
PHYSICAL REVIEW A 85, 043610 (2012)

Boson core compressibility
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Strongly interacting atoms trapped in optical lattices can be used to explore phase diagrams of Hubbard models.
Spatial inhomogeneity due to trapping typically obscures distinguishing observables. We propose that measures
using boson double occupancy avoid trapping effects to reveal two key correlation functions. We define a boson
core compressibility and core superfluid stiffness in terms of double occupancy. We use quantum Monte Carlo on
the Bose-Hubbard model to empirically show that these quantities intrinsically eliminate edge effects to reveal
correlations near the trap center. The boson core compressibility offers a generally applicable tool that can be
used to experimentally map out phase transitions between compressible and incompressible states.
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I. INTRODUCTION

Significant progress in cooling and trapping cold atomic
gases in optical lattices [1–3] established new and ideal
platforms to study quantum condensed matter [4–6]. Ongoing
work seeks to explore properties of interesting but poorly
understood quantum many-body states using quantum de-
generate atoms. Proposals include the use of optical lattice
bosons to study novel superfluid order in higher bands [7–9]
or topological phases [10–12]. Fermi gases in optical lattices
are also under study as a route to explore the controversial
phase diagram of the Fermi-Hubbard model [6,13,14].

Time-of-flight observables in optical lattice experiments
can be adapted to measure properties of atoms trapped in
optical lattices. The momentum distribution [15], density-
density correlation functions [16,17], compressibility [18,19],
and double occupancy [20–23] are all examples of working
optical lattice observables. At first it may seem that these
observables can be used to directly pinpoint locations on phase
diagrams because input parameters (e.g., lattice depth) are
controlled and tunable. But significant spatial inhomogeneity
due to trapping can spoil the connection between phase
diagrams and experiments.

Recent experiments [18] with fermions (40K) trapped in
optical lattices used the double occupancy as an indicator
of the Fermi-gas to Mott insulator transition to circumvent
issues due to trapping. These experiments used a Feshbach
resonance to shift hyperfine levels of doubly occupied sites.
Doubly occupied sites were promoted to a separate hyperfine
state and measured in time-of-flight using a Stern-Gerlach
scheme to distinguish atoms originating from singly and
doubly occupied sites. By taking the derivative of the double
occupancy with respect to particle number these experiments
effectively extracted the core compressibility of atoms in the
optical lattice. The core compressibility revealed that the center
of the sample became incompressible as interactions tuned the
system from a Fermi gas to a Mott insulator.

Measurements of the optical lattice fermion double occu-
pancy have been compared with theory. A high-temperature
series expansion [24] was used to show that the fermion core
compressibility measured in Ref. [18] does indeed capture the
compressibility of the center of the system, even in the presence
of severe spatial inhomogeneity. Comparisons between high-
temperature series expansions, dynamical mean-field theory,

and experiment were also useful in using double occupancy to
measure the temperature of fermions in optical lattices [25].
More recent calculations have shown that the fermion core
compressibility can be very useful in one-dimensional optical
lattices as well [26,27].

Here we explore the potential uses of double occupancy
in measuring the compressibility of bosons. At first it may
appear that boson double occupancy might not offer useful
information (as it did for fermions) because several bosons
can occupy a single site even in the same Bloch band. We
explore this issue through extensive calculations. We find that,
in the presence of strong boson-boson repulsion and at low
temperature, double occupancy does offer a useful tool that
can be related to important observables.

We use the boson double occupancy to define the boson core
compressibility and core stiffness. We find that these quantities
intrinsically exclude edge effects thus offering valuable probes
of a single phase near the system center. We use quantum
Monte Carlo (QMC) on the trapped Bose-Hubbard model
to empirically show that the boson core compressibility and
stiffness reveal the compressibility and stiffness of atoms
near the trap center, respectively. We show that the core
compressibility defined here can be used in experiments to
study critical properties and map out phase diagrams of any
Bose-Hubbard model even in the presence of significant spatial
inhomogeneity due to trapping. The core compressibility can
be used, for example, to explore transitions in disordered
Bose-Hubbard models currently under experimental inves-
tigation [28–30]. Our proposed boson core compressibility
complements proposals to measure total boson compressibility
with trap squeezing [31,32].

In Sec. II we discuss the Bose-Hubbard model as a relevant
testbed for computing the boson core compressibility. In
Sec. III we define the local compressibility and the local
superfluid stiffness. In Sec. IV we define the core compress-
ibility and the core stiffness. In Sec. V we use mean-field
theory (MFT) and QMC to compare the global quantities with
core quantities in uniform systems. Section VI uses QMC
on trapped systems to compare the local compressibility and
the local stiffness with the core compressibility and the core
stiffness, respectively. We find parameter regimes where core
measures essentially track local quantities near the trap center.
Section VII discusses how to effectively extract the boson core
compressibility from time-of-flight measurements.
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II. MODEL

The Bose-Hubbard models offers one of the simplest
models with a quantum phase transition [33,34]. It also cap-
tures the essential properties of many ongoing optical lattice
experiments [4,6]. We may therefore use the Bose-Hubbard
model as an experimentally relevant testbed to examine the
usefulness of the boson core compressibility:

H = −t
∑
〈i,j〉

(b†i bj + H.c.) + U

2

∑
i

ni(ni − 1) −
∑

i

μini .

(1)

Here ni = b
†
i bi is the number operator at a lattice site indexed

by i and μi = μ − γR2
i,0 is the local chemical potential. The

central chemical potential μ tunes the average density, γ

parametrizes the parabolic confinement potential, and Ri,0 ≡
|Ri − R0| is the distance between a site at Ri and the center of
the trap R0. We work in units such that U = 1 and the lattice
spacing is also set to unity. In the following we will work on a
simple cubic lattice with periodic boundaries.

In the uniform limit (γ = 0) the model exhibits a quantum
phase transition between a Mott insulator and a superfluid [33].
Figure 1 shows a schematic of the finite temperature phase
diagram at fixed μ. The Mott insulator is characterized by an
integer density enforced by the Mott energy gap ∼U . As a
result of the energy gap, the Mott insulator is incompressible.
The superfluid phase is compressible. It is characterized by
strong number fluctuations (even at low temperature) and a
finite superfluid density.

Trapping due to confinement magnetic fields and/or tapered
laser beam waists in optical lattice experiments are modeled by
a parabolic trapping potential (Fig. 2). The last term in Eq. (1)
decreases the density as the distance from the center of the
system increases for γ > 0. As a result the spatially varying
chemical potential mixes phases within the trap. Identifying
individual phases within the trapped system requires a local
observable but most experiments currently rely on bulk time-
of-flight imaging. We study the boson core compressibility as
a candidate quasilocal observable that uses bulk time-of-flight
data to measure a single phase within the trap. Core quantities

FIG. 1. (Color online) Schematic of the finite-temperature phase
diagram of the uniform Bose-Hubbard model. The Mott insulator
(MI) and the superfluid (SF) are separated by a narrow quantum
critical regime at finite temperature. At high temperatures the system
is in the normal phase. The lines represent the following: (a) a
transition from the Mott insulator to the normal phase, (b) a transition
from the Mott insulator, through the quantum critical regime, into the
superfluid, and (c) a transition out of the superfluid into the normal
phase.

μγRi,0
2

FIG. 2. (Color online) Schematic depicting spatial inhomogene-
ity due to trapping in an optical lattice. A spatially varying chemical
potential (γR2

i,0) modifies the otherwise uniform chemical potential μ
to model a parabolic confinement potential. The center of the trapped
system is denser than the edges. In the absence of large thermal and
quantum fluctuations, double occupancies tend to cluster around the
system center. The core compressibility implicitly defines the core
region as the region with finite double occupancy in the system.

can be compared with single-site local quantities to show that
only one phase in the trap is measured.

III. LOCAL COMPRESSIBILITY AND LOCAL
SUPERFLUID STIFFNESS

Time-of-flight observables relate to correlation functions,
for example, momentum distribution, typically computed
in uniform systems. In this section we first define bulk
compressibility and bulk superfluid stiffness. We then adapt
these definitions to specific measures of local compressibility
and local superfluid stiffness.

According to the fluctuation-dissipation theorem, density
fluctuations in an optical lattice contain useful information
about the system [35–39]. The total compressibility κ mea-
sures the ability of the system to change its density with small
changes in the chemical potential:

κ = ∂〈n〉
∂μ

= N2
s β[〈n2〉 − 〈n〉2], (2)

where 〈n2〉 = N−2
s 〈(∑Ns

i=1 ni)2〉, 〈n〉 = N−1
s 〈∑Ns

i=1 ni〉, and
β = (kBT )−1 denotes the inverse temperature. We set kB =
1 in the following. Ns = L3 is the total number of sites.
Angular brackets denote the thermal average of observables:
〈A〉 = Tr{Ae−βH }/Z, where Z is the grand canonical partition
function, Z = Tr{e−βH }, and Tr denotes the trace. The last
equality in Eq. (2) shows that the compressibility is intrinsi-
cally nonlocal because it relates to density fluctuations across
the entire system.

Bose-Einstein condensation in the presence of interactions
leads to superfluidity [40]. The superfluid stiffness (and
therefore the superfluid density) can be computed using the
response of the system to weak perturbations and, in turn, the
winding number W , evaluated across the system’s boundary
in a QMC simulation [41]:

ρs = W 2

2tβ〈n〉 . (3)

The superfluid stiffness, as defined, is a manifestly bulk
quantity because macroscopic occupation of a single mode
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in the presence of interactions implies that perturbations lead
to nonlocal response.

Significant spatial inhomogeneity due to trapping suggests
that local measures of compressibility and stiffness will be
more informative. The local compressibility [42],

κi = ∂〈n〉
∂μi

= β[〈nin〉 − 〈ni〉〈n〉], (4)

measures the average density fluctuations at a single site in
comparison to the total average density. Note that the local
compressibility of a trapped system becomes equivalent to κ in
a uniform system only if κi is summed over a smooth and large
volume of the trapped system. For large enough system sizes
the local compressibility shows critical properties, similar to
those of the total compressibility, that can be used to identify
phase boundaries [42,43].

Figure 2 depicts severe inhomogeneity imposed by a
trapping potential. Here we see that the compressibility in
the core of the system can be entirely different from the edges.
We thus expect κ �= κic , where ic denotes a site at the trap
center.

To capture local order of trapped bosons it is also convenient
to define a local stiffness. We define the local stiffness in terms
of a projection along imaginary time in QMC simulations. We
calculate the superfluid stiffness using the system’s response to
weak rotation [44] measured in imaginary time. Since particles
in the superfluid state do not respond to rotation, only particles
in the normal state contribute to the system’s total moment of
inertia I . The superfluid stiffness is then equivalent to the ratio
of the missing moment of inertia to the classical moment of
inertia Icl of the system, that is,

ρs = Icl − I

Icl
. (5)

This relation offers a physical interpretation of superfluid
stiffness that can be used to construct a local stiffness.

We use the QMC formalism to construct the local superfluid
stiffness. In the QMC formalism the total stiffness can be
expressed as

ρα
s = 4M2

〈
A2

α

〉
βh̄2Iα

cl

, (6)

where α = x,y,z is the rotation axis through the system center,

Iα
cl =

〈
M

N,τm∑
l,τ=1

R⊥(l,τ ) × R⊥(l,τ + 1)

〉
, (7)

and

Aα(Ri) = 1

2

N,τm∑
l,τ=1

[R(l,τ ) × R(l,τ + 1)]αδRi ,R(l,τ )

is the projected area when N particles of mass M move along
paths in the imaginary-time direction in QMC. Here R(l,τ )
denotes the site of the lth particle at the τ th imaginary-time step
while R⊥(l,τ ) denotes the same but for the distance between
the particle and the principal axis α. τm is the maximum
number of imaginary time steps and δ denotes the Kronecker

delta. The total projected area becomes

Aα = 1

Ns

∑
i

Aα(Ri). (8)

Note that in the above we have defined a particle mass M =
h̄2/2ta2 and lattice spacing a = 1.

We use the above local quantities to define a local superfluid
stiffness. The definition of local superfluid stiffness is not
unique. Here we use the definition of Ref. [45]:

ρs(Ri) = 2〈AαAα(Ri)〉
tβRi

2
⊥

, (9)

which, if multiplied byMRi
2
⊥ and integrated over all the lattice

sites, yields the total superfluid stiffness of the system, Eq. (6).
Equation (9) allows us to pinpoint the presence (or absence)
of local superfluids in our simulations of trapped systems.

IV. CORE COMPRESSIBILITY AND CORE STIFFNESS

Measurements of the double occupancy can be used to
observe local quantities. Due to confinement we expect the
local density to be largest near the center of the trapped
system. This implies that, in the absence of significant quantum
fluctuations, double occupancies should cluster near the core
of the system. In this section we first define decomposition
into occupancies. We then expand the density in terms of
occupancy. We use the total double occupancy to define the
boson core compressibility and core stiffness.

Any operator O can be decomposed into a sum over
occupancy in Fock space. If we assume that O is a sum over
local operators at a site, Oi , we can define our decomposition
in terms of projection operators:

O =
Ns∑
i=1

∞∑
m=0

OiPi,m, (10)

where Pi,m projects onto the Fock states of the i th site:

Pi,m ≡ (b†i )m|0〉〈0|(bi )m. (11)

We can therefore rewrite the expectation value of an observable
as a sum over the occupancy projectors:

〈O〉 =
〈∑

i,m

OiPi,m

〉
. (12)

For example, the total density is given by

〈n〉 = N−1
s

〈 ∑
i,m

(b†i )m|0〉m〈0|(bi )m
〉
. (13)

Using Eq. (13) we can express the total compressibility, κ =
∂〈n〉/∂μ, as an expansion over occupancy.

In trapped optical lattice experiments there is an approxi-
mate correspondence between occupancy and location within
the trap. Furthermore, occupancies can be readily measured
(see, e.g., Refs. [18,20–23,25]). The double occupancy arises
from the m = 2 term in Eq. (13): b

†
i b

†
i bi bi = ni(ni − 1). The
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total boson double occupancy is given by

〈D〉 ≡ 1

2

〈
Ns∑
i

ni(ni − 1)

〉
. (14)

The double occupancy per lattice site is 〈d〉 ≡ 〈D〉/Ns . Here
we see that 〈ni(ni − 1)〉 is nonzero if there are at least two
particles at a site. Measuring double occupancies offers a
global observable that yields local information by excluding
edge effects (provided the edges have a low density). Thus
observables based on double-occupancy measure properties at
the core of trapped optical lattices.

We define the double-occupancy core compressibility by
expanding ∂〈n〉/∂μ over the occupancies. We find

κd
c ≡ 1

2Ns

∂

∂μ

〈
Ns∑
i

ni(ni − 1)

〉
, (15)

in direct analogy to a similar measure used for fermions
[18,24]. Here small changes in chemical potential impact d

only if the doubly occupied sites form a compressible state. We
will show, by direct calculation, that κd

c offers a quantitatively
accurate estimate of the compressibility near the center of a
trapped optical lattice system of bosons.

Equation (15) can be generalized to measure the compress-
ibility near a state of any density. The m = 3 term in Eq. (13)
gives the triple occupancy term in the density expansion. A
measurement of triple occupancy can be used to observe the
compressibility near the center of a trapped system with triply
occupied sites near the trap center:

κt
c ≡ 1

6Ns

∂

∂μ

〈
Ns∑
i

ni(ni − 1)(ni − 2)

〉
. (16)

κt
c excludes both singly and doubly occupied sites.

The expansion of observables in terms of occupancies
[Eq. (12)] is a general procedure that can be applied to other
order parameters. We also define a core superfluid stiffness
in terms of doubly occupied sites. We modify Eq. (6) to
incorporate only doubly occupied sites by redefining the
location of a particle in QMC, R(l,τ ) → Rd (l,τ ), where
Rd (l,τ ) defines the site of the lth particle in imaginary time
provided it sits on a doubly occupied site. The global stiffness
then reduces to the superfluid density of doubly occupied sites.
We will see that, in a trap, this measures the superfluid density
near the core of the sample. The core superfluid density ρd

s

can be compared with the local superfluid density ρs(Ri). We
will use QMC to show quantitative agreement between both
quantities in the core of the Bose-Hubbard model.

We expect κd
c and ρd

s to give an accurate measure of local
compressibility and local stiffness near the trap center in a
specific but interesting regime of any Bose-Hubbard model:
(i) The density should be just above unity, (ii) the temperature
should be low enough to prevent a significant number of triply
occupied sites near the center or doubly occupied sites near
the edges, and (iii) quantum fluctuations should not be strong
enough to induce triply occupied sites near the center or doubly
occupied sites near the edges. We will use MFT and QMC on
the Bose-Hubbard model to demonstrate that these criteria can
indeed be satisfied.

V. UNIFORM SYSTEMS

Intuition and understanding of quantum many-body sys-
tems often play out in large-uniform systems where trans-
lational invariance simplifies assumptions. The connection
between optical lattice observables and conventional order
parameters defined in uniform systems can be tenuous be-
cause of trapping effects. In this section we establish a
quantitative connection between core compressibility and total
compressibility in uniform systems. We will show that the
Bose-Hubbard model offers several regimes where the core
compressibility can be used to observe total compressibility.
In Sec. VI we then turn to comparisons between the core and
local compressibility in realistic trapped systems.

We begin our comparison between core compressibility
and total compressibility in a regime where MFT applies.
Consider the line marked “a” in Fig. 1. For weak hopping
t (or in the absence of superfluidity) it is sufficient to ignore
the hopping term in the Hamiltonian. This approximation is
not as severe as it appears. At the mean-field level our weak
hopping approximation follows from two steps. (i) We first
decouple sites [34]:

−t
∑
〈i,j〉

(b†i bj + H.c.) → −t
∑

i

(ψ∗bi + ψb
†
i ), (17)

where ψ ≡ 〈b〉 is the mean-field superfluid order parameter.
(ii) In the absence of a finite superfluid density we can take ψ =
ψ∗ = 0. In this case the mean-field hopping term vanishes
and we can focus on the remaining diagonal terms in the
Bose-Hubbard model.

In the absence of mean-field superfluidity, the mean-field
Hamiltonian becomes

H MF = U

2

∑
i

ni(ni − 1) −
∑

i

μini . (18)

In this limit the model is diagonal and can be solved exactly.
The total mean-field energy of the ψ = 0 system is then

E =
Ns∑
i=1

[
U

2
〈ni〉(〈ni〉 − 1) − μi〈ni〉

]
.

Note that the energy increases with 〈ni〉. We can count
energy eigenvalues using integer local number occupancy:
Em = Um(m − 1)/2 − μm, with m = 0,1,2, . . .. In regimes
where we can separate energy scales according to occupancy
our definition of core compressibility becomes an accurate
representation of the total compressibility because we can
locate parameter regimes where singly and triply occupied
sites can be ignored.

The mean-field limit described above provides a limit in
which the core compressibility exactly captures the compress-
ibility of doubly occupied sites. To construct a comparison
between total and core compressibility measures note that in
the mean-field limit we rewrite Eq. (13):

〈n〉 ≈
∞∑

m=0

mδρm, (19)

where the thermodynamic factor δρm ≡ exp{−βEm}/Z gives
a deviation in density from an integer value at finite tempera-
tures. Equation (19) becomes exact for t = 0.
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Using density deviations we can relate the compressibilities
defined in Sec. IV. The density, double occupancy, and
triple occupancy can all be decomposed in terms of density
deviations factors:

〈n〉 ≈ δρ1 + 2δρ2 + 3δρ3 + · · · ,
〈n(n − 1)〉/2 ≈ 0 + δρ2 + 3δρ3 + · · · ,

〈n(n − 1)(n − 2)〉/6 ≈ 0 + 0 + δρ3 + · · ·
By taking derivatives with respect to the total chemical
potential we arrive at three types of compressibilities:

κ ≈ ∂δρ1

∂μ
+ 2

∂δρ2

∂μ
+ 3

∂δρ3

∂μ
+ · · · ,

κd
c ≈ 0 + ∂δρ2

∂μ
+ 3

∂δρ3

∂μ
+ · · · ,

κt
c ≈ 0 + 0 + ∂δρ3

∂μ
+ · · ·

With these expansions we see explicitly that the core compress-
ibilities give the compressibility of doubly and triply occupied
sites while ignoring sites with lower occupancy.

Using the density deviation expansion, we can find regimes
for which κ ≈ κd

c . We require parameters such that

∂δρ1

∂μ
≈ −∂δρ2

∂μ
and

∣∣∣∣∂δρ3

∂μ

∣∣∣∣ �
∣∣∣∣∂δρ2

∂μ

∣∣∣∣.
The first requirement holds for chemical potentials just
large enough to add a small number of vacancies to the
Mott insulator. For example, consider the limit 〈n〉 = 1 + ε,
where ε � 1. The first condition holds because vacancies
have nearly equal and opposite compressibility as doubly
occupied sites. The second equality holds for temperatures and
chemical potentials low enough to prevent significant triple
occupancy. Thus an experiment measuring double occupancy
can approximate the mathematical procedure of projection into
occupancies defined in Eq. (13).

We have shown that the core compressibility defines a
compressibility of doubly occupied sites at the mean-field
level. We have also argued that regimes near the Mott insulator
yield κ ≈ κd

c . The arguments made using the mean-field
approximation are exact at t = 0 (or with ψ = 0 in the absence
of quantum fluctuations).

To find regimes where κ ≈ κd
c in other parts of the phase

diagram we compute both quantities using QMC. Correlation
functions computed with QMC on the Bose-Hubbard model
are numerically exact on finite-sized systems. We use the
stochastic series expansion representation with directed loop
updates [46] to evaluate observables of Eq. (1). We work within
the ALPS framework [47] for some of the calculations. Error
bars for all plotted data points are smaller than the size of the
symbols used within the figures unless otherwise indicated.

Figure 3 shows QMC results comparing the total compress-
ibility (circles with solid line) with the core compressibilities
as a function of chemical potential. The inset shows that
the chemical potential sweeps through Mott insulators at
〈n〉 = 0,1,2, and 3. Between Mott insulators the system forms
compressible superfluids (peaks in the main panels). The
diamonds show that κd

c tracks κ only for densities between
1 and 2. Otherwise κd

c ≈ 0 when the system shows few

-0.5 0 0.5 1 1.5 2
μ/U

0

3

6

9

12

 κ
 κd

c

 κt

c

-0.5 0 0.5 1 1.5 2
μ/U

0

1

2

3

<
n>

FIG. 3. (Color online) The symbols show quantum Monte Carlo
results for three different compressibilities computed in the uniform
Bose-Hubbard model with T/U = 0.025, t/U = 0.01, and L = 6
as a function of the chemical potential. The total compressibility
(circles) vanishes in the Mott insulator state but jumps when the
chemical potential passes through the superfluid state. The double
occupancy-based core compressibility (diamonds) match the total
compressibility when the density is around 1 and below 2. It
vanishes for density less than 1. The triple occupancy-based core
compressibility (squares) matches the total compressibility when the
density is around 2 and below 3. It vanishes for density below 2.
(Inset) The total density plotted versus chemical potential for the
same parameters as the main panel. The solid lines in both the main
panel and the inset are guides to the eye.

triple occupancies (μ/U � 1.75). Above μ/U ≈ 1.75 the
core compressibility based on double occupancies fails to
track the total compressibility. Here we find instead, κ ≈ κt

c .
Figure 3 reveals two key features of κd

c : (i) There is a range of
chemical potentials for which we find κ ≈ κd

c and (ii) for all
lower chemical potentials we find κd

c ≈ 0. Thus edge effects
induced by trapping (which lowers the chemical potentials near
the edges) will have very little impact on κd

c in comparison to
κ . The vanishing of the core compressibilities at low μ is a key
property that allows the exclusion of edge effects in trapped
systems when measuring d for the entire trapped system.

Figure 4 compares MFT with QMC for the density, the
compressibility, and the core compressibility in a uniform
system. Parameters were chosen to host an incompressible
Mott insulator at low temperatures. Here we move along line
“a” in Fig. 1. Above T/U ≈ 0.025 (T/U ≈ 0.15) thermal
fluctuations induce double (triple) occupancies. The bottom
panel shows that the density starts to deviate from unity
when the temperature is increased. But the top panel shows
that for T/U � 0.15 we find κ ≈ κd

c . At larger temperatures
significant triple occupancies spoil the connection between
κd

c and total compressibility. The solid lines draw the MFT.
Here the MFT is nearly indistinguishable from the QMC. We
conclude that weak thermal fluctuations allow measurements
of κ with κc.

We also find that the core compressibility tracks the total
compressibility even when there is not a clear connection
between the density and energy [i.e., beyond the mean-field
limit defined by Eq. (18)]. We choose parameters to move
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T/U

0
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<
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(a)

(b)

FIG. 4. (Color online) Panels (a) and (b) compare quantum Monte
Carlo (symbols) with mean-field results (lines), versus temperature
for the compressibility and average density, respectively, for the uni-
form Bose-Hubbard model. Parameters are chosen in a regime where
mean-field theory agrees with quantum Monte Carlo: at small hopping
t = 0.01 and μ = 0.76. In panel (a) the dashed line is computed for
the total compressibility but the dotted line is core compressibility.
This mean-field regime emphasizes the close agreement between the
core and total compressibilities at low temperatures (T/U � 0.15).
There is even close agreement as we cross from the Mott insulator
to the normal phase. At higher temperatures (T/U � 0.15), thermal
fluctuations induce triple occupancies which causes the core and
total compressibilities to deviate. In panel (b) we see that the average
density deviates from unity when temperatures are high enough to
convert the Mott insulator into the normal phase.

along the line “b” in Fig. 1. Here we start in a Mott insulator
and move into the critical regime and then the superfluid
phase where the stiffness is finite. Figure 5 plots the stiffness,
density, and double occupancy along with the compressibilities

0
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3

0

0.5

1

<
n>

0 0.01 0.02 0.03 0.04
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ρ s

0 0.01 0.02 0.03 0.04
t/U
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0.4
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FIG. 5. (Color online) Plots of thermodynamic quantities com-
puted with quantum Monte Carlo as a function of hopping for the
uniform Bose-Hubbard model with μ = 0.76, T = 0.025, and L = 8
and 10. In panel (a), three different compressibilities are plotted:
core compressibility (κd

c , squares for L = 8, and up-triangles for
L = 10), local compressibility (κic , circles for L = 8, and diamonds
for L = 10), and total compressibility, (κ , down-triangles for L = 8,
and X for L = 10). In panels (b)–(d) circles denote L = 8 data and
squares L = 10. The solid lines are guides to the eye. Panel (a) shows
quantitative agreement between all measures of compressibility as
we increase the hopping to drive the Mott insulator into the quantum
critical regime.
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FIG. 6. (Color online) Panels (a)–(d) plot quantum Monte Carlo
results for the compressibility, superfluid stiffness, total density, and
double occupancy, respectively, as a function of temperature for
different lattice sizes and hoppings in the uniform Bose-Hubbard
model. The chemical potential is fixed at μ/U = 0.76. In panel
(a) the total compressibility (symbols) shows agreement with the
core compressibility κd

c (lines). For low t we see a transition from
the Mott to the normal phase. For large t we see a transition from the
superfluid to the normal phase. The core compressibility reveals both
transitions.

to show that the core compressibility still tracks the total
compressibility even as the system experiences quantum
fluctuations.

We find similar agreement between κ and κd
c deep in the

superfluid regime. There is no Mott insulator as we move along
the line “c” in Fig. 1. Figure 6 moves along both lines “a” and
“c” in Fig. 1. The compressibilities here also show agreement
amongst themselves.

In this section we used a MFT to argue that the core com-
pressibility measures the compressibility near integer fillings
in uniform systems. We compared mean-field calculations with
QMC to show that the core compressibility can be used to track
phase transitions out of the incompressible Mott insulator state.
We also find that the core compressibility agrees with the total
compressibility even in the superfluid state provided we work
at low densities.

VI. TRAPPED SYSTEMS

We now turn to studies of the compressibility and stiffness
in a more realistic setting, the trapped Bose-Hubbard model.
We consider regimes with nonzero γ in Eq. (1). We first show
that core quantities accurately capture local quantities. Specif-
ically, we find regimes where ρd

s and κd
c accurately capture

the local stiffness and the local compressibility, respectively,
in the center of the trap. We then construct a recipe for
scaling the core compressibility. By increasing particle number
experiments can be used to access the thermodynamic limit if
measurement data can be appropriately scaled with system
size. We show that the core compressibility can be scaled with
trap strength. We conclude that the core compressibility can
be used to extract the total compressibility of a single phase at
the core of the system regardless of system size.

To compare the core and local compressibilities we ap-
proximate the size of the core region using the Thomas-
Fermi radius. In the Bose-Hubbard model a Thomas-Fermi-
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type approximation can be used to approximate the density
variation with distance near the trap center:

nTF(Ri,0) = (
μ − γR2

i,0

)/
U. (20)

We focus on parameter regimes which have a density slightly
larger than 1 near the center of the trap, for example, a
core superfluid surrounded by a Mott insulator shell with
density 1. The core region is then approximated by a specific
radius Rc which encloses sites with particle density larger
than 1. Particles are defined to be in the Thomas-Fermi core
of the sample if they sit on sites with |Ri,0| � Rc. We can
use the Thomas-Fermi approximation to estimate Rc using
nTF(RTF

c ) = 1. This yields RTF
c = √

(U − μ)/γ . We expect
RTF

c ≈ Rc when a core superfluid is surrounded by a Mott
insulator in a trap with a large number of core particles.
We stress that the core compressibility, Eq. (15), implicitly
defines the core region in terms of double occupancies but
RTF

c is an approximation we use to compare the local and core
compressibilities.

The local compressibility can be combined with our
definition of the core of the sample. By summing the local
compressibility over sites only within the core of the sample we
construct a compressibility measure of a single phase within
the trap:

κL(Rc) = 1

NRc

∑
{i|Ri,0�Rc}

κi, (21)

where NRc is the number of sites inside the sphere with radius
Rc. κL measures the compressibility near the trap center.

We can compare Eq. (21) with the core compressibility if we
include an appropriate scaling factor. The core compressibility
is defined to be a bulk quantity, summed over all sites and
normalized by Ns in Eq. (15). But the overall N−1

s factor in
Eq. (15) is not unique. To compare κd

c with κL we normalize
the core compressibility by the approximate number of sites
in the core NRc instead of Ns :

κd
c (Rc) ≡ 1

2NRc

∂

∂μ

〈
Ns∑
i

ni(ni − 1)

〉
. (22)

Here the sum is kept over all sites Ns . Because in a trapped
system the double occupancy excludes the edge sites, the sum
will then effectively run over ≈NRc

sites.
We now use QMC to compare a quantity we interpret

mathematically as the local compressibility of the sample
core, Eq. (21), and a quantity that we propose can be used to
effectively measure the core compressibility in experiments,
Eq. (22). We choose parameters so that the core of the trapped
system moves along a line equivalent to “b” in Fig. 1. Figure 7
plots the local stiffness and local density for several t/U to
show that for low t/U we have a Mott insulator in the core
but for larger t/U we have a finite superfluid density in the
core. When t/U crosses the phase boundary the density at the
trap center becomes larger than 1 and the stiffness at the center
becomes larger than zero.

Figure 8 compares Eq. (21) with Eq. (22) for the same
parameters as Fig. 7. For the core compressibility we plot
κd

c (RTF
c ). We find RTF

c ≈ 3.32 lattice spacings for these
parameters. Note that a nonzero core compressibility signals
the onset of superfluidity at the trap center. But because the
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FIG. 7. (Color online) Quantum Monte Carlo results showing the
local density (a) and superfluid stiffness (b) as a function of the
distance from the center Ri,0 for different hoppings and L = 12.
The solid lines are guides to the eye. Parameter values (μ/U = 0.76,
T/U = 0.025, and γ /U = 0.035) are chosen to host a Mott insulator
in the core for low hopping but a superfluid in the core for larger
hopping. Note that for t/U � 0.03 the system also shows a finite local
stiffness for all Ri,0 due to finite size effects. At these temperatures
and system sizes the edge superfluid couples to the core superfluid.
Double-occupancy-based measures exclude these edge effects.

edges are always compressible we see very little structure in
the total compressibility as the core of the system crosses
the phase boundary. κL(Rc) is also plotted for different core
radii. We find κL(Rc) ≈ κd

c (RTF
c ) when Rc ≈ RTF

c . Thus the
core compressibility offers a quantitatively accurate measure
of local compressibility provided we scale the definition of
core compressibility to include the same number of sites in the
core. Here we have chosen NRTF

c
because we expect NRTF

c
to

scale accurately with trapping.
The core and local superfluid stiffnesses also match near the

system center. Figure 9 compares the local stiffness to the local
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FIG. 8. (Color online) Local κL(Rc), total κ , and core κd
c (Rc)

compressibilities (a) and double occupancy (b) plotted as a function
of hopping for the same parameters as Fig. 7. The solid lines are
guides to the eye. Here we see that the total compressibility (triangles)
remains nonzero and nearly flat across the transition because the
system edges remain compressible even when low hoppings yield a
Mott insulator in the core. The local and core compressibilities show
better agreement near the transition when the same definition for the
core region is used, RTF

c = 3.32. Triple occupancies lead to deviations
between κL(3.32) and κd

c (3.32) for t/U ≈ 0.035.
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FIG. 9. (Color online) Quantum Monte Carlo results plotting the
local stiffness (circles) as a function of the distance from the trap
center for two different hoppings and L = 16. The parameters are
otherwise chosen to match Fig. 7. The solid lines are guides to the
eye. The top panel shows that strong confinement can enforce a
coupling between the core and edge superfluids to yield a nonzero
local stiffness throughout the trap. The bottom panel shows a region
of Mott insulator where the stiffness goes to zero near Ri,0 = 3.
The stiffness arising from doubly occupied sites (squares) and triply
occupied sites (triangles) are shown for comparison. The stiffness
near the trap center matches the stiffness from the doubly occupied
sites. The doubly occupied stiffness goes to zero at the trap edges.

stiffness projected onto doubly occupied sites. The local stiff-
ness in the core matches the stiffness due to doubly occupied
sites. We conclude that the superfluidity in the core is due to co-
herence among doubly occupied sites. This implies that doubly
occupied sites can also be used to observe core superfluidity.

By scaling Eq. (22) with trapping (and thus increasing
particle number) we can extract a bulk measure of core
compressibility. For large enough system sizes an appropri-
ately scaled quantity should show little variation with particle
number. Figure 10 plots Eq. (22) for several different values
of the trapping strength γ . The inset shows that for γ = 0.1
there are very few particles in the core, so the deviation from
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FIG. 10. (Color online) Rescaled core compressibility, Eq. (22),
plotted for different trap strengths as a function of hopping. The inset
plots the radial dependence of the local density for each system at
t = 0.015. The other parameter values are μ = 0.76 and T = 0.025.
The data collapse for trap strengths that allow a large core superfluid
region, γ � 0.045.

scaling is the worst in this case. But for smaller values of
γ a sufficiently large number of particles reside in the core.
The main panel in Fig. 10 indicates that Eq. (22) shows data
collapse provided enough particles reside in the core. Data
collapse for low γ indicates that here we can extract the core
compressibility in the thermodynamic limit.

In this section we have shown that the core compress-
ibility self-selects sites in the core of the sample. A local
compressibility measure relies on the selection of a finite
volume in which to measure the compressibility. The core
compressibility relies on double occupancies to self-select a
volume within the center of the trap. By rescaling a prefactor
used in the local compressibility we showed agreement
between the core and local compressibility over a wide range
of trap strengths. We have also shown agreement between the
core stiffness and the local stiffness.

VII. MEASURING CORE COMPRESSIBILITY

The core compressibility can be extracted from optical
lattice experiments to observe phase transitions [18,24].
Measurements of the core compressibility rely on variations
of the double occupancy with particle number. The core
compressibility ratio κd

c /κ is given by

κd
c

κ
= ∂〈D〉

∂μ

(
∂〈N〉
∂μ

)−1

= ∂〈D〉
∂〈N〉 . (23)

This ratio is a dimensionless quantity defined entirely in terms
of optical lattice observables because the total number of parti-
cles, 〈N〉 = Ns〈n〉, and the total double occupancy D are both
accessible from time-of-flight measurements [20,21]. Fortu-
nately, edge effects cause κ to be a smooth nonzero function in
trapped systems even across phase transitions (see, e.g., Fig. 8,
Refs. [19,24]). Thus observation of the slope of the total double
occupancy with respect to particle number reveals the core
compressibility, up to an overall factor that is nearly constant.

Figure 11 demonstrates that the core compressibility ratio
reveals the Mott insulator-superfluid transition. Here the
transition manifests in a quantity that does not rely on
microscopic definitions of the core. The core compressibility
ratio is instead defined entirely in terms of bulk values, double
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FIG. 11. (Color online) The core compressibility ratio plotted for
the same parameters as Fig. 10. The compressibility of the edges
leaves κ nearly constant as the core leaves the Mott insulator with
increasing hopping.
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occupancy, and particle number, accessible from time-of-flight
measurements.

VIII. SUMMARY

Measurements of double occupancy reveal properties at the
core of optical lattice experiments even though the experiments
come with significant spatial inhomogeneity due to trapping.
Trapping can mix states within one system. The double
occupancy offers a bulk observable that can be used to extract
information regarding the core of the sample. We defined core
quantities, the core compressibility, and the core stiffness, in
terms of double occupancy.

We focused our study on a validation of core compressibil-
ity as a useful tool in extracting compressibility from experi-
ments on trapped systems. A measure of core compressibility,
Eq. (23), can be defined entirely in terms of optical lattice
observables and therefore offers a powerful experimental
method for mapping out phase diagrams even in the presence
of trapping. We first studied the boson core compressibility
in a uniform system. We used MFT and QMC to argue that
the core compressibility defined in terms of double occupancy
excludes low densities while tracking the total compressibility.
The relationship between double-occupancy-based core and
total compressibility holds if (i) the number of particles per site
is just above unity and (ii) thermal and quantum fluctuations
do not allow significant triple occupancy.

We have also studied the core compressibility in trapped
systems. We showed that the core compressibility tracks the

change of state within the core of the system while excluding
edge effects (unlike the total compressibility which includes
edge effects). We further defined a site normalization that
allowed a comparison between local compressibility and the
core compressibility. The core and local compressibility were
shown to be essentially the same when compared over the same
number of sites. We conclude that the core compressibility
is thus a powerful but simple observational tool that can
be used to observe the same critical properties as local
compressibility.

The boson core compressibility has been tested on an
experimentally relevant model, the trapped Bose-Hubbard
model. The boson core compressibility can be applied more
generally to study transitions between a wide variety of
incompressible and compressible phases. One of the most
pressing [30] examples is the Mott insulator to Bose-Glass
transition [33].
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