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Interesting non-Abelian states, e.g., the Moore-Read Pfaffian and the anti-Pfaffian, offer candidate
descriptions of the ν ¼ 5=2 fractional quantum Hall state. But, the significant controversy surrounding the
nature of the ν ¼ 5=2 state has been hampered by the fact that the competition between these and other states
is affected by small parameter changes. To study the phase diagram of the ν ¼ 5=2 state, we numerically
diagonalize a comprehensive effective Hamiltonian describing the fractional quantum Hall effect of electrons
under realistic conditions in GaAs semiconductors. The effective Hamiltonian takes Landau-level mixing into
account to lowest order perturbatively in κ, the ratio of the Coulomb energy scale to the cyclotron gap. We
also incorporate the nonzero width w of the quantum-well and subband mixing. We find the ground state in
both the torus and spherical geometries as a function of κ and w. To sort out the nontrivial competition
between candidate ground states, we analyze the following four criteria: its overlap with trial wave functions,
the magnitude of energy gaps, the sign of the expectation value of an order parameter for particle-hole
symmetry breaking, and the entanglement spectrum. We conclude that the ground state is in the universality
class of the Moore-Read Pfaffian state, rather than the anti-Pfaffian, for κ < κcðwÞ, where κcðwÞ is a
w-dependent critical value 0.6≲ κcðwÞ≲ 1. We observe that both Landau-level mixing and nonzero width
suppress the excitation gap, but Landau-level mixing has a larger effect in this regard. Our findings have
important implications for the identification of non-Abelian fractional quantum Hall states.
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I. INTRODUCTION

The ν ¼ 5=2 fractional quantum Hall state is well
established: It has a robust energy gap and has been observed
in a large number of different GaAs samples [1–23], yet its
underlying quantum order remains mysterious. Although
there is strong evidence that the ground state is spin polarized
[24] with a fractional quasiparticle effective charge of e=4
[11,13,25,26], there are some experiments that remain
difficult to interpret in this light [27,28]. Perhaps the most
interesting hypothesized property of this state—non-Abelian
quasiparticle braiding [29–36]—is controversial. There are
experiments consistent with non-Abelian quasiparticles
[25,37–39] but also some experiments that are not [40,41].

Theoretical guidance can play an important role in
identifying the state. Exact-diagonalization [42–49] and
density-matrix renormalization-group [50,51] studies of
simplified model Hamiltonians show that non-Abelian
states, such as the Moore-Read (MR) Pfaffian state [52]
and the anti-Pfaffian (aPf) state [53,54], are viable ground
states, but transitions to other ground states can occur as
a result of small changes in Hamiltonian parameters
[43–45,48]. Since the details of the Hamiltonian matter
(unlike in the case of states in the lowest Landau level,
such as the ν ¼ 1=3 state), it is important to analyze
Hamiltonians that model realistic experimentally relevant
systems and include effects such as Landau-level mixing
and the finite width of the quantum well. Moreover,
only a particle-hole symmetry-breaking effect, such as
Landau-level mixing, can split the degeneracy between
the MR Pfaffian and aPf states [55,56].
The exact-diagonalization study of Ref. [48] found the

ground state for the half filled N ¼ 1 Landau level for
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systems with up to NΦ ¼ 2Ne − S ¼ 33 magnetic flux
quanta in the spherical geometry using an effective
Hamiltonian [57] that included Landau-level mixing with
virtual excitations to the N ¼ 0 and N > 1 Landau levels
integrated out perturbatively to lowest order in

κ ¼
�
e2

ϵl0

�
=ℏωc ∝ 1=

ffiffiffiffi
B

p
: ð1Þ

(l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length, ϵ is the dielectric

constant of the host semiconductor, ωc ¼ eB=mc is the
cyclotron frequency, and S is a topological quantum number
called the shift [58].) The ground state at the MR Pfaffian
shift of S ¼ 3 was found to have larger overlap with the MR
Pfaffian wave function than the ground state at the aPf shift
of S ¼ −1 had with the aPf wave function, indicating,
naively, that the ground state was in the MR Pfaffian
universality class. Two caveats are that (1) Ref. [48] used
two-body pseudopotentials [57] with a subtle normal-
ordering error that was corrected later [59–61] and (2) these
results only took account of the finite width of the quantum
well via a scaling of the pseudopotentials. Meanwhile, an
exact-diagonalization study [47] of a truncated Hamiltonian
for a few Landau levels found larger overlap with the aPf
wave function on the torus. (Similar ideas were used in
Ref. [62].) Reference [47] used a truncated Hamiltonian
approximation in hopes that it would capture the correct
physics at intermediate values of κ, even though it is
uncontrolled; i.e., it is not exact in any limit, unlike the
Hamiltonians of Refs. [57,59–61], which are exact in the
κ → 0 limit. Moreover, the overlap between a ground state
and a trial wave function may reflect short-distance non-
universal details of that particular trial wave function, rather
than its universality class. Indeed, such an overlap vanishes
in the thermodynamic limit.
In this paper, we solve an effective Hamiltonian that

incorporates both Landau-level mixing and finite quantum-
well width. We then analyze the resulting ground states
and low-lying excited states by several criteria. We begin
by describing our effective Hamiltonian and providing a
qualitative picture in Secs. II and III. In Sec. IV, we
compute the overlaps in the spherical geometry between
the ground states at S ¼ 3 and S ¼ −1 with, respectively,
the MR Pfaffian and the aPf wave functions, and on the
torus using the hexagonal unit cell where the MR Pfaffian
and aPf occur at the same flux and are orthogonal for
an odd number of electrons. We corroborate our overlap
findings in Sec. V by calculating the entanglement spec-
trum. In Sec. VI, we compare the energy gaps in the
spherical geometry at S ¼ 3 and S ¼ −1 and provide
estimates of the excitation gaps in the thermodynamic
limit that take into account Landau-level mixing and finite
width. In Sec. VII, we introduce an operator that is odd under
a particle-hole transformation and, therefore, can be used as
an order parameter distinguishing between the MR Pfaffian

and aPf states. We compute this order parameter in the
ground state of our Hamiltonian on the torus and sphere.
According to all of these criteria, our central finding is that
there is a κcðwÞ such that the ground state for 0 < κ < κcðwÞ
is in the universality class of the MR Pfaffian. We find that
κcð0Þ ≈ 0.6, monotonically increasing to κcð4l0Þ ≈ 1.
A phase transition occurs at κ ¼ κcðwÞ, identified by the

collapse of both the energy gap and the overlap with the
MR Pfaffian wave function, as well as a sharp peak in
the bipartite entanglement entropy. For w < 1.5l0, there
appears to be a second phase transition at slightly larger κ.
The intermediate phase between the two transitions may be
a different fractional quantum Hall state, such as the aPf or
a strong pairing phase [63], but the gap is too small for us to
say anything definitive at these system sizes. We culminate
our findings in a phase diagram.

II. EFFECTIVE HAMILTONIAN

We diagonalize an effective Hamiltonian for spin-
polarized electrons confined to the N ¼ 1 Landau level
that incorporates the effects of Landau-level mixing and
finite width. Finite width causes a “softening” of the
Coulomb interaction at short distances, and the Coulomb
interaction can now cause virtual electron excitations to
higher subbands of the quantum well in addition to higher
Landau levels. Hence, we take Landau-level and subband
mixing into account perturbatively to lowest order in κ
through the terms that are generated by virtual excitations
of electrons to the N ¼ 2; 3;… Landau levels and higher
quantum-well subbands or of holes to the N ¼ 0 Landau
level. As noted in Ref. [59], virtual excitations into all
unoccupied Landau levels are taken into account in this
perturbative scheme producing a controlled model that is
exact in the κ → 0 limit. Our model is in contrast to
Landau-level-mixing models that work in an expanded,
yet truncated, Hilbert space that are uncontrolled and not
exact in any limit [47,64,65]. Our effective Hamiltonian
has the form

Hðw=l0; κ; N ¼ 1Þ ¼
X
m

Vð2Þ
m ðw=l0; κÞ

X
i<j

P̂ijðmÞ

þ
X
m

Vð3Þ
m ðw=l0; κÞ

X
i<j<k

P̂ijkðmÞ;

ð2Þ

where P̂ijðmÞ and P̂ijkðmÞ are projection operators that
project, respectively, the pair i; j or triplet i; j; k of electrons

onto states of relative angular momentum m. Vð2Þ
m ðw=l0; κÞ

and Vð3Þ
m ðw=l0; κÞ are the two- and three-body effective

pseudopotentials [66,67], with dependence on the well
width w=l0 and Landau-level-mixing parameter κ denoted
explicitly. In addition to the numerical renormalization of
the two-body interaction, particle-hole symmetry-breaking
three-body terms are produced [68]. For our calculations,
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we use the corrections to the two-body pseudopotentials
and the three-body pseudopotentials that can be found
in Tables I and II and Figs. 4–8 of Ref. [59] (see also

Ref. [69]). We only take into account the lowest Vð3Þ
m for

m ≤ 8. Our results indicate that including higher three-
body pseudopotentials has no effect on our conclusions,
which is discussed in more detail in Appendix D.
In our calculations on the sphere, Ne electrons are placed

on a spherical surface of radius
ffiffiffiffiffiffiffiffiffiffiffiffi
NΦ=2

p
with a radial

magnetic field produced by a magnetic monopole of
strength NΦ=2 at the center. (NΦ=2 is an integer or half-
integer by Dirac’s quantization condition.) The total angu-
lar momentum L is a good quantum number, and any
fractional quantum Hall state will be uniform and incom-
pressible with L ¼ 0 [66,70]. For half filling, we have
NΦ ¼ 2Ne − S; the filling factor in the N ¼ 1 Landau level
is given by ν ¼ limNe→∞Ne=NΦ. As noted above, the MR
Pfaffian has S ¼ 3 while the aPf has S ¼ −1, which can be
seen by particle-hole transforming the MR Pfaffian.
We model finite width using both an infinite square

well and Gaussian single-particle wave functions in the
z direction, perpendicular to the two-dimensional electron
gas. We find that results for these two models are very
similar and can be converted one into the other, as we
discuss further in Appendix A. Thus, we show only results
for an infinite square well.
We note that whilewework in the spherical geometry, we

utilize planar geometry pseudopotentials. It has been argued
that planar geometry pseudopotentials more accurately
represent the thermodynamic limit [45]. Furthermore, we
extrapolate several of our results to the thermodynamic
limit and find that the choice of pseudopotentials is not
crucial (see Appendix D).
We also consider the torus geometry. The torus is a two-

dimensional plane with periodic boundary conditions with
pseudomomentum K in a Brillouin zone that can be either
rectangular or hexagonal. On the torus, there is no shift,
and NΦ ¼ 2Ne, which makes a direct comparison between
MR Pfaffian and aPf states more straightforward.

III. QUALITATIVE PICTURE

There is very strong evidence that the ground state of
Eq. (2) is in the MR or aPf universality class for κ ¼ 0 and
that finite thickness increases the stability of this ground
state [42–45]. This conclusion is true using the torus or
spherical geometry. A remaining question, and the one we
answer here, is what happens under the influence of a
particle-hole symmetry-breaking effect like Landau-level
mixing; i.e., is the ground state in the MR or aPf
universality class or neither universality class?
On the torus, at κ ¼ 0, the ground state is doubly

degenerate in the thermodynamic limit (over and above
the sixfold topological degeneracy on the torus). One of
these states is in the MR Pfaffian universality class, and the

other is in the aPf universality class; their degeneracy is
guaranteed by particle-hole symmetry. On the sphere, the
former occurs at S ¼ 3 and the latter at S ¼ −1. As κ is
increased, the two-body terms are modified and three-body
terms are generated. The former cannot break the symmetry
between the MR and aPf states since they preserve particle-
hole symmetry.
To understand the effect of the latter qualitatively, we

consider their effect to lowest order in perturbation theory;

i.e., we compute the expectation value of H3body ¼P
m Vð3Þ

m ðw=l0; κÞ
P

i<j<k P̂ijkðmÞ in the two ground states
on the sphere. As may be seen from Fig. 1, the energy of the
S ¼ 3 state (MR) is lowered more than that of the S ¼ −1
state (aPf).
The preceding calculation is done at NΦ ¼ 33. To check

whether this conclusion is likely to hold in the thermody-
namic limit, we repeat it for different system sizes and
consider the extrapolation toNe ¼ ∞. In Fig. 2, we plot the
expectation value per particle of the three-body terms of
Hðw=l0 ¼ 0; κ ¼ 0.1; 1Þ given in Eq. (2) evaluated in the
Coulomb ground state for systems with NΦ ¼ 13 to
NΦ ¼ 37. A linear fit in the inverse number of particles
or holes provides an estimate for the thermodynamic limit.
We observe that the energy at S ¼ 3 is lowered more than
at S ¼ −1 for all available system sizes as well as in the
thermodynamic limit. The result in the thermodynamic
limit is in agreement with our conclusions drawn in the
previous paragraph and in Fig. 1. Thus, from this result, we
expect the MR state to be the ground state for small κ.
We verify this expectation by exact diagonalization in the
sections that follow.
The manner in which the three-body terms favor the

MR state is subtle. The lowest angular-momentum term

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

κ

ψ
G

S | 
H

3b
od

y | 
ψ

G
S

 (
e

2 /ε
0)

NΦ=33, w/
0
=0

S=3
S=−1

FIG. 1. Expectation value of the three-body terms in the
Hamiltonian hΨGSjH3bodyjΨGSi in the S ¼ 3 (MR) and
S ¼ −1 (aPf) ground states obtained at κ ¼ 0 and w=l0 ¼ 0 in
the system with NΦ ¼ 33 in the spherical geometry. Here, H3body

is the second term in Eq. (2) and introduces κ dependence. H3body

is the lowest-order perturbative contribution to the energies of
these states. The energy of the S ¼ 3 (MR) state is lowered more.
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Vð3Þ
3 ðw=l0; κÞ has a vanishing expectation value in the MR

trial wave function and a small but negative expectation
value in the aPf trial wave function, and, therefore, one
might expect the aPf state to have lower energy if

Vð3Þ
3 ðw=l0; κÞ dominates over higher angular momenta.

However, as may be seen from the top panel of Fig. 3, the

energy contributions of the Vð3Þ
m ðw=l0; κÞ for m ¼ 5 and 6

are generally larger and will dominate. (We have chosen
w=l0 ¼ 0 and κ ¼ 0.2 for illustrative purposes.) Of course,
the MR wave function has a vanishing expectation value

of Vð3Þ
3 ðw=l0; κÞ since this operator completely annihilates

the wave function; i.e., the MR wave function is the
zero-energy ground state of

P
i<j<k P̂ijkð3Þ from which

Vð3Þ
3 ðw=l0; κÞ is constructed. The aPf wave function has a

nearly zero expectation value of Vð3Þ
3 ðw=l0; κÞ because at

S ¼ −1 we can particle-hole transform Vð3Þ
3 ðw=l0; κÞ to

give a three-body operator that exactly annihilates the aPf
wave function but also produces two-, one-, and zero-body

terms. Thus, Vð3Þ
m ðw=l0; κÞ for m > 3 terms will largely

determine which state has lower energy. Moreover, the
above expectation remains when we use the actual
Coulomb ground state, again for w=l0 ¼ 0 and κ ¼ 0.2,
rather than the trial wave functions. Then, we find that the

energy difference due to Vð3Þ
3 ðw=l0; κÞ becomes negligible

and the relative importance of the higher angular momenta
is enhanced, as may be seen in the bottom panel of Fig. 3.
Hence, the effect of the three-body terms due to Landau-
level mixing and finite width cannot be simply modeled by
considering only the lowest three-body relative angular-
momentum (m ¼ 3) term—the need for higher order
angular momenta is similar to how the effect of finite
width alone cannot be completely understood by simply

looking at the ratio of the m ¼ 1 and m ¼ 3 Haldane

pseudopotentials [45].

IV. WAVE-FUNCTION OVERLAP

According to the argument of the previous section, the
ground state is in the MR universality class for small κ.
We now corroborate the arguments of the previous section
using wave-function overlap.
The MR wave function takes the following form on the

sphere:

ΨMR ¼ Pf

�
1

uivj − viuj

�Y
i>j

ðuivj − viujÞ2; ð3Þ

where ðui; viÞ ¼ ðe−iϕi=2 cos θi; eiϕi=2 sin θiÞ are the spheri-
cal coordinates of the ith particle. Here, Pf denotes the
Pfaffian, i.e., the square root of the determinant of an
antisymmetric matrix. On the torus, this wave function
takes the form
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FIG. 3. Top panel: Expectation value of the three-body terms in
the MR and aPf trial wave functions as a function of angular
momentum m, i.e., hΨtrialjH3bodyðmÞjΨtriali where H3bodyðmÞ ¼
Vð3Þ
m ðw=l0; κÞ

P
i<j<k P̂ijkðmÞ, and Ψtrial ¼ ΨMR or ΨaPf. Bottom

panel: Expectation value of the three-body terms for the S ¼ 3
and S ¼ −1 ideal Coulomb ground states as a function of angular
momentum m.
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FIG. 2. The expectation value of the three-body terms in the
Hamiltonian hΨGSjH3bodyjΨGSi per particle at various system
sizes. hΨGSjH3bodyjΨGSi is the leading contribution to the energy
difference between these states computed perturbatively in κ.
Np is the number of electrons for S ¼ 3 and number of holes for
S ¼ −1. The energy difference between the extrapolated values

is 0.00018e2=ϵl0 ¼ 0.12κjVð3Þ
3 j.
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ΨMR ¼ Pf

�
ϑaðzi − zjÞ
ϑ1ðzi − zjÞ

�Y
i>j

½ϑ1ðzi − zjÞ�2Φc:m:

�X
i

zi

�
:

ð4Þ
Here, ϑ1ðzÞ and ϑaðzÞ, a ¼ 2; 3; 4, are the Jacobi theta
functions and Φc:m:ð

P
i ziÞ is the center-of-mass wave

function. zi is a complex planar coordinate of the ith
particle. The aPf wave functions on the sphere and torus are
obtained by taking the particle-hole conjugates of these
wave functions.
Figure 4 shows the numerical wave-function overlaps

between the ground state at S ¼ 3 and S ¼ −1 forNΦ ¼ 33
and, respectively, the MR and aPf wave functions on the
sphere as a function of κ for w=l0 ¼ 0; 1; 2, and 3. An
overlap of unity or 0 means the exact ground state of
Eq. (2) is either identical to or completely different from the
trial MR or aPf wave function. We remind readers that an
overlap is not a universal quantity of a ground state that can
be extrapolated to the thermodynamic limit since, unless it is
unity for allNe, it will vanish as the number of particles goes
to infinity. The overlap between the ground state of Eq. (2)
and both theMR and aPf wave functions is reasonably large
for small κ and drops dramatically at larger κ, falling to 0
somewhere in the range 0.7–1.0, with larger κ occurring
for larger widths. Importantly, the overlap with theMR state
is consistently larger. Although not shown here, smaller
system results are consistent with the NΦ ¼ 33 results. The
larger overlap is an indication that the ground state is likely
to be in the same universality class as the MR state for small
κ. But, as we cautioned above, it is possible that the aPf’s
smaller overlaps are merely expressing the fact that

nonuniversal short-distance physics is not well captured
by this wave function.
On the torus, the MR and aPf states occur at precisely the

same flux. With a rectangular unit cell, theMR and aPf states
are threefold degenerate (after factoring out the twofold
center-of-mass degeneracy) with each zero-energy state
existing at K ¼ ð0; N0=2Þ; ðN0=2; 0Þ, and ðN0=2; N0=2Þ,
where N0 is the greatest common divisor of Ne and NΦ. Kx
and Ky are in units of 2πℏ=a and 2πℏ=b, where b=a is the
aspect ratio of the rectangular unit cell. Generically, in this
geometry, the MR and aPf are not orthogonal, rendering
ambiguous the use of overlaps. However, in the hexagonal
unit cell containing an odd number of electrons, the MR
and aPf states are orthogonal and both have K ¼ ð0; 0Þ. At
κ ¼ 0, the Coulomb ground state is a doublet at K ¼ ð0; 0Þ
(provided Ne ≠ 6nþ 1) and we find that for nonzero κ, this
doublet is split in such a way that each member has a
nonzero overlap with either the MR or aPf state, as described
by Papić et al. [64]. The lowest-lying state has nonzero
overlap only with the MR state.
The top panel of Fig. 5 shows the overlap between theMR

state and the ground state for the hexagonal unit cell as a
function of κ andw=l0 forNe ¼ 15. The overlap is relatively
large, dropping to 0 at a critical κ in the range 0.6–1, with
larger values occurring for larger widths. Meanwhile, on
the torus, the first excited state has a similarly large
overlap with the aPf wave function, essentially mirroring
the overlap between the ground state and the MR wave
function. The overall shape of the overlap is very similar to
that on the sphere, shown in the bottom panel of Fig. 5,
further corroborating previous results, and, as we show
below, these conclusions are supported by criteria that do
not depend on any particular trial wave functions.
Our results for S ¼ −1 on the sphere and for the first

excited state on the torus are a bit surprising. If the ground
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FIG. 4. Energy gap (energy difference between the two lowest
states) and model wave-function overlap (NΦ ¼ 33 system) at the
MR Pfaffian (Ne ¼ 18) and aPf (Ne ¼ 16) shifts. Note that for
small κ, both the gap and overlaps are higher for the MR Pfaffian
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FIG. 5. The overlap between the ground state and the MR wave
function as a function of κ, for w=l0 ¼ 0; 1; 2; 3, and 4. w=l0 ¼ 0
is the leftmost curve, andw=l0 ¼ 4 is the rightmost. The top panel
is on the torus for Ne ¼ 15 and the hexagonal unit cell, with the
bottom panel for the sphere with Nϕ ¼ 29 with S ¼ 3 (Ne ¼ 16).
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state at S ¼ 3 is firmly in theMR universality class, then the
ground state at S ¼ −1 should have eight quasiholes on the
S ¼ 3 ground state. Instead, it has high overlap with the aPf
state. Similarly, the first excited state on the torus should
look like an exciton on the MR ground state, but, instead, it
has high overlapwith the aPf ground state. If the ground state
is in the universality class of the MR state, then the energy
gap to a state with high overlap with the aPf should be
extensive in system size. What we observe can thus only
happen in small systems. For larger system sizes, theS ¼ −1
ground state on the sphere and the first excited state on the
torus must look, respectively, like the S ¼ 3 ground state on
the sphere or the torus with excitations on top. It is possible,
in principle, to correctly identify the ground state in the
thermodynamic limit without correctly identifying the
precise ordering of excited states. The latter can change
without the gap closing. That appears to bewhat is occurring
in our case. The finite-size extrapolation shown in Figs. 2
and 17 shows that the corrections that we include favor the
MR Pfaffian ground state. (Similarly, the exciton gap shows
scaling with system size.) However, the first excited state
does not scale as simplywith system size. The lack of simple
scaling is presumably an indication that there are level
crossings among the excited states that occur on the way to
the thermodynamic limit, and these prevent us from cor-
rectly identifying the precise ordering of the excited states.
Such a scenario must occur in the present case since the anti-
Pfaffian state cannot be the first excited state at large Ne.
While we have not shown that a change in the order of the
excited states for large system sizes occurs in our model,
we see no evidence for gap closure as Ne is increased,
supporting our identification of the correct ground state.

V. ENTANGLEMENT SPECTRUM

We have called the S ¼ 3 and S ¼ −1 ground states the
MR state and the aPf state, respectively, due to their large
overlaps with the corresponding trial wave functions
[Eq. (3), and its particle-hole conjugate]. However, the
overlap with trial wave functions is not universal and
vanishes in the thermodynamic limit. Therefore, we now
identify these states by a universal criterion, the entangle-
ment spectrum.
In the spherical geometry, we divide the system in two

pieces A and B [71–75] and obtain the reduced density
matrix for one-half by tracing out the degrees of freedom of
the remaining half. The eigenvalues ρn of the density matrix
are interpreted as energies ρn ≡ e−ξn=2 [76]. If we make a
cut in orbital space, then the entanglement spectrum for a
state in the MR universality class should have negative
slope for the entanglement energies as a function of the z
component of the angular momentum LA

z in sector A, for
example, as discussed in Ref. [76].
A state in the MR Pfaffian universality class displays

the following structure in the entanglement spectrum: The
spectrum is essentially divided into two pieces by a “gap”

with the low-lying states corresponding to the conformal
field theory describing the MR edge states. Starting from the
“root” configuration of the MR states, one can define
ΔLA

z ¼ ðLA
z Þroot − LA

z , where ðLA
z Þroot is the z component

of angular momentum of the root configuration; see
Ref. [76]. The slope of the “energy” spectra, i.e., whether
ΔLA

z is positive or negative as a function ofLA
z , expresses the

chirality of the edge modes of the conformal field theory.
In our convention, a state in the MR universality class has
an entanglement spectrum with a negative slope. Thus, the
entanglement spectrum for a state in the aPf universality
class has a positive slope corresponding to edge modes with
opposite chirality.
Figure 6 shows that the entanglement spectrum at S ¼ 3

for κ ¼ 0.1 and w=l0 ¼ 1 has negative slope, similar to that
of the entanglement spectrum for theMR trial wave function;
see Eq. (3). Meanwhile, the entanglement spectrum at
S ¼ −1 has positive slope, similar to that of the aPf trial
wave function [the particle-hole conjugate of Eq. (3)]. We
therefore find that both the entanglement spectrum and
overlaps allow us to identify the S ¼ 3 and S ¼ −1 ground
states as the MR state and the aPf state, respectively. The
phase transition at κ ≈ 0.6–1.0 is also observed in the entan-
glement spectra, as shown in Fig. 7 and discussed further in
Sec. VIII. As κ increases, the structure of the low-lying states
first changes chirality and then changes completely and no
longer resembles the MR or aPf entanglement spectra.
We adopt the definition of the “topological gap” for the

Pfaffian-like phase introduced in Ref. [76] with ΔLA
z ¼ 0,

thus defining it as the difference between the single universal
level at LA

z ¼ 64 and the lowest generic level at the same LA
z

(see Fig. 7). In addition, we track the difference between the
lowest two levels at LA

z ¼ 56, which is the symmetry point
between the MR Pfaffian and aPf spectra (see the top panel
of Fig. 6) and also appears to be the lowest LA

z “universal”
level after the first phase transition (κ ≈ 0.66).
In Fig. 8, we show the topological gap in the Pfaffian-like

phase for different widths along with the LA
z ¼ 56 gap at

w=l0 ¼ 0. We observe that the topological gap remains
relatively robust to the variations of finite thickness and
Landau-level-mixing strength for small κ. For each width,
there exists a critical value of κ that can be approximately
inferred from theMRPfaffian overlap, where the topological
gap vanishes. We see that the LA

z ¼ 56 gap displays a
sharp jump simultaneous with the vanishing of the MR
Pfaffian topological gap at w ¼ 0. The vanishing of the
topological gap may indicate a topological phase transition
where the new state is also topological but has opposite
chirality. We further discuss this state in Sec. VIII. With
increasingLandau-level-mixing strength, theLA

z ¼ 56 gap is
suppressed until a different phase appears around κ ¼ 0.73.
We also study the dependence of the MR Pfaffian

topological gap on the system size for NΦ up to 29 (not
shown). System-size dependence is similar to the one
presented in Ref. [76] with the smaller systems developing
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large finite-size effects for higher κ. Reasonable extrapo-
lation to the thermodynamic limit is therefore only possible
for κ ≤ 0.45, where we see that the extrapolated topological
gap remains finite and relatively robust to the variation of
the Landau-level-mixing strength.
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FIG. 7. Entanglement spectrum for NΦ ¼ 29 at κ ¼ 0.2, 0.53,
0.66, and 0.73. The entanglement spectra at κ ¼ 0.2 and 0.53 are
shown in blue to emphasize their consistency with a ground
state in the universality class of the MR Pfaffian. At κ ¼ 0.66,
we show the entanglement spectra between the two entangle-
ment entropy peaks in the lower panel of Fig. 13. It is colored
red to indicate that its low-lying level structure has some
similarity to states in the aPf universality class, although the
entanglement gap is too small to allow for any definitive
statements. At κ ¼ 0.73, the entanglement spectrum completely
changes to that of the unknown phase to the right of the second
entanglement entropy peak in Fig. 13. We also indicate the
definition of the “topological gap” for κ ¼ 0.2, 0.53, and 0.66 as
described in the text.
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VI. ENERGY GAPS

We now turn to the energy gap and show that the gap
collapses as κ is increased, mirroring the collapse of the
wave-function overlap, thereby justifying the claim that the
latter signals the onset of a phase transition. There are
several different energy gaps in a fractional quantum Hall
system, with different experimental manifestations. The
simplest gap, which we will simply call the “energy gap,” is
the difference in energy between the two lowest eigenval-
ues of the Hamiltonian, for a fixed particle number. This
gap must become small (i.e., vanishing in the thermody-
namic limit) at a phase transition. Hence, it is the appro-
priate quantity to compute when looking for a phase
transition. However, the energy gap may not be relevant
to transport experiments, which are insensitive to the gap to
neutral excitations. The transport gap is typically deduced
in one of two ways, which we discuss in Appendix B.
For reasons that are explained there, we primarily use the
so-called “exciton gap” to estimate the transport gap.
As shown in Fig. 15 in Appendix B, the various different
ways of computing the transport gap are broadly consistent,
although there are quantitative differences. In Appendix B,
we also establish the connection to previous important
work [77] that estimated the transport gap in the spherical
geometry with S ¼ 3 including finite thickness but neglect-
ing Landau-level mixing.
The dependence of the energy gap on κ andw=l0 is shown

in Fig. 4. The gaps at S ¼ 3 and S ¼ −1 both decrease
monotonically with κ and collapse to 0 at approximately
the same value of κ, coinciding with the vanishing of the
overlaps. (κ ∼ 0.7–1.0, depending on the width, with larger
widths corresponding to larger critical κ’s.) The energy gap
behavior supports the conclusion that the decrease of the
overlap signals the approach to a phase transition, rather
than just a failure of the trial wave functions.
Moreover, the energy gap is larger at S ¼ 3 than at

S ¼ −1 for most Landau-level-mixing strengths. If the true
ground state of the system were at S ¼ 3, then we would
expect that, in the thermodynamic limit, there would be no
gap at S ¼ −1 since the lowest energy state at shift −1
would be a state with eight charge-e=4 quasiholes, leading
to gapless excitations. The reduction of the gap at S ¼ −1
relative to the gap at S ¼ 3 is consistent with the above
scenario, but the fact that it is not 0 indicates that we may
not be seeing the asymptotic behavior of the system. For
instance, while the aPf ground state must have higher
energy than the MR ground state (assuming that the latter is
the ground state) by an extensive energy difference, it may
still have lower energy than the MR state with eight
quasiholes at these system sizes. There are numerical
indications that the size of the quasiholes is on the order
of many magnetic lengths. Therefore, they may strongly
overlap at these system sizes, thereby leading to a finite gap
for finite-size systems [78]. Hence, the extrapolation to the
thermodynamic limit might be a much more delicate

procedure then previously appreciated and, in fact, could
point to a potential reason for the long-noticed discrepancy
between calculated energy gaps and experimentally mea-
sured gaps [2–10,12,14–23].
To provide qualitative guidance to the experiment and to

connect to the previous gap estimates in the literature, we
show in Fig. 9 our estimates of the exciton gap extrapolated
to the infinite system size. Our results show that Landau-
level mixing and finite thickness have a nontrivial interplay
in the secondLandau level. Landau-levelmixing reduces the
energy gaps more significantly than finite thickness alone.
But, we find that both effects, taken together, produce a
further reduction. Our results are in direct contrast to what
has been found in the lowest Landau levels [79,80] where
both effects were not found to be additive.
Our results show that Landau-level mixing lowers

energy gaps, thereby bringing theoretical estimates closer
to experimental measurements [2–10,12,14–23] of the
transport gap. Furthermore, the strong suppression of the
gap as a function of the Landau-level-mixing strength that
we observe is in good qualitative agreement with the
experimental findings presented in Fig. 4 of Ref. [81].
There, four different experiments are analyzed following
the idea originally suggested in Ref. [82], and a similar
trend for the dependence of the intrinsic (disorder-
corrected) gap on the κ parameter is found. Based on
the experimental evidence, the authors come to the con-
clusion that “the ν ¼ 5=2 fractional quantum Hall state
should not develop for κ > κth.” The suggested absence of a
fractional quantum Hall state is in agreement with our
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findings that gaps and trial wave-function overlaps vanish
beyond some critical Landau-level-mixing strength that we
cannot predict precisely due to the fact that our effective
Hamiltonian is, strictly speaking, only valid for small κ.
In Appendix A, we demonstrate that the width of an

infinitely deep quantum well w provides a reasonable para-
metrization for the finite-width effect. In order to compare
with the experiment, one should find the variance of the
electron wave function in the direction perpendicular to the
two-dimensional electron gas in the specific heterostructure
(for instance, by means of a coupled Schrödinger-Poisson
solver in 1D). Infinite quantum-well width w leading to
the same variance should be taken. Note that the width w is
given in Fig. 9 in units of magnetic length and therefore
depends on the magnetic field since l0 ≈ 25 nm=

ffiffiffiffiffiffiffiffiffi
B½T�p

,
where B½T� is the magnetic field in Tesla.

VII. PARTICLE-HOLE SYMMETRY-BREAKING
ORDER PARAMETER

States in the MR and aPf universality classes cannot be
invariant under particle-hole symmetry. Indeed, under a
particle-hole transformation, a state in the MR universality
class is transformed into a state in the aPf universality class
[53,54]. Thus, if we consider an operator ϕ that is odd under
a particle-hole transformation, then hϕi≡ hΨtrialjϕjΨtriali
must have one sign in any state in the MR universality class
and the opposite sign in any state in the aPf universality
class, assuming that hϕi vanishes only in states that are
symmetric under particle-hole symmetry (i.e., excluding,
through a judicious choice of ϕ, the possibility that hϕi
vanishes “accidentally”). We choose the order parameter to
be built from the operator that is conjugate to the variable κ
that controls the particle-hole symmetry breaking. This

operator is H3body ¼
P

m Vð3Þ
m ðw=l0; κÞ

P
i<j<k P̂ijkðmÞ.

Note that κ can be pulled out of this expression completely
since H3body is linear in κ; hence, we can write

H3body ¼ κH0
3body ¼ κ

P
mV

ð3Þ
m ðw=l0; 1Þ

P
i<j<k P̂ijkðmÞ.

The order parameter is then taken to be

ϕ≡ 1

2
ðH0

3body −H0
3bodyÞ; ð5Þ

where the overline denotes particle-hole conjugation.
To demonstrate this definition, let us consider a model

that interpolates adiabatically between the pure Coulomb
Hamiltonian and the Hamiltonians whose ground states
are in the MR and aPf universality classes. That is,
ð1 − αÞHð0; 0; 1Þ þ αH3 or ð1−αÞHð0;0;1ÞþαH3, where
H3 ≡P

i<j<k P̂ijkðm ¼ 3Þ is the Hamiltonian that gener-
ates the MR wave function as an exact zero-energy ground
state and H3 is its particle-hole conjugate and generates
the aPf wave function. For this model, we take the order
parameter to be ðH3 −H3Þ=2 since H3 is the operator that
breaks the particle-hole symmetry by increasing the

variable α. The expectation value of this operator has sign
hΨMRjϕjΨMRi < 0 and hΨaPf jϕjΨaPfi > 0, and changes
sign in the expected manner, as shown in Appendix C.
Therefore, we expect the above definition of ϕ [Eq. (5) for
the Landau-level-mixing Hamiltonian] will show similar
behavior and hϕi will be negative (positive) for an
eigenstate in the MR (aPf) universality class.
We first examine this operator in the system in which it is

most straightforward. Recall that on the torus the MR and
aPf states occur at the same flux. Here, hϕi is particularly
useful in determining the universality class of the ground
state of Eq. (2). The expectation of ϕ in the ground state is
the most important quantity, but we will focus on the lowest
and first excited eigenstates on the torus with a hexagonal
unit cell containing an odd number of electrons as a
function of κ for w=l0 ¼ 0. In Fig. 10, we show the
expectation value of ϕ in the ground and first excited states
forNΦ ¼ 18, 22, and 30. These results clearly show that the
ground state breaks particle-hole symmetry in the same
way as the MR state and hϕi < 0. Moreover, the expect-
ation value of ϕ in the first excited states is positive and,
therefore, breaks particle-hole symmetry in the same way
as the aPf state.
In Fig. 10, it is observed that hϕi ≠ 0 for κ ¼ 0. The

hexagonal unit cell has an exact degeneracy for κ ¼ 0 for
an odd number of electrons in the unit cell, as discussed
above in Sec. IV. At κ ¼ 0, there is a basis in which one of
the degenerate states has positive hϕi and the other state has
a negative value. This basis evolves smoothly into the
κ > 0 eigenstates. However, we could just as easily take the
symmetric and antisymmetric combinations of these two
degenerate states, and these combinations would respect
the particle-hole symmetry and have vanishing hϕi. For an
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FIG. 10. The expectation value of a particle-hole-antisymmetric
order parameter ϕ for the ground state and first excited state of
Eq. (2) on the torus using the hexagonal unit cell forNΦ ¼ 18, 22,
and 30 as a function of κ for w=l0 ¼ 0. The ground state is
consistent with the MR state and has hϕi < 0 (filled symbols),
while the first excited state is consistent with the aPf state with
hϕi > 0 (open symbols).
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even number of electrons per unit cell, where the degen-
eracy is not exact at κ ¼ 0, the energy splitting between the
symmetric and antisymmetric combinations is nonzero due
to tunneling in a finite-sized system, and the ground state at
κ ¼ 0 is the symmetric combination, with hϕi ¼ 0.
Next, we consider hϕi in the spherical geometry. Here,

we fix NΦ ¼ 2Ne − 1 to be the particle-hole-symmetric
point since the shift S explicitly breaks particle-hole
symmetry and we want to observe this symmetry breaking
due to Landau-level-mixing effects. Figure 11 shows the
order parameter for the ground state atNΦ ¼ 13, 15, 17, 19,
and 21 for various w=l0 as a function of κ. Here, the order
parameter vanishes for κ ¼ 0 and increasing κ drives the
system into the MR universality class and hϕi becomes
more negative for increasing κ.
Finally, we investigate the lowest few energy eigenstates

of Eq. (2) in the torus geometry using the hexagonal unit
cell for Ne odd in Fig. 12. States with negative (positive)
order parameter are indicated by a filled (open) symbol.
The first excited state has hϕi > 0, but the rest have
hϕi < 0. Thus, although the second, third, fourth, and fifth
excited states look like an exciton on the MR ground state,
in that they have a negative expectation value of the order
parameter and therefore belong in the MR universality
class, the first excited state does not. It, instead, looks like

the aPf state which is consistent with conclusions from the
overlaps but can only occur in small systems.

VIII. ENTANGLEMENT PROPERTIES
AND PHASE DIAGRAM

From the preceding calculations, we have seen the
following concomitant behaviors: a sharp drop in the
energy gap, a corresponding drop in the overlap between
the ground state and the MR wave function, and a negative
expectation value of a particle-hole symmetry-breaking
order parameter. The energy gap vanishes at the phase
transition to a competing phase.
This phase-transition point can also be identified by

computing the bipartite entanglement entropy, which is the
von Neumann entropy of the reduced density matrix
[71–75], discussed in Sec. V. Figure 13 shows that the
resulting entanglement entropy displays two nearby peaks
as a function of κ (only a single peak for w=l0 > 1.5).
The position of the two peaks coincides with the vanishing
of the overlap, which, in turn, coincides with the vanishing
of the energy gap, as per Fig. 4. These peaks in the
entanglement entropy indicate phase transitions [83].
In the bottom panel of Fig. 13, we see that there are two

distinct peaks in the entanglement entropy at w=l0 ¼ 0,
while in the top panel, we see that the two peaks
are barely distinguishable at w=l0 ¼ 1. Intriguingly, the
ground state has higher overlap with the aPf wave function
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in the intermediate phase between the two entanglement
entropy peaks although both overlaps are quite small. We
speculate about the cause for the higher overlap with the
aPF in Sec. IX.
It is instructive to discuss the nature of all the phases

mentioned in relation with the corresponding entanglement
spectra for w=l0 ¼ 0 shown in Fig. 7. Comparing the
spectra at κ ¼ 0.2 and κ ¼ 0.53 in Fig. 7 (upper and lower
left panels), we observe that, with increasing Landau-level-
mixing strength, the universal part of the entanglement
spectrum gets absorbed by the “generic” spectrum above it,
which leads to a decrease of the “topological gap” [76] as
shown in Fig. 8.
Between the two peaks of entanglement entropy, at

approximately κ ¼ 0.66, the low-lying levels of the spec-
trum have positive slope (upper right panel of Fig. 7). The
positive slope indicates that in this phase, there exists an
edge mode propagating in the direction opposite to the MR
Pfaffian edge. However, both the energy gap and entangle-
ment gap are quite small, so to say anything definitive about
this state would require much larger system sizes (compared
towhat is currently available using exact diagonalization). In
the phase diagram shown in Fig. 14, this state is located
between the two black lines indicating the entropy peaks.
The entanglement spectrum for stronger Landau-level

mixing has a completely different nature, as shown in the

bottom right panel of Fig. 7. We defer the discussion of this
regime to later work.
Finally, we discuss an approximate quantum phase

diagram (QPD) for the fractional quantum Hall effect at
ν ¼ 5=2 in Fig. 14. The QPD is determined with two
distinct measures: energy gap and entanglement entropy.
The energy gap depicted is for the largest system with
NΦ ¼ 33 while the entanglement entropy is for NΦ ¼ 29.
Figure 14 shows a contour plot of the energy gap for S ¼ 3,
as functions of κ and w=l0. We also indicate the position of
the first peak in the entanglement entropy (black circles),
clearly showing that it occurs where the energy gap
becomes very small for Ne ¼ 18 (presumably indicating
that it vanishes in the thermodynamic limit). The results
presented in Fig. 14 are in agreement with overlaps with the
MR state as well. This QPD can serve as a guide for
experimental searches for the robust fractional quantum
Hall effect at ν ¼ 5=2 and is the first approximate QPD
calculated at ν ¼ 5=2 including both Landau-level mixing
and finite width.

IX. CONCLUSIONS

Our results demonstrate that the ν ¼ 5=2 state for
small nonzero κ and 0 ≤ w=l0 ≤ 4 is in the universality
class of the Moore-Read Pfaffian state. In the small-κ limit,
our approximations are controlled: We use the correct
Hamiltonian to OðκÞ, and all corrections to our Hamiltonian
are of higher order in κ and, therefore, can be neglected for
sufficiently small κ. Our results are in qualitative agreement
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with the results of Ref. [48]. We reached our conclusion by
computing several properties of the ground state. They all
validate the use of overlaps in this case. Our results are in
disagreement with the results of Ref. [47], which found a
ground state in the aPf universality class.
Finite-size effects might be a potential source of error in

our study. One source of finite size errors may arise from
the fact that we are using, in a finite system, pseudopo-
tentials that were originally derived for the infinite system.
The use of infinite system size pseudopotentials should
make no difference for sufficiently large systems and,
therefore, in the thermodynamic limit. However, it can
affect our ability to make an extrapolation from small
systems to the thermodynamic limit. Hence, we have
checked the perturbative contribution to the energy differ-
ence using size-dependent spherical pseudopotentials in
Appendix D; our results are qualitatively unchanged.
Finally, the phase that emerges at κ just larger than the

gap closing is an interesting open problem. The energy gap
and the entanglement gap are too small for us to say
anything reliable at present. However, the overlap with the
aPf is larger than the overlap with the MR state and the
entanglement spectrum is consistent with a counterpropa-
gating edge mode, so it is possible that the aPf state occurs
in this narrow window, albeit with much smaller energy gap
(possibly more in line with experimental gap values). In this
context, we note that the experiment of Bid et al. [84] found
evidence for a counterpropagating neutral mode in a
ν ¼ 5=2 state at B ≈ 5T (κ ≈ 1.12), consistent with the anti-
Pfaffian state, which supports the scenario that a different
5=2 state occurs at larger κ and that this state is the anti-
Pfaffian. Another possibility is a strong pairing phase [63].
Note that small κ corresponds to relatively high magnetic

fields; e.g., κ ¼ 0.5 is a magnetic field of 25 T for GaAs
samples. The range of magnetic fields and quantum-well
widths over which there is a ν ¼ 5=2 state in both experi-
ments and our numerics is the range 6 T ≤ B ≤ 12 T and
w=l0 ∼ 2–4. For B≲ 6 T, we do not find a quantum Hall
state at 5=2 even though experiments see a 5=2 plateau all
the way down to B ∼ 1–2 T [12,21]. There are two distinct
possible explanations for this discrepancy between our
results and experiments.
One is that our effective Hamiltonian is simply not

quantitatively correct for κ ≳ 1, and including higher-order
corrections in κ would shift the phase transition to lower
magnetic fields. While we do not know the precise
Landau-level-mixing strength κ beyond which our effective
Hamiltonian is no longer valid, the large-κ discrepancy
between our results and experiments indicates that higher-
order corrections become important in the vicinity of
κ ¼ 0.6. Nevertheless, we choose to also present the results
of our model at higher κ since they may still correctly
capture the trends in the κ dependence and since they will
be useful guidance and motivation for the future studies
attempting to incorporate higher-order corrections and

thus understand the nature of the incompressible state at
low fields. Additionally, we note that for widths beyond
w=l0 ≳ 5, real experimental systems are often better
described as two-component systems.
The other possibility is that some of the experimental

observations at low fields are spin-unpolarized states—a
possibility that we have ignored in this work since we
have assumed that the system is fully spin polarized.
Although there exist experimental studies [85] that dem-
onstrate the spin-polarized nature of the 5=2 state for a
certain magnetic field and finite width, these studies do
not exclude the possibility that there exists a spin-
unpolarized incompressible region of the phase diagram
that has not been probed by NMR. It is an open question
as to the effect of Landau-level mixing and finite width
have on the spin polarization and whether the ground
state, if unpolarized, is or is not in the universality class of
the MR Pfaffian or aPf phase. These questions will have
to await future studies.
Our results demonstrating the strong suppression of

the gap by Landau-level mixing are in good qualitative
agreement with the experimental observations [81] and
should in turn motivate the experimental community
searching for a non-Abelian phase to explore higher
magnetic fields where a more stable 5=2 state in the
MR Pfaffian universality class is predicted by our
model.
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APPENDIX A: MODELS FOR NONZERO WIDTH

We include nonzero width of the two-dimensional
electron system using two approaches. In the first approach,
we, for κ ≠ 0, assume that the electrons are confined to an
infinitely deep square quantum well in the z direction so
that the z dependence of the wave function for the nth
subband is ϕnðzÞ¼

ffiffiffiffiffiffiffiffiffi
2=w

p
sin½ðnþ1Þπz=w� with z ∈ ½0; w�

and subband energy ϵn ¼ ðnþ 1Þ2π2ℏ2=ð2mzw2Þ. Here,
mz is the effective electron mass in the quantum well
(see Ref. [59] for details).
In the second approach, we choose an alternative

Gaussian model to demonstrate that the above choice of
the finite thickness model does not change our results
qualitatively or quantitatively. We fix κ ¼ 0 and take
the z dependence to have a Gaussian form ϕðzÞ ¼
ðσ22πÞ−1=4e−z2=4σ2 . (This wave function is the solution
of a parabolic potential, but since we use it only for κ ¼ 0,
we do not consider any subband-mixing effects.)
Figure 15 shows that the energy gaps (extrapolated to the

thermodynamic limit) are very similar for both models of
nonzero width. To compare each model at a similar width,
we consider each energy gap as a function of the variance
of the wave functions var ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i − hzi2

p
; that is,

var ¼ σ=l0 for the Gaussian wave function and var ¼
0.180756ðw=l0Þ for the infinite square-well wave function.

APPENDIX B: EXCITON AND
QUASIPARTICLE-QUASIHOLE GAPS

To estimate the gap on the sphere in the thermodynamic
limit, we generally follow Ref. [77]. We take energy
differences and perform a linear (in 1=Ne) extrapolation
to infinite system sizes after we convert the energy differ-
ence by using the magnetic length in the infinite system
[77]. We calculate energy difference (and therefore the gap)
in two distinct ways.

(i) The exciton gap is the energy difference between the
ground and the lowest excited state with total
angular momentum L ¼ Ne=2 or L ¼ Ne=2–1 for
Ne=2 even or odd, respectively. This excited state
contains a quasiparticle and quasihole, maximally
separated on the sphere [77]. The quasiparticle and
quasihole are assumed to have charges ∓e=4 and
to be separated by the diameter of the sphere
2

ffiffiffiffiffiffi
Ne

p
l0, so we subtract the energy of the

quasiparticle-quasihole ideal Coulomb attraction
− 1

32
ð1= ffiffiffiffiffiffi

Ne
p Þ. [This energy contribution is

Aq¼1=4ðν ¼ 1=2Þ in Ref. [77].] This exciton gap is
calculated for Ne ¼ 8; 10; 14; 16; 18. (Ne ¼ 12 is
aliased with a composite fermion state at ν ¼ 3=5
and is ambiguous [70].) Note that the background
energy does not enter into this definition of the gap
since its contribution explicitly cancels.

(ii) Alternatively, one can compare the ground-state
energy at NΦ to the ground-state energies with
one additional or fewer flux quantum. The states
with an additional or missing flux quantum are states
with two quasiholes or two quasiparticles, respec-
tively. While more subtle than in the case of the
exciton gap, the background energies cancel again.
The resulting gap, sometimes called the quasiparti-
cle-quasihole (qp-qh) gap [77], is calculated for
Ne ¼ 10, 14, and 18. Other system sizes are aliased
(see Table 3 in Ref. [77]).

Although we present both gap calculations, we consider the
exciton gap a more reliable gap estimate in the thermody-
namic limit due to the less severe aliasing problem. Only
estimates using the exciton gap are used in the main text.
In Fig. 15, we illustrate the differences between the

various ways of calculating the thermodynamic limit of the
energy gap. The gap is roughly the same for an infinite
square-well potential as it is for a Gaussian z dependence
(once they are taken such that the wave-function variance is
the same) and for spherical and planar pseudopotentials.
However, there are some quantitative differences: (i) If one
extrapolates based on larger system sizes, the width
dependence of the qp-qh gap is less pronounced and can
only account for a 13% decrease of the gap compared to
28%; (ii) although in agreement qualitatively, using planar
pseudopotentials instead of spherical ones tends to give
higher gap estimates; and (iii) the exciton gap is larger than
the qp-qh gap.
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APPENDIX C: PARTICLE-HOLE
SYMMETRY-BREAKING ORDER

PARAMETER FOR AN ILLUSTRATIVE
MODEL HAMILTONIAN

In Sec. VII, we introduced an order parameter [Eq. (5)] for
particle-hole symmetry breaking. We now show that this
order parameter has negative expectation value in the MR
trial wave function and positive expectation value in the
aPf trial wave function. Figure 16 shows hϕi for the ground
state of ð1 − αÞHð0; 0; 1Þ þ αH3 and the ground state of
ð1 − αÞHð0; 0; 1Þ þ αH3. Here, H3 ≡P

i<j<k P̂ijkðm ¼ 3Þ
and H3 is the particle-hole conjugate of H3. As may be seen
from the α → 1 behavior in Fig. 16, when the ground state is
in the MR universality class, hϕi < 0 and when it is the
aPf wave function, hϕi > 0. Moreover, the order parameter
interpolates smoothly between 0 and these values, as α is
increased from 0.
These calculations are performed on the sphere and on

the torus for comparison. For the spherical geometry, hϕi is
calculated at NΦ ¼ 2Ne − 1, which is the particle-hole-
symmetric value of the shift on the sphere. Thus, at α ¼ 0,
there is no particle-hole symmetry breaking due to finite-
size effects. At NΦ ¼ 2Ne − 1, the ground state of H3 is
not the MR wave function but the MR wave function with
four MR quasiholes, and the ground state of H3 is the aPf
wave function with four aPf quasiparticles. On the torus,
we use the rectangular unit cell and show the results for
the corner of the Brillouin zone for Ne ¼ 8 electrons, i.e,
K ¼ ðN0=2; N0=2Þ. The other K points corresponding
to the MR state display similar behavior. Note in the

rectangular cell, we find hϕi ¼ 0 for α ¼ 0, while in the
hexagonal unit cell, for an even number of electrons, this is
not the case.

APPENDIX D: FINITE-SIZE EFFECTS, PLANAR
AND SPHERICAL PSEUDOPOTENTIALS,

AND m > 8 PSEUDOPOTENTIALS

In our model Hamiltonian, we use planar pseudopoten-
tials. Although spherical pseudopotentials approach planar
ones in sufficiently large systems, our use of planar
pseudopotentials can be a source of systematic error in
small spherical systems. In this section, we analyze the
differences between spherical pseudopotentials and the
planar ones used in the results reported in Sec. III. We
also perform an extrapolation in system size to ensure our
conclusions hold in the thermodynamic limit. We restrict
our discussion here to small κ, which is the limit in which
our Hamiltonian is exact on the plane.
To consider the effect of planar versus spherical pseu-

dopotentials in Eq. (2), we compute the spherical pseudo-
potentials using a program kindly provided by Steve
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Simon, which was also used in Ref. [61]. We obtain the
spherical three-body pseudopotentials for each of our
relevant system sizes along with the three-body pseudo-
potentials carefully extrapolated to infinite size. For our
biggest systems, the pseudopotentials could not be calcu-
lated directly and we use the values obtained from
extrapolation in 1=NΦ. The pseudopotential dependence
on 1=NΦ we find is somewhat softer than presented in
Ref. [61] but has a clear linear dependence; hence, using the
extrapolated values is justified. The code used [61] only
gives us the differences of the pseudopotentials (e.g.,
V5 − V3). A constant shift of the three-body pseudopoten-
tials does not influence the many-body state. We choose

this shift so that the finite-size spherical Vð3Þ
3 is equal to the

extrapolated planar Vð3Þ
3 .

In Fig. 17, we display the lowest-order perturbative (per
particle) energy contributions of the three-body terms of
Hðw=l0 ¼ 0; κ ¼ 0.1; 1Þ given in Eq. (2) using spherical
pseudopotentials, rather than the planar pseudopotentials
used in Fig. 2. The top panel of Fig. 17 uses the
pseudopotentials obtained by extrapolating the spherical

pseudopotentials to the thermodynamic limit. In principle,
the result should be precisely the same as in Fig. 2, but there
are small differences since the extrapolation from these
system sizes does not give precisely the planar values. The
lower panel, in turn, shows the same expectation values
with spherical pseudopotentials used at each system size.
Three-body contributions are again evaluated in the
Coulomb ground state in both cases. The results are
qualitatively consistent with those obtained using planar
pseudopotentials: The energy is lowered more at S ¼ 3
than at S ¼ −1 for each individual system size as well as
in the thermodynamic limit.
Finally, we estimate the importance of higher three-body

pseudopotentials, not included in our effective Hamiltonian.
While Vð3Þ

m with m ≤ 8 are scalar, most of the higher
pseudopotentials are matrices. This fact complicates their
inclusion in exact-diagonalization calculations, and we
have not yet incorporated the matrix pseudopotentials.

Reference [60] gives the value of Vð3Þ
9 . To obtain a

rough qualitative estimate of the expectation value for
the m ¼ 9 three-body pseudopotential, we use a scalar
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value−0.001025e2=ϵl0 obtained by averaging the entries of
the 2 × 2 matrix given in Ref. [60]. The next higher three-

body pseudopotential is scalar Vð3Þ
10 ¼ 0.000145e2=ϵl0 and

is treated exactly.
In Fig. 18, we extend Fig. 3 with results for the m ¼ 9

and m ¼ 10 three-body pseudopotentials, calculated as
described above. We observe that both pseudopotentials
do not noticeably contribute to the difference between the
Pfaffian and anti-Pfaffian states and thus should not affect
the central conclusion of the present work. Both expect-
ation values are, however, nonzero, indicating that higher
three-body pseudopotentials might have to be considered
for quantitative comparisons to experiments.
In Fig. 19, we show the effect of the higher three-body

pseudopotentials on the energy gap and on the trial wave-
function overlap. We emphasize that the matrix pseudo-

potential Vð3Þ
9 cannot be treated exactly in our code.

Therefore, the data presented in Fig. 19 are an attempt
to test the robustness of the ground state and to qualitatively
estimate the significance of higher three-body pseudopo-
tentials but are not a precise representation of their effects.
From these available calculations, we observe that the
corrections from the higher pseudopotentials are relatively
small and thus should not change the qualitative picture
established using the cutoff m ≤ 8. Precise treatment of the
higher pseudopotentials may be needed if one is to exactly
determine the value of κc, corresponding to the phase
transition.
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