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We establish the theoretical feasibility of direct analog simulation of the compact U�1� lattice gauge
theories in optical lattices with dipolar bosons. We discuss the realizability of the topological Coulomb
phase in extended Bose-Hubbard models in several optical lattice geometries. We predict the testable
signatures of this emergent phase in noise correlation measurements, thus suggesting the possible
emergence of artificial light in optical lattices.
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Introduction.—Cold atomic gases in optical lattices [1]
have provided unprecedented flexibility in designing and
studying coherent and correlated condensed matter sys-
tems. To date, experiments on strongly correlated, bosonic
lattice models have realized the onsite Hubbard-type inter-
action U, comparable to a nearest-neighbor hopping t.
Consequently, several strongly correlated bosonic phases
with short range interaction have been studied [2–5].
However, with the recent observation of Bose-
condensation of Chromium [6], which has a magnetic
dipolar interaction, a sizable nearest-neighbor interaction
V, albeit anisotropic, is now within experimental reach.
Moreover, since U can be tuned using Feshbach reso-
nances [7], U=V can, in principle, be made to vary over a
wide range. Furthermore, exciting developments [8] in
cooling polar molecules offer the possibility of strong
and tunable electrical dipole moments.

Recently, it has been proposed [9], that a four-site ‘‘ring-
exchange’’ interaction can also be implemented allowing
the simulation of a U�1�-lattice gauge theory, which has
various exotic topological phases, among them a 3D U�1�
Coulomb phase with an emergent massless photon mode.
In this Letter, we show that by simply implementing a
Hubbard model with an additional strong nearest-neighbor
interaction on some special lattices in both 2D and 3D, one
can efficiently simulate a U�1�-lattice gauge theory. The
dipole interaction, Vdd�R� � d2�1–3cos2����=R3, where d
characterizes the dipole moment and R is the interdipole
separation, is, in general, anisotropic and depends on the
angle � between the vectors defining the parallel dipole
orientation and the bond between the two dipoles. This
interaction needs to be made isotropic for our purpose.
This is easily done in 2D by simply aligning the dipoles
perpendicular to the plane. In 3D, this is possible only on
some lattices, and we take the pyrochlore lattice where this
can be achieved. Once the gauge theory is simulated, the
Coulomb phase can be accessed by the appropriate tuning
of interaction parameters. The existence of a gauge theory
automatically implies that the conventional insulating
phases [10] are not the only phases possible.

We predict and discuss the observable signatures of the
Coulomb phase, specifically, how the emergent photon
mode, giving rise to artificial electrodynamics [11–13],
can be detected in noise correlation measurements [14–
16]. We note, in passing, that other fractionalized insula-
tors of the gauge theory, where the elementary excitations
carry fractional boson ‘‘charge’’ (boson charge in the
present context of neutral bosons means boson number),
can also be accessed in other regions of the parameter
space. These, and experimental implications thereof, will
be discussed in a future work [17].

Dipolar bosons in optical lattices.—We study the
Coulomb insulating phase of dipolar bosons in optical
lattices, specifically the Kagomé (2D corner-sharing tri-
angles) and pyrochlore (3D corner-sharing tetrahedra) lat-
tices, see Fig. 1. Optical lattices formed from the intensity
extrema of standing wave lasers can be used to generate a
variety of lattices with nontrivial primitive unit cells using
the superlattice technique [18], originally proposed to gen-
erate two dimensional lattices. Using this technique one
can, in principle, generate a well defined set of intensity
maxima defining the Kagomé and the regular triangular
lattices through angular interference of several beams with
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FIG. 1 (color online). In the left figure, dipolar bosons sit on
the sites of the 2D Kagomé lattice, the black circles labeled 1–6.
The hexagonal dual lattice, the lattice formed by the centers of
the corner-sharing triangles (gray sites), is labeled a� f. In the
right figure, for simplicity, we show only two corner-sharing
tetrahedra of the pyrochlore lattice, with sites shown as spheres.
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the same wavelength. Remarkably, the potentials defining
these two lattices only differ by a phase. By generalizing
this technique to three dimensions one can create a three-
dimensional pyrochlore lattice by alternately stacking the
triangular and Kagomé lattices. Consider the following
intensity pattern generated by counter-propagating, red-
detuned lasers: Fi� ~r� � �cos� ~ki � ~r��i� � 2 cos� ~ki �
~r=3��i=3��2. With polarization (or frequency) mis-
matches, intensities can be added to generate the following
three-dimensional potential with maxima defining a pyro-
chlore lattice: Vp�~r� /

P5
i�1 BiFi� ~r�. The relative inten-

sities and wave vectors are given by Bi�4�1, B4 � 2B1,
~k1 � �k�1; 0;�5=��, ~k2;3 � �k�1;	

���
3
p
=2;�1=��, and ~k5 �

~k4 � �k�0; 0; 3=��. Here we have defined � 
 4�1�
�2=�3�02��1=2. The relative phases of the standing waves,
�i�2�4 � 0 and �1 � �5 � �3�=2, must also be fixed.
To generate Vp, we require phase matching between beams
with varying spatial periodicities. The fact that the beams
must also be tuned, energetically, to internal states of
constituent bosons (which normally fixes the periodicity)
poses an experimental challenge. However, recent experi-
ments have in fact demonstrated multiple spatial periodici-
ties through polarization-selective, angled interference [5]
and Doppler-sensitive multiphoton transitions [19], sepa-
rately. A combination of both techniques could offer a
versatile system capable of realizing the standing wave
arrangement used to produce Vp. Further details discussing
the parameters and laser geometry for these lattices will be
discussed elsewhere [17].

The interaction between dipolar bosons confined to
optical lattices arises from two terms: the short range,
s-wave, interaction, Vs�R� � g��3��R�, and the long range
dipolar interaction Vdd�R�. In what follows we place the
system in a uniform external field, pointing along the
stacking direction (the [111] direction for the pyrochlore
lattice) to orient the dipoles perpendicular to the basal
plane. We also assume that the interaction strength g is
tunable through Feshbach resonances, allowing tunability
of the ratio Vs=Vdd. To make the dipolar interaction,
Vdd�R�, isotropic we need a pyrochlore lattice where the
tetrahedra are shrunk in the direction perpendicular to the
basal plane, that is, �0 <�, where � and �0 are the tetrahe-
dron side lengths within and out of the basal plane, respec-
tively, see Fig. 1. The fact that the 3D nearest-neighbor
interaction can be made isotropic along the bonds by such
slight engineering of the tetrahedra is crucial, and so the
pyrochlore lattice is the geometry of choice.

We now consider a simple model of dipolar bosons
confined in deep optical lattices in the Hubbard limit.
The resulting hopping term (tunable through the optical
lattice depth) is nearest-neighbor while the interaction has
both on-site and extended terms [10]. We omit the smaller
next-nearest-neighbor interaction terms generated by the
long range part of the dipolar interaction. Working in the
insulating limit we may take the hopping energy gain (in

units of the on-site energy) to be much smaller than the
average number of particles per site. We then approximate
the system by a quantum rotor model:

 H � �t
X
hll0i

byl bl0 � H:c:�U
X
l

n2
l � V

X
hll0i

nlnl0 : (1)

Here hll0i denotes a nearest-neighbor pair of sites. byl �
exp�i�l� is the bosonic creation operator and nl � @=i@�l
counts the excess number of bosons at a site, l. The
dominant contribution to U arises from the s-wave inter-
action while the dipolar interaction supplies the largest
contribution to V. We assume that both U and V are large,
and, in what follows, we will require U to be slightly larger
than V. Here and in the following we omit the renormal-
ized chemical potential term.

Mapping onto gauge theory in 2D Kagomé lattice.—
Equation (1) can be written in a slightly different form
more amenable to mapping onto a gauge theory. We take
out a piece, 2U0, of the on-site interaction and group it
together with V. Defining N� 


P
l2�nl and u 


U� 2U0, we find, for V � 2U0,

 H � �t
X
hll0i

byl bl0 � H:c:� u
X
l

n2
l �U0

X
�

N2
�: (2)

Here,
P

� sums over all triangles in the lattice, and N�

counts bosons on a given triangle. In this form, we call this
Hamiltonian a ‘‘cluster‘‘ Hubbard model where the fluctu-
ations in the number of bosons on each local cluster
(triangle) costs energy. This property enables a natural
map to a gauge theory which enforces a local constraint.

Equation (2) describes the same Hamiltonian as the one
proposed before [11,12] for a microscopic model of bosons
on a square lattice and its 3D generalization, the corner-
sharing octahedra. We focus here, however, on the Kagomé
lattice, for which the same Hamiltonian has an exact
implementation in terms of a nearest-neighbor Hubbard
model for U � V. The mapping of Eq. (2) on a �2� 1�D
U�1� lattice gauge theory is essentially the same as that on
a square lattice. The details of the mapping, however, are
different, which we briefly describe below.

A mapping onto gauge theory becomes possible when
U0 is the largest energy scale in the problem. The boson
number on each triangle is then locally conserved. This
implies N� � 0 on each triangle, meaning that the fluctua-
tion in the boson number around the mean value set by the
chemical potential vanishes. Working in the limit U0 � t,
u and doing degenerate perturbation theory in t and u, we
find, to first order in u and third order in t, the following
effective Hamiltonian in the ground state sector N� � 0,

 Heff � u
X
l

n2
l � 3

t3

U2
0

X
�

by1b2b
y
3b4b

y
5b6: (3)

Here,
P

� sums over all hexagons inscribed in the triangles,
and 1 through 6 indicate the corners of one such represen-
tative hexagon, see Fig. 1. This effective Hamiltonian is
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derived by locally conserving the number of bosons on
each triangle. If a boson hops from site 6 to site 5, then
another boson must hop from site 4 to site 3 to conserve the
number of bosons on the triangle with one side defined by
the bond (4–5), so that N� remains zero on that triangle. In
turn, as is clear from Fig. 1, a third boson must hop from
site 2 to site 1 to preserve the same constraint. Finally,
since the u-term of Eq. (2) does not fluctuate N�, it comes
in linear order in Eq. (3).

To see that this Hamiltonian exactly maps onto a lattice
gauge theory on the dual lattice, we consider the dual
lattice defined by the centers of the triangles. This is a
hexagonal lattice whose sites we denote by r, r0, etc., The
original Kagomé sites now fall on the links of the dual
lattice. We take the representative hexagon, a through f, as
shown in the left panel of Fig. 1, and identify the bosons on
Kagomé site 1 with the link (ab) etc.

On the dual lattice, by a change of notation, Heff reads,

 Heff � u
X
hrr0i

n2
rr0 � 3

t3

U2
0

X
�

byabbbcb
y
cdbdeb

y
efbfa: (4)

Next, noticing that the hexagonal lattice is bipartite, we
define a field arr0 � �rr0 if r 2 A and r0 2 B and arr0 �
��rr0 if r 2 B and r0 2 A, where A and B are the two
interpenetrating sublattices, and brr0 � exp�i�rr0 � as dis-
cussed after Eq. (1). We also define the conjugate field
variable err0 � nrr0 if r 2 A and r0 2 B and err0 � �nrr0 if
r 2 B and r0 2 A (e and a are conjugate fields since n and
� are). Finally, elevating a and e to vector fields ar� �
ar;r��, er� � er;r��, where � indicates the nearest-
neighbor vectors, it is straightforward to see that Heff can
be written as the Hamiltonian for the �2� 1�D compact
U�1� gauge theory [20] on the dual lattice,

 Heff � u
X
r�

e2
r� � 6

t3

U2
0

X
�

cos�r  ~a�; (5)

with the Gauss’s law constraint Nr � N� �
P
r02rnrr0 �

�rr: ~e, and �r � 1 if r 2 A and �r � �1 if r 2 B. We
emphasize that Eqs. (4) and (5) are simply rewritten forms
of Eq. (3) on the dual lattice. Recall that a large U0 implied
the constraint on N� in Eq. (2) leading to Eq. (3). Hence,
for an optical lattice implementation of the gauge theory,
one simply needs to implement the Hamiltonian in Eq. (1)
on appropriate lattices with both U and V large, with U
slightly larger than V. The resulting low energy theory is
automatically a gauge theory on the dual lattices, and so
allows the exotic Coulomb phase and other fractionalized
phases [11,12,20,21] in addition to the conventional insu-
lators [10]. In 2D, however, it is well known that the
Coulomb phase is unstable at long length scales and is
smoothly connected to the conventional Mott insulator.

Mapping onto gauge theory in 3D pyrochlore lattice.—
We start with formally the same Hamiltonian as Eq. (1), but
on a pyrochlore lattice. From Eq. (1), one straightforwardly

gets the ‘‘cluster‘‘-Hubbard model, Eq. (2), with N� re-
placed by NT , the number of bosons on a tetrahedron. The
mapping to gauge theory on the dual diamond lattice,
which is bipartite, but not Bravais, is identical and one
ends up with Eq. (5) as the final effective theory. To have a
description of the dual lattice in terms of a Bravais lattice,
we consider below only one fcc sublattice of the diamond
lattice (centers of only one class of tetrahedra on the
pyrochlore). Note that by counting the centers of only
one class, and allowing an index � to indicate all four
corners of a tetrahedron from its center, we can count all
the pyrochlore sites (diamond links).

In �3� 1�D, the Coulomb phase, which is an insulator,
is described by the Gaussian expansion of the cosine term

of the gauge theory Hamiltonian, and is stable for t����������
uU2

0
3
q

, since the topological defects—the monopole con-
figurations of the gauge field—are suppressed in the
Coulomb phase. This is analogous to the gaussian expan-
sion of the Hamiltonian of the XY model in the Kosterlitz-
Thouless phase where the topological defects—the vorti-
ces—are suppressed. Notice that a Gaussian expansion of
the cosine term yields a Hamiltonian formally the same as
that in classical electrodynamics, with an associated gap-
less ‘‘photon‘‘ mode. However, this is a gapless mode of
the gauge field of the bosonic field operators, and not of an
external electromagnetic field. This mode, which emerges
in the low energy theory, should therefore be observable in
the long-wavelength boson density-density correlation
functions, and hence in noise correlations, given by the
correlation functions of the e-fields (Recall that err0 is
simply related to nrr0). This mode distinguishes itself
from the conventional phonon mode resulting from spon-
taneously broken symmetry in strongly correlated, bosonic
models because it appears in the absence of spontaneous
symmetry breaking and is therefore an emergent phenome-
non. Furthermore, this mode appears in a range of parame-

ters (U0 � t�
���������
uU2

0
3
q

) intermediate between that for a
superfluid (t� U0, u) and the conventional insulators
(U0, u� t).

Noise correlations in the Coulomb phase.—We now
consider the long-wavelength behavior of noise correla-
tions in terms of the e-field correlation functions. To
compute the correlation function of the e-fields, we work
in the Coulomb gauge where a	 � 0 and r � ~a � 0. We
then expand the cosine in the second term of Eq. (5) to
quadratic order and use e � @a

@	 . Working in the continuum
limit, the ~a-field correlator at momentum k and (imagi-
nary) frequency ! is given by,

 hai�k;!�aj��k;�!�i �
�ij � kikj=k

2

!2 � c2k2 ; (6)

where c2 � �6t3�=�uU2
0�. This reveals the massless emer-

gent ‘‘photon‘‘ mode. The equal-time correlator her�er0�0 i,
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where �, �0 are unit vectors for a tetrahedron, can be found
from here. This gives the boson density-density correlation
function. We find
 

hnr�nr0�0 i � her�er0�0 i

� �i�
0
jherier0ji

� �i�0j
X
k

cj ~kj
�
�ij �

kikj
k2

�
ei ~k�� ~r�~r

0�: (7)

A straightforward evaluation of this integral in the contin-
uum gives the special angular structure of the Coulomb
phase density correlation function at large distances [22].
However, as described below, for noise correlation, one is
interested in the function in momentum space itself.

In time of flight imaging of an insulating state of spinless
particles, averaging the noise between shot-to-shot images
of the particle distribution released from optical lattices
reveals a quantity proportional to the following second
order correlation function [14]:

 N� ~q� �
X
r�r0�0

ei ~q�� ~r� ~��~r
0� ~�0�hnr�nr0�0 i; (8)

where we, for simplicity, omit the ~q � 0 delta function due
to normal ordering. In a Mott insulator, which should be
compared with the Coulomb insulator, hnr�nr0�0 i is a con-
stant, and so, for an infinite system N� ~q� �

P
nf� ~q��� ~q�

~qn�, where ~qn’s are the reciprocal lattice vectors of the fcc
lattice and f� ~q� is the form factor of the tetrahedron basis,

f� ~q� �
P
��0 exp�i ~q � � ~�� ~�0��. This produces �-function

peaks at the reciprocal lattice vectors, which are the centers
of the Brillouin zones. For the Coulomb phase, we know
the behavior of hnr�nr0�0 i only for large j~r� ~r0j. At smaller
length scales, the calculation is quite involved since the full
tetrahedron lattice correlators have to be used [17]. The
long distance behavior, however, is sufficient to give the
leading singularities at the Brillouin-zone centers. From
the integrand of Eq. (7), we see that, close to the zone
centers, the leading singularity is a cusp, N� ~q� � cj ~qj, see
Fig. 2.

In conclusion, we have shown that compact U�1� lattice
gauge theories can be simulated in suitably designed cold
atom optical lattices using dipolar bosons. Exciting exotic
phenomena, the Coulomb phase with emergence of artifi-
cial photons being an example, could be studied experi-
mentally following our suggestion.
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FIG. 2 (color online). Expected behavior of the normalized
noise correlation function with qx in the Mott insulating (dashed
line) and Coulomb (solid line) phases around the first Brillouin-
zone center of the fcc lattice. The core of the Mott insulating
peak is suppressed due to the cjqj nonanalyticity provided by the
gapless ‘‘photon‘‘ at long wavelengths in the Coulomb phase.
The behavior, at large q, is expected to cross over to that of the
Mott insulator. The plot is for a finite sized system with 100 sites
along each direction with a small q slope c � 40 (with the
appropriate form factor set to unity) and an arbitrarily chosen
cutoff at qx � 3�=500.
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