evaporative cooling, the optical trap depth is
increased to the same value for all the data presented in this
paper. The resulting dipole trap frequencies are 7.9 ± 0.4 Hz,
98 ± 1 Hz, and 114 ± 2 Hz. A microwave-frequency swept
magnetic field combined with a static magnetic-field gradient
are used to remove all atoms in one hyperfine state, thereby
preparing a spin-polarized gas with a purity of greater than
95% for either spin state. Following spin polarization, we ramp
on the three pairs of lattice beams (λ = 782.2 nm) in 100 ms.
The Raman beams are derived from a cavity-stabilized diode
laser (Vortex II TLB-6900) and are 80 GHz red detuned from
the D1 transition. The frequency and power of each beam are
controlled using an acousto-optic modulator.

A 13 G magnetic field is used to lift the degeneracy of
Zeeman transitions between different mF states. The field
provides a 27 kHz difference between the mF = 9/2 → 7/2
and mF = 7/2 → 5/2 transitions. No significant population
of mF = 5/2 atoms has been observed in our measurements.
The drift in the magnetic field is about 10 mG from day to day
and 3 mG over the course of a two-hour measurement run.

The magnetic field is reduced to 3 G for imaging. The lattice
is ramped down over 100 μs to map band populations onto the
momentum distribution [36], and then the dipole trap is turned
off for time-of-flight expansion. An additional magnetic-field
gradient is applied during time of flight to spatially separate
the two spin components. A Gaussian distribution is used
to fit the images of each spin component and determine the
corresponding atom number.

The minimum band gap (at the band edge) in this work is
31 kHz. For the approximately 10 kHz Raman detunings (from
the carrier transition) we sample, the probability for interband
transitions is therefore negligible. Furthermore, we do not
observe excited band population for any of the measurements
discussed here.

We observe loss of atoms and heating caused by light scat-
tering from the Raman beams. We characterized this process,
which is not fully understood for strongly interacting systems,

using measurements at s = 12 ER . The measured exponential
decay constant for N at s = 12 ER for Raman-induced loss
varied from 130 ± 20 ms to 310 ± 50 ms during the time period
when data were acquired. The weighted average of the mea-
sured lifetime at s = 12 ER was 200 ± 10 ms, which is much
longer than the Raman pulses used in this work. Heating is
more difficult to measure, given that determining temperature
for strongly correlated lattice gases is an outstanding problem.
To estimate the heating rate, we measure the temperature in
the dipole trap after slowly turning off the lattice. Using this
method, we observed a 0.30 ± 0.02 nK/ms heating rate at s =
12 ER . The measured heating rate without a Raman pulse is
0.13 ± 0.01 nK/ms. We conclude that heating from the Raman
pulse is comparable to that from other sources. Furthermore,
these data do not show a strong dependence of the heating
rate on atom number: the temperature of the gas increases
linearly in time, even though the atom number decays (for this
measurement) from approximately 2.8×104 to 1.7×104 over
80 ms. We also note that the light scattering (and heating and
loss rates) could be reduced by a factor of 50 (without changing
the Raman Rabi rate) for 40K atoms by using a different laser
capable of tuning to 768.67 nm [35]. Moreover, using an atom
with a different electronic structure could achieve scattering
rates that are many orders of magnitude smaller.

For comparison to theory, U is determined from the lattice
depth (as measured by lattice spectroscopy) [37] according to

U = 4πh̄2as

m

∫
|ψi (�x)|4d3 �x, (A1)

where as ≈ 174a0 is the free-space scattering length between
the spin states [38], m the atomic mass, and ψi (�x) the Wannier
wave function derived from the tight-binding model. The
uncertainty in U is estimated to be less than 2%, and we sample
U/t = 13–47 in this work.

APPENDIX B: THEORETICAL DESCRIPTION
OF EFFECTIVE CSFT HAMILTONIAN

1. Single-particle Hamiltonian

We first review the Raman-transition Hamiltonian in the
absence of interactions and a lattice. Following the standard
approach, we consider a three-level system and adiabatically
eliminate the intermediate state. This procedure is valid in the
�1,2 � �R and δ � �R limits (to be defined subsequently),
both of which are well satisfied in our experiment.

The level diagram for the three-level atom is shown in Fig. 5.
The Hamiltonian is

H3-lev =

⎛⎜⎜⎝
ω↑↓ 0 �∗

1
2 (e−i( �k1· �R−ω1t ) + c.c.)

0 0 �∗
2

2 (e−i( �k2· �R−ω2t ) + c.c.)
�1
2 (ei( �k1· �R−ω1t ) + c.c.) �2

2 (ei( �k2· �R−ω2t ) + c.c.) ω0

⎞⎟⎟⎠, (B1)

which is written with respect to the {|↑〉, |↓〉, |3〉} basis. Here, �R
is the position of the atom, the laser frequencies satisfy ω1 =
ω0 − �R − δ − ω↑↓ and ω2 = ω0 − �R , and the individual
Rabi rates �1,2 = −e〈3 | �E1,2 · �r |↑,↓〉 depend on the dipole

matrix elements for the atom-light (with electric field �Ei)
interaction.

For the calculations in the main text and discussed in this
document, we use a simplified model in which laser beam 1
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R
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k ,

FIG. 5. Energy levels of three-level atoms with two lasers of
frequencies ω1 and ω2.

only couples |↑〉 and |3〉, and laser beam 2 only couples |↓〉
and |3〉. In the experiment, however, the polarizations of the
Raman beams are such that both ground states are coupled to
the (multilevel) excited state by both beams. The couplings that
we neglect are far from any resonant Raman or single-photon
transition and only lead to ac Stark shifts that can be absorbed
into the definition of the ground spin states.

We make the rotating-wave approximation and a unitary
transformation H ′

3-lev = ei
∫ t

V dt ′H3-leve
−i

∫ t
V dt ′ − V with

V =
⎛⎝ω↑↓ + δ 0 0

0 0 0
0 0 ω0 − �R

⎞⎠, (B2)

which is similar to a transformation to a rotating frame. Pro-
jecting H ′

3-lev onto the subspace {|↑〉, |↓〉}, under the condition
|�1| ≈ |�2| � �R , yields

H2-lev ≈
(

δ �
2 e−i �δk· �R

�∗
2 ei �δk· �R 0

)
, (B3)

for an effective Hamiltonian, where � = −�∗
1�2/2�R and

�δk = �k1 − �k2. This projection is equivalent to adiabatically
eliminating the excited electronic state. These two levels act
as the pseudospin basis used in the main part of the text.

2. Lattice and interaction effects

In the presence of an optical lattice, we project the Hamil-
tonian onto the lowest Bloch band of the lattice. We denote the
Wannier function centered at the site located at �Ri as ψi (�r ) =
ψ (�r − �Ri ) and c

†
iσ as the operator that creates a fermion with

spin σ at that site. The full tight-binding Hamiltonian is

H0 = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.)

+
∑
〈ij〉

(
�

2
e−i �δk· �Ri+ �Rj

2 �ij c
†
i↑cj↓ + i ↔ j + H.c.

)

+
∑

i

(
�

2
�0e

−i �δk· �Ri c
†
i↑ci↓ + �∗

2
�0e

i �δk· �Ri c
†
i↓ci↑

)

+ δ

2

∑
i

(ni↑ − ni↓) + U
∑

i

ni↑ni↓, (B4)

where niσ = c
†
iσ ciσ , �ij = ∫

d�r ψ∗
i ei �δk·( �Ri− �Rj )ψj is a Debye-

Waller factor, �0 = �00, and U is the strength of on-site
interaction. The first term is the ordinary spin-conserving
tunneling term. The second term is a spin-flip tunneling term
akin to spin-orbit coupling in the lattice. The third term is an
on-site spin-flip term, which can be understood as an effective
Zeeman term in the x, y directions. The fourth term is an
effective Zeeman energy. For the experimental parameters
explored in this work, we find �ij ≈ δij . The second term can
therefore be safely ignored.

3. Effective Hamiltonian for δ ≈ U

To derive an effective Hamiltonian for CSFT, we work in
the limit U, δ � t,� and treat the first three terms of H0

as perturbations. We consider the case δ ≈ U and project
the Hilbert space onto the subspace of states that have the
same total Zeeman energy as the initial states. Other states are
separated in energy by at least δ and are projected away. The
virtual transitions involving these states lead to higher-order
(in 1/δ) terms in the effective Hamiltonian of the retained
states. Off-resonant processes that can take the state out of this
subspace (for example, carrier transitions leading to sites occu-
pied by a single spin-down atom) are ignored. This procedure
isolates the CSFT dynamics from other aspects of the system.
As described in the main text, we also experimentally isolate
the CSFT behavior either by studying doublon dynamics or
by performing differential spin measurements that remove the
carrier contribution. This allows a comparison of only the
CSFT portion of the dynamics with theory.

We therefore project our Hamiltonian onto such states
where all sites are either empty or occupied by at least a spin-up
fermion. Let P = ∏

i [1 − ni↓(1 − ni↑)] be the projector onto
this space. Second-order perturbation theory then gives

Heff = P

⎧⎨⎩−t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) − t�0

2

(
1

U
+ 1

δ

) ∑
〈ij〉

[
�∗

2
(ei �δk· �Ri − ei �δk· �Rj )c†i↓cj↑ + i ↔ j + H.c.

]

+
(

δ

2
+ |�|2�2

0

4δ

)∑
i

(ni↑ − ni↓) + U
∑

i

ni↑ni↓ +
∑
〈ij〉

(
�

2
e−i �δk· �Ri+ �Rj

2 �ijc
†
i↑cj↓ + i ↔ j + H.c.

)
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+ 2t2

U

∑
〈ij〉

(c†i↑c
†
i↓cj↓cj↑ + H.c.) + 2t2

U

∑
〈ij〉

[ni↑ni↓(1 − nj↑)(1 − nj↓) + i ↔ j ] + t2

U

∑
〈ij〉,〈ij ′〉,j �=j ′

ni↑c
†
i↓cj ′↓c

†
j↓ci↓

+ t2

U

∑
〈ij〉,〈ij ′〉,j �=j ′

(1 − ni↓)c†j↑ci↑c
†
i↑cj ′↑ − t2

U

∑
〈ij〉,〈ij ′〉,j �=j ′

(c†j↑c
†
j ′↓ci↑ci↓ + H.c.)

⎫⎬⎭P . (B5)

Noting that �ij ≈ 0 for i �= j and further ignoring higher-order interactions, this can be written as

Heff = P

⎡⎣−t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) +
∑
〈ij〉

(Kijc
†
j↑ci↓ + Kjic

†
i↑cj↓ + H.c.) + δ∗

2

∑
i

(ni↑ − ni↓) + U
∑

i

ni↑ni↓

⎤⎦P + O

(
t2

U

)
,

(B6)

where

Kij = −t��0
e−i �δk· �Ri − e−i �δk· �Rj

4

(
1

U
+ 1

δ

)
(B7)

and

δ∗ = δ + |��0|2
2δ

. (B8)

Heff governs the dynamics of fully polarized initial states
discussed in the main text. The first term moves (but does
not create) doublons and holes (e.g., |↑↓,↓〉 → |↓,↑↓〉). The
second term is spin-flip tunneling, which due to the projectors
P is effective only if no sites with spin down are created. We
can therefore rewrite the second term by explicitly inserting the
projectors: Kijni↑(1 − nj↓)c†j↑ci↓ + i ↔ j + H.c.. This term
can create doublon-hole pairs out of the fully polarized initial
state and dominates the dynamics to leading order.

4. Particle-hole transformation and singlet creation

The effective Hamiltonian (B6) can be recast using a
particle-hole transformation into a Hubbard model with singlet
creation. We perform the following canonical transformation
on Eq. (B6):

c
†
i↑ → c̃

†
i↑,

c
†
i↓ → (−1)Pi c̃i↓, (B9)

where, for the bipartite lattices we are considering, (−1)Pi

takes on opposite signs for all pairs of nearest neighbors.
This results in a transformed effective Hamiltonian of the

form

H̃eff = P̃
{

−t
∑
〈ij〉

(c̃†i↑c̃j↑ + c̃
†
i↓c̃j↓ + H.c.)

+
∑
〈ij〉

[(−1)Pi Kij (c̃†i↑c̃
†
j↓ − c̃

†
i↓c̃

†
j↑) + H.c.]

+ δ∗

2

∑
i

(ñi↑ + ñi↓) + U
∑

i

ñi↑(1 − ñi↓)

}
P̃

+O

(
t2

U

)
, (B10)

where P̃ = ∏
i [1 − (1 − ñi↓)(1 − ñi↑)] and ñiσ = c̃

†
iσ c̃iσ . In

this new basis, the initial state of the system is the fully

occupied state, where each site has two fermions. The projector
P̃ now restricts the Hilbert space to have at least one particle
on each site.

Initialized with the fully filled state, the only effective
term in the Hamiltonian [Eq. (B10)] is the second term,
which is of the form (c̃†i↑c̃

†
j↓ − c̃

†
i↓c̃

†
j↑). This operator creates a

singlet on each pair of nearest-neighbor sites. We can therefore
understand the state during the initial stage of the dynamics as a
superposition of states consisting of singlet pairs. We also note
that the second term effectively implements RVB correlations
because the RVB order parameter is 〈c̃†i↑c̃

†
j↓ − c̃

†
i↓c̃

†
j↑〉.

The second term in Eq. (B10) creates singlets in time
evolution when acting on the initial state. To explain this
behavior, we consider a four-site system. The evolution in the
early stage can be schematically understood as follows:

(B11)

where the outlined sites denote singlet pairs, i.e.,

, and δt is an infinitesimally small

time interval such that only the first-order effects of H̃eff are
important. The main dynamics in the early stages of time
evolution are therefore the creation of entangled singlet pairs.
A comparison between the two bases is tabulated in Table I.

5. Estimation of U using the resonance near δ = U

The value of the Hubbard U is estimated experimentally via
CSFT by finding the resonant δ at which doublon creation is
most effective. As discussed in the main text, this procedure
appears to undervalue U compared with the tight-binding pre-
diction from independent measurements of the lattice potential
depth. To understand how higher-order terms in Heff may
explain this discrepancy, we consider a two-site system with
the three states |↑,↑〉, |↑↓, 0〉, |0,↑↓〉 and solve for the value
of δ at which the doublon creation rate is maximized. Writing
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TABLE I. Comparison between the original and the transformed basis. In the representation of states, we have used the notation where

and .

Original basis Transformed basis

Allowed states of each site |↑〉, |↑↓〉, |0〉 |̃↑↓〉, |↑̃〉, |↓̃〉
CSFT term c

†
j↑ci↓ − c

†
i↑cj↓ + H.c. c̃

†
i↑c̃

†
j↓ − c̃

†
i↓c̃

†
j↑ + H.c.

Initial state | ↑ , ↑ , ↑ , ↑ 〉 |↑̃↓, ↑̃↓, ↑̃↓, ↑̃↓〉
Superposition of Superposition of

State after evolution to first order (1 − iH̃effδt )

Heff in this basis,

H
(2)
eff =

⎛⎜⎜⎝
δ + �2

0 |�|2
2δ

K12 −K21

K∗
12 U + 2t2

U
2t2

U

−K∗
21

2t2

U
U + 2t2

U

⎞⎟⎟⎠

= U†

⎛⎜⎝δ + �2
0 |�|2
2δ

√
2K12 0√

2K∗
12 U + 4t2

U
0

0 0 U

⎞⎟⎠U , (B12)

where U transforms the basis to {|↑,↑〉, |↑↓,0〉+|0,↑↓〉√
2

,

|↑↓,0〉−|0,↑↓〉√
2

} and the equality Kij = −Kji has been used. The
first two states have the same energy (and hence doublon
creation is most effective) when

δ ≈ U + 4t2 − |�|2�2
0/2

U
+ 2t2|�|2�2

0

U 3
. (B13)

Here we see that the resonant condition for maximal doublon
creation is not exactly at δ = U , but instead shows higher-
order corrections. These corrections contribute to the deviation
between the measured and predicted U discussed in the main
text. However, the predicted 1% deviation is too small to
explain the observed discrepancy.

6. Validating the CSFT effective Hamiltonian

The effective model Heff is a perturbative result, in compari-
son to the full tight-binding Hamiltonian H0. To test the validity
of the doublon dynamics predicted by Heff , we compare the
time evolution of the doublon population in both models. This
allows us to benchmark the effective Hamiltonian against an
exact numerical simulation.

The dynamics of H0 cannot be solved exactly in large
systems with dimension higher than one. We therefore consider
doublon dynamics in one dimension. We initialize a one-
dimensional infinite system with one spin-up fermion in each
state, and evolve it with infinite time-evolving block decima-
tion (iTEBD) [28]. The evolution of doublon fraction, defined
as D = 〈ni↑ni↓〉/〈ni↑ + ni↓〉, is plotted in Fig. 6(a). The
simulations performed with H0 and Heff are both presented.

Here we see that the effective model captures the quali-
tative features of the full Hamiltonian. The doublon creation
rate at short times is essentially the same for both models.
Furthermore, the long-time steady-state reveals approximately
the same doublon fraction. In both models the time scale of
equilibration is roughly set by h̄/|K〈ij〉| = 14 ms. We therefore
see that the effective CSFT model Heff captures the essential
features of the full tight-binding model H0 in one dimension.

7. CSFT time scale: Theory-experiment comparison

We measure the Rabi rate of the carrier �0|�|/h̄ =
2π×650 Hz using resonant Rabi oscillations. The carrier
frequency ω↑↓ is determined using a fit of the spin transition
probability vs Raman detuning �ω for a 0.7 m pulse, which is
too short to drive CSFT.

0 5 10 15
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0.05

0.10

0.15

0.20

0.25

Time (ms)

D
ou
bl
on
Fr
ac
tio
n

FIG. 6. Evolution of doublon fraction 〈ni↑ni↓〉/〈ni↑ + ni↓〉 from
a numerical simulation with constant �. The solid lines shows the
simulation with the full Hamiltonian H0, while the dashed line shows
that with the effective Hamiltonian Heff derived from second-order
perturbation theory. The states are initialized with one spin-up fermion
on every site, and the parameters are determined by experiment: t/h =
0.25 kHz, U/h = 3.22 kHz, � = 0.1U , and �δk · �d = π/2

√
3, where

�d is a lattice vector.
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FIG. 7. CSFT signal for varied Raman pulse time. The Raman

detuning for these measurements is fixed to the +U CSFT sideband.
The measurements are shown using black circles and a theoretical
simulation is displayed as a red line. The simulation is performed
with � in H0 replaced with �eiφ(t ), where 〈φ(t )2〉 = 8, and the
characteristic time scale of the fluctuations in φ(t ) is 2 ms. The
dynamics has been averaged (indicated by the notation 〈〉) over five
realizations of φ(t ). For these parameters, the carrier Rabi oscillations
are not strongly perturbed.

Measuring the slower rate for CSFT requires a longer time
scale. We eliminate the background contribution from the
broadened carrier feature using the same procedure as for
Fig. 4 in the main text. After locating the carrier frequency
ω↑↓, we perform two measurements with the same Raman
pulse time at �ω = ω↑↓ + U/h̄, but with different initial spin
polarization. The difference between these two measurements
f↑ − f↓ reflects only the CSFT process. Figure 7 shows the
measured CSFT signal for different Raman pulse times at
s = 8 ER lattice depth.

The measured CSFT time scale is approximately a factor
of five larger than that of the numerical simulations shown in
Fig. 6, which use the experimentally determined carrier Rabi
rate. The uncertainty in t and U (which determine Kij and the
CSFT time scale) from measurements of the lattice potential
depth are too small to support this difference.

A potential source of this discrepancy is phase noise
between the Raman laser beams, which translates into
fluctuations in the complex phase of � in Heff . Such noise can
arise from, for example, differential acoustic vibrations of the
optomechanics or fibers in the physically distinct and spatially
separated Raman beam paths or the separate optical power
servos we use for each beam. Phase noise with a nonuniform
frequency spectrum is required to explain the inconsistency
we observe, since the predicted CSFT time dependence shown
in Fig. 6 is constrained by all the experimental parameters,
including the independent measurement of |�| using the
carrier transition. In order to differentially affect the carrier
and CSFT transitions, the phase-noise spectral density must
be frequency dependent.

To explore this, we carry out iTEBD numerical simulations
with a time-dependent � eiφ(t ). The result, plotted as the solid
line in Fig. 7, shows better agreement with the experimental
result. The noise we introduce in this simulation is gener-
ally consistent with experimental sources of phase instability
between the Raman beams. This phase noise may also explain
the broadening of the CSFT peaks evident in Fig. 2 in the
main text. We reserve a detailed discussion of the noise and
comparison with experiment to future work [39].

APPENDIX C: RAMAN PHASE GRADIENT
AND FERMIONIC STATISTICS

As discussed in the main text, the spatially dependent
Raman phase that arises because the Raman beams intersect at
an angle plays a key role in enabling CSFT. We use a two-site,
two-atom toy model to explain how the Raman phase disrupts
destructive interference between multiple tunneling pathways
that is induced by antisymmetrization of the wave function.

Considering a two-site, two-fermion system, there are six
possible configurations, which we label according to the site
and spin occupancy in each well: |↑,↑〉W , |↓,↓〉W , |↑↓, 0〉W ,
|0,↑↓〉W , |↑,↓〉W , and |↓,↑〉W . In this well-specific basis,
|↓,↑〉W means that a |↓〉 atom is in the left well (located at
position �R1) and an |↑〉 atom is in the right well (located at
position �R2), for example.

Using a Slater determinant to explicitly write down properly
symmetrized (un-normalized) two-atom wave functions, we
have

|↑,↑〉W = (|LR〉 − |RL〉) |↑↑〉 , (C1)

|↓,↓〉W = (|LR〉 − |RL〉) |↓↓〉 , (C2)

|↓↑, 0〉W = |LL〉 (|↑↓〉 − |↑↓〉), (C3)

|0,↓↑〉W = |RR〉 (|↑↓〉 − |↑↓〉), (C4)

|↑,↓〉W = (|LR〉 − |RL〉)(|↑↓〉 + |↓↑〉)

+ (|LR〉 + |RL〉)(|↑↓〉 − |↓↑〉), (C5)

|↓,↑〉W = (|LR〉 − |RL〉)(|↑↓〉 + |↓↑〉)

− (|LR〉 + |RL〉)(|↑↓〉 − |↓↑〉), (C6)

where the spatial part of the wave function is written in the
basis of |L〉 and |R〉, which are single-particle states on either
the left or the right well, and the spin component is denoted as
|↑〉 and |↓〉. For example, in this basis, |LR〉 |↑↓〉 means that
atom 1 is in the left well in the |↑〉 state and atom 2 is in the
right well in the |↓〉 state. The key point for this discussion is
that the |↑,↓〉W and |↓,↑〉W states consist of spin singlet and
triplet components. Furthermore, the relative sign between the
spin and triplet components is opposite for these two states.

We focus on resonant CSFT with �ω = U/h̄. An initially
spin-polarized state |↑,↑〉W (as in the experiment) can transi-
tion to a virtual state |↑,↓〉W or |↓,↑〉W via a Raman transition
(see Fig. 8). The amplitude for this process is suppressed
by a factor of 1/U because of the energy mismatch. The
phase of the virtual state depends on which atom undergoes
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FIG. 8. Schematic diagram showing CSFT for a two-site two-
fermion system. CSFT happens as a two-step process via a virtual
state. Two possible channels between the initial state |↑, ↑〉W and
the final state |↑↓, 0〉W + |0, ↑↓〉W happen simultaneously but with
amplitudes carrying opposite signs. The probability to observe a
doublon-hole pair is affected by interference between these channels.

a spin flip, since �δk �= 0. Therefore, the Raman phase enters
as either e

�δk· �R1 or e
�δk· �R2 , where �R1 and �R2 differ by a lattice

vector �d . After the virtual state is formed, tunneling completes
the CSFT process and a doublon is formed. Via tunneling,
the sign difference between Eqs. (C5) and (C6) is converted
into an overall sign difference between the wave functions
for each doublon-formation pathway. This π relative phase
between the wave functions can be computed from the tun-
neling matrix elements 〈↑↓, 0|W t (c†i ci+1 + H.c.) |↑,↓〉W and
〈↑↓, 0|W t (c†i ci+1 + H.c.) |↓,↑〉W .

The transition between the initial state |↑,↑〉W and the
final doublon-hole state happens via these two possible
channels simultaneously. The final state is a superposi-
tion of these two pathways, with a wave function propor-
tional to (e−i �δk· �R1 − e−i �δk· �R2 )(|↑↓, 0〉+ |0,↑↓〉). The proba-
bility to observe a doublon-hole state is thus proportional
to [1−− cos( �δk · �d )]. Without the Raman phase gradient
(i.e., �δk = 0 or �δk · �d = 0), destructive interference prevents
tunneling and doublons will not be formed. Ultimately, this
interference arises from the different signs between the triplet
and singlet components in Eqs. (C5) and (C6)—it is absent for
bosons, for instance.

APPENDIX D: SIMULATION OF CSFT
SENSITIVITY TO VACANCIES

We developed a simple numerical simulation (shown
in Fig. 4 in the main text) to determine the sensitiv-
ity of CSFT to vacancies in the lattice. We compute a
density distribution in the noninteracting limit and deter-
mine the probability that neighboring sites are occupied
as atoms are randomly removed. The density distribu-
tion after turning on the lattice is generated according to
n(rx, ry, rz) = ∫

d3 �q
h3

1
eβ[V (rx ,ry ,rz )+ε(�q )−μ]+1

, where V (rx, ry, rz) is
the total harmonic potential imposed by optical trap and
lattice beams, μ is the chemical potential, β = 1/kBT̃ , ε(�q ) =
2t (3 − cos πqx/qB − cos πqy/qB − cos πqz/qB ) is the lattice
dispersion, qB = h̄π/d, and T̃ is the effective temperature in
the lattice. Both μ and T̃ are solved by matching the entropy
and number of atoms N to the corresponding values in the
dipole trap. Noninteracting thermodynamics (including the
tight-binding lattice dispersion and confining potential) are
solved to relate the entropy to N and T̃ . Each site in the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3
N=0

N=0.3

N=0.7

FIG. 9. Fraction of atoms with nearest neighbors at various
removal fractions δN for N = 61 000 and S/N = 2.89 kB , which
corresponds to kBT̃ = 9.7t and chemical potential μ = 6.4t in the
lattice. The insets at the right show sample occupation profiles (with
one black dot per atom) through a central slice of the gas. The inset at
bottom left schematically illustrates the procedure for counting pairs.

simulated lattice is computed as occupied by a single atom
or empty based on comparing a random number in the interval
[0, 1] to n(rx, ry, rz).

Atoms are randomly removed from the simulated density
profile according to a probability δN , which corresponds to
the average fraction of atoms discarded. The fraction Np of
atoms in adjacent occupied sites remaining after this removal
procedure is counted. As shown in an inset to Fig. 9, atoms are
only counted once if they participate in any nearest-neighbor
pair. Results from this simulation for the fraction of atoms Np

are shown in Fig. 9 for N = 61 000 and entropy per particle
S/N = 2.89kB in the lattice. This curve is plotted in Fig. 4 in
the main text.

4180 4185 4190 4195 4200 4205
0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 10. Measurements of f↑ (black squares) and f↓ (red circles)
for varied Raman detuning �ω taken using the same procedure as for
Fig. 2 in the main text. For these data, δN ≈ 0.57.
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Our simulation includes the Raman-induced atom loss
in δN . For the measurements in Fig. 4 in the main text,
the initial conditions before the controlled removal proce-
dure are N = 80 900 ± 3940 and T/TF = 0.29 ± 0.04, N =
54800 ± 12500 and T/TF = 0.34 ± 0.04, and N = 47200 ±
2810 and T/TF = 0.38 ± 0.08 from high to low δN . After
removal and loss induced by the Raman beams, the atom

number is 59200 ± 2660, 23700 ± 1830, and 10900 ± 5180,
from high to low δN .

The procedure described in the main text for determining
how D depends on δN involves measurements of f↑ and f↓.
We observe that the CSFT spectrum is not altered qualitatively
by changes in N for the range of δN sampled in Fig. 4 in the
main text. Sample data are shown in Fig. 10 for δN ≈ 0.57.
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