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Rotons of composite fermions: Comparison between theory and experiment
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This paper reports results of our comprehensive theoretical study of the rotons of composite fermions. The
calculated roton energies at Landau-level fillings of 1/3, 2/5, and 3/7 are in excellent agreement with the
energies measured in inelastic light scattering and ballistic phonon absorption experiments.

. INTRODUCTION xiE for “He was also not accurate, being off by a factor of 2
) ) compared to experiment, but after incorporating backflow
Interacting electrons in the lowest Landau level capture aRqrectiond® and further improvement$ an excellent agree-
even number of flux quanta to form a quantum fluid of com-yent with experiment was obtained, which is recognized as
posite fermions, which has been the subject of intense invegsne of the major triumphs of the theory 8fle. No backflow
tigation over the last decade® At certain special filling fac- correction is required for the wave function in Eg),*2 and
tors this fluid is incompressible, which results in the i is not clear how one might go about modifying it. We will

- 4
phenomenon of the fractional quantum Hall eff€QHE."  geq that an understanding of the physics of the ground state
This paper is concerned with the neutral excitations of the.yntains the clue to the resolution of this puzzle.

incompressible states of composite fermions. These were a gitferent principle for obtaining the wave function of
first observed by Pinczuk and co-worketdy inelastic light  the neutral excitation suggested itself within the framework

scattering at a fi.IIin%factov= 1/3, and .subsequialnltly by Sev- of the composite fermiofCP) theory of the fractional quan-
eral groups by light® as well as ballistic phondn**scatter-  1m Hall effect®>2 A composite fermion is the bound state

ing at other filling factors as welle.g., atv=2/5, 2/3, and  qf ap electron and an even number of magnetic flux quénta

3/7). i o flux quantum is defined agy,=hc/e), formed when elec-
Theoretically, the neutral excitations of the FQHE wereyons confined to two dimensions are exposed to a strong

first ci)zn_sidered by Girvin, MacDonald, and Platzmanmagnetic field. According to this theory, the interacting elec-
(GMP)™ in 1985. By analogy to the Feynman-Bijl wave {ons at the Landau-level filling factor=n/(2pn+1), n

function for the collective excitation of superflultHe, andp being integers, transform into weakly interacting com-
posite fermions at an effective filling* = n; the ground state
XkB=xo> e %7 (1)  corresponds ta filled CF-LL’s, and the neutral excitation to
]

a particle-hole pair of composite fermions, called the CF
exciton. We shall see that the CF exciton in general has
Qeveral minima in its dispersion; at the lowest-energy mini-
mum the neutral excitation is called the fundamental CF ro-
ton (or simply the CF rotopy and the other minima are
XeMA=PLL xo, €K (2)  known as the secondary CF rotons. The Jain wave functions

i for the CF ground state and the CF exciton are constructed
by analogy to the wave functions of the electron ground state
at filling factorn, ®9°, and its exciton®;*:

they considered the so-called single-mode-approximatio
(SMA) variational wave function

for the neutral excitation of incompressible fractional quan-
tum Hall effect (FQHE) states, which will be referred to
below as the GMP mode. Helg, is the ground state wave
function, =;e”'*'i is the density operatork is the wave llfﬁf(zpnﬂ):ﬂuﬂ (Z=2)?PD P, 3
vector,r; is the position of thgth particle, andP,, is the <k
lowest Landau levelLL) projection operator. The dispersion
obtained from this was shown to have a finite energy in the
limit of small wave vectors, and to possess a minimum at a
finite wave vector, where the neutral excitation is called the
“roton,” again by analogy to“*He. Rotons are of special where z;=x;+iy; is the position of thejth particle, and
significance in the FQHE since they are the lowest-energyP . denotes the projection of the wave function into the
excitations, there being no phononlike massless mode &west Landau leveld?® and ®:* are constructed for non-
small wave vectors, and therefore determine the low teminteracting electrons, and are therefore fully known.
perature thermodynamics of the FQHE. We shall see belowr 2y, .,y and Wi, . 1) have been found to be extremely
that the wave functiory;; " is a reasonable approximation at accurate in tests against exact diagonalization results avail-
v=1/3 at small to intermediate wave vectors, but it is inad-able for small system!>® which convincingly establish
equate at filling fractions other than 1/3. Interestingly, thethe validity of the CF exciton description of the lowest-
roton energy predicted by the Feynman-Bijl wave functionenergy neutral mode fall FQHE states in the lowest Lan-

n2pn+ 1):PLLLj1;[k (zj—z) PP, 4
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dau level. Even av=1/3, the CF roton energy is approxi- ing are taken into accoutf:’® It is natural to suspect that
mately 15—-20% lower than that the lowest energy obtainedhis is caused by the ever-present disorder, for which no
in the SMA approach. quantitatively reliable theoretical treatment is available at the
There have been two developments in recent years thafoment.

have renewed interest in the question of the roton energy. It will therefore be useful to focus instead on quantities
First, and most important, there has been tremendous expetfat are not very sensitive to disorder. What are these? Since
mental progress in the measurement of the energy of thie relevant disorder potential is caused by the charged donor
roton both by inelastic Raman scattefif§and by ballistic  1ONS; itis plausible that quantities that do not involve charged

phonon absorptiof;Land its energy has been determined ateXxcitations will be less affected by disorder. One such ex-
Landau-level fillings of 1/3, 2/5, and 3/7. Second, while the@MPI€ is that of transitions between different FQBiBund

basic theoretical framework for the CF exciton has been iptates at the same filling factor, as happens, for example,

place since 1989, and many studies have established its VA€ the spin polarization of the ground state changes from
one value to another as a function of the Zeeman erférgy.

lidity over the years, it is only recently that it has become ) . .
possible to deal with large systems needed for a reliablihe other example is that of the CF roton. The disorder is not
quantitative estimation of the roton energy. We have carriedk€ly 0 affect its energy as significantly as it does the en-

out a comprehensive calculation of the roton energy at se\er9Y of the charged excitation, since the roton has a much
eral filling factors in the lowest Landau level. The finite Weaker dipolar coupling to disorder due to its overall charge

transverse thickness of the electron wave function, whicf1€utrality, and the coupling is further diminished because the

modifies the short-range part of the interaction between eleciSorder in modulation doped samples is typically smooth on

trons as a function of the distance in the two-dimensionalN€ Scale of the sizeon the order a magnetic lengtbf the

plane, has been incorporated through a self-consistent locaiPatially localized roton. There is also compelling experi-

density approximation. We note that, to our knowledge, thignental evidence for the insensitivity of the roton energy to

is the first time that the roton energy has been calculated eflisorder” the same roton energy was found for samples for
a realistic interaction potential for any filling factor, and our Which the gaps in transport experiments differed by as much

study constitutes the most reliable comparison betweefS & factor of 2.

theory and experiment even for the neutral excitationsat | "US, apart from its importance in its own right, the roton
-1/3. provides a wonderful opportunity for testing the quantitative

Another motivation for undertaking the present work is as‘validity of our understanding of the excitations of the frac-

follows. The Jain wave functions are in an extremely goodtional guantum Hall state. We find that our calculated energy

guantitative accord with the idealized computer experiment?f the CF. rotpn agrees V.V'th experiment '.[yp|ca!ly at a level of
(i.e., exact diagonalization studies on small sysiemsth 10%, Wh'Ch IS quite saUsfaqtory, espemal!y given that there
the energies of the low-lying states obtained accurately at thi§ N° adjustable parameter in the calculation. .
level of 0.1%. The comparison with the real experiments is Tr_lere have been qther theore_tlcal cglculauons of the dis-
however not as satisfactory. Quantitative tests of the theor§)"s'o" of the CF exciton, especially using the fram_ewo4r kof
of the fractional quantum Hall effect have focused in the pas he Chern-S|mqns for_mu.latlon OT composite ferm|6f’1§..
primarily on the gap tocharged excitation, namely, a far he results_ are in qyalltatlve consistency with those obtained
separated CF particle-hole pair, determined experimentallffOm the microscopic wave functions.

from the temperature dependence of the longitudinal resis-

tance. It was believed for some time that after including the Il. CALCULATIONAL METHOD

effects of transverse thickness and Landau-level mixing, the
theory gives a decent account of the experimental gap at 1/3.
This, in turn, was based on assertions that finite thickness The spherical geometfy?° will be used in our calcula-
causes almost a factor of 2 reduction in the gap, which igions, in which electrons move on the surface of a sphere
further decreased by 20—-30% due to Landau level mixingunder the presence of a radial magnetic field produced by a
with these corrections the theoretical and experimental gapmagnetic monopole at the center. The monopole strength
were in reasonable agreeméhtHowever, a more careful will be denoted byQ, which can be either an integer or a
investigation shows that the estimation of the magnitudes olalf-integer according to Dirac’s quantization condition, cor-
the various corrections was oversimplified. First of all, theresponding to a total flux of Qh/e through the surface of
transverse thickness brings about a smaller reductiothe sphere. The composite fermion theory maps the problem
(~30%) of the gap than believed earlfér'® Second, of interacting electrons & to that of composite fermions at
Landau-level mixing is not as significant an effect for sys-g=Q—p(N—1). The wave functions for interacting elec-
tems with a realistic width as it is for strictly two- trons atQ are then constructed as

dimensional systenf®?! this can be understood from the

fact that the short distance part of the effective interaction, = PLLLQDipfng (5)
which is primarily responsible for causing Landau-level mix-

ing, becomes weaker due to the finite thickness. In earlynd

estimations it was incorrectly assumed that the two effects

are additive, thereby overestimating the size of the net reduc- Ve =P PP (6)

tion in the gap. Recent calculations, believed to be more

reliable, show a substantial discrepancy between theory anidere,®, are Slater determinantal wave functions of nonin-
experiment even after finite thickness and Landau-level mixteracting electrons aj, and®, is the wave function of the

A. Wave functions
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fully occupied lowest Landau level written at a monopole u J
Yk

strengthg;=(N—1)/2, given b V.= . ST
gthq,=(N-1)/2, ¢ y V; ka TR (15)

‘DFHk (Ujo—Uyvj), (7) Using the single CF wave function as a correlated basis
: function, the wave functions of interacting electrons are writ-
where u;=cos(@/2)exp(id;/2) and v, ten in terms of Slater determinants constructed from

=sin(6,/2)exp{¢;/2). The single-particle eigenstatesopdre Yor(ry):
called the monopole harmoni&&which are given by?

Def YSF(r))]. (16)
n
Yq’n'm(rj):qun’m(_1)q+n+meiq¢ju]quvit|+m2 (—1)8 Note that duc_a to the spherical symmetry,_ t_he total angu_lar
$=0 momentumL is a good quantum number; it is preserved in

N going from the state af to the state a@Q according to the
*  \N—S[, % 1 \S prescription above, since the total angular momenturd pf
X(s )(”i o) " U ®) g Jerolitis a filled shel).

) ) . The wave function for the ground state @tis obtained
wheren=0,1, ... is theLandau-level indext=q+nisthe  from the Slater determinantal wave functiongawhich cor-
orbital angular momentum, and is thez component of the  responds ton filled Landau levels. In fact, this condition
orbital angular momentum. The normalization coefficientsfixes the relation betwee@ and the number of particles for
are v=n/(2n+1): n shells are filled foq=(N—n?)/2n, which

corresponds tdQ=(1+1/2n)N—(1+n/2) (assuming here
) and below that each electron captutem flux quanta, i.e.,
p=1). Of course, in the limit of largeN, we obtain the

) ] ) . desired filling factor ®/N—n/(2n+1).
The wave functions for noninteracting electrons are written The wave function of the excitof®*

. £ gl d . d fre L is a linear combi-
in terms of Slater determinants constructed frag(r;), nation of Slater determinants, each of which corresponds to a

DefY,(r)] (10 state obtained _by exciting an electron in ting state of the
o topmost occupied LL to then, state of the lowest unoccu-

wherea collectively denotes, n, andm. It was shown ear- pied LL. Thez component of_ the total angular momentum

lier that the process of multiplication b2 followed by ~ ¢an be chosen to be zero, with no loss of generality, so that

lowest Landau-level projection is tantamount to substituting™e™ Mh - Dgnotlngmf]he Slater determinant with a particle-
the single-electron wave function¥,(r;) in @, by the hole excitation as> ", the exciton state with a definite total

single CF wave function¥$(r;), defined a¥ angular momentunh is given by

2q+n

gq+n+m-s

(2q+2n+1)(q+n+m)!(g+n—m)!|¥?

47 (29+n)!n!

Nq,n,m:

’

O = (n+q,—my;n+g+1mp|L,0)d™, (17)
YSF(rj):PLLLl_k[ (Ujo— U )PY o (1)), (11 e e " a

) o N ) ] wheren; is the LL index of the topmost occupied CF LL,
whgre _the prime S|gr_1|f|es the conditid* . Applying the  5ng m,=—qg—n,, ...,q+n,. The CF exciton state is ob-
projection operator yieldS tained from it as explained earlier, by multiplying it ldy?
followed by lowest Landau-level projection, as in H6);
the final outcome is to make in the above wave function the
replacemeny — YCF. It is completely determined from sym-

n N metry alone, i.e., does not contain any adjustable parameter.
<N (—1)anmya-m a+rm (_l)s< ) Note that the relative amphtu_des of var|ous_SIatgr determi-
d.n.m J L) S nants(coherence factofysremain unchanged in going from

the electron exciton & to the CF exciton aQ.

It is convenient to present the results as a functiork,of
the wave vector of the planar geometry. Following the usual
approach, we shall write=L/R, whereR=\/Ql, is the ra-
where dius of the sphere, ang=\%/eB is the magnetic length.

!

szl_k[ (Ujp—vju) el eiTd, (13

[2g+p(N—-1)+1]!
[2g+p(N=1)+n+1]!

YqC.E,mu,-):eriwj[

of USUS-VI L), (12)

2q+n
g+n+m-s

B. Effective interaction

The Hamiltonian for the many electron system in a uni-
form magnetic field is given by

Uk J 2

pS (14 1 ( _ehn)

C

j

1 1
U;v—U;Ug Jdu; . —j . — .
j j j H g 4 iAV,+ c +2j¢k V(rj)+Vep,

and (18)
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where the vector potential,&(r) is given by @/2) been estimated on the order of 5-10% for typical experi-
(—vy,x,0), B is the magnitude of magnetic fieldy, is the mental parameters. We will gxtend the work of Melik-
band mass of the electroV(r) is the effective two- Alaverdian and Boneste8lto estimate the effect of Landau-
dimensional electron-electron interaction, awg., is the evel mixing on the CF roton of the 1/3 state. This is the
electron-background interaction, with the background asSimplest method for treating Landau-level mixing, and will
sumed to be comprised of a uniform positive charge. In thd€ sufficient for our purposes. In this approach, one consid-
limit of B—, the electrons are confined to the lowest Lan-€r's & variational wave function which is a linear combination
dau level; the kinetic energy becomes an irrelevant constarftf the projected and unprojected wave functions,

and drops out of the problem. In what follows, we will re- _ 5

strict the Hilbert space to the lowest Landau level except in VoY) =Pt nP1Pg, (20)

our discussion of Landau-level mixing. . and fixes the parametey by minimizing the total energy.
- IZor a strictly two-ghmenspnal system,V (rix) Now it is also necessary to compute the kinetic energy of the
=e’/(e|rj—r\|), where e is the dielectric constant of the giate | this choice of the variational wave function, how-
background material. As we will see, an important quantita,, e the ground state at=1/3, there is no Landau-level

tive correction comes from the finite transverse extent of thqn- o 24 .
; : ) ixing in since®{® is already in the lowest Landau level,
electron wave function, which alters the form of the effective 85 o s y o
so V&(y)=®1®,°, apart from an overall normalization

two-dimensional interaction at short distances. The effectiv?actor The total energy as a function of
interaction can be calculated straightforwardly from a knowl- ’ 9y 9
edge of the transverse wave functiéfz): (W () |H[P(y)

7AW (y)|V(y)
e? (2|7 £(2,)|2 <
V(r)= ?f dzlf dzz[r2+(zl—22)2]”2' (19

requires matrix elements ¢1 and unity with respect to the
projected and the unprojected state. The direct matrix ele-
The transverse wave functiafy in turn, is determined in a ments, e.g., (PLLL<I>§<1>q|H|PLLL<I>§¢>q> or
standard manner by self-consistently solving the Stinger  (®7d|H|®%d,), can be calculated in the Monte Carlo ap-
and Poisson equations, taking into acpour_ﬂ the im‘?raCtioBroximation, and will be denoted bgo andH.. . The cross
effects through the local density approximation including theelements, e-g-(PLLL‘D§¢q|H|®§<Dq>, can be written in

exc_hang_e correlation pot_ent?zil.‘l’wo geometries, single het- terms of direct matrix elements by choosing, sy 1. This
erojunction(also called triangular quanaum wedind square gives
|5

guantum well, are considered due to their experimental re
evance. To simplify the calculation, we assume that the elec- - = -

tron wave function is confined entirely on the GaAs side of H _ (A7 YHoNoF yHN; = y(1 7 7)H-N-. (22)
the heterojunction, which is a reasonably good approxima- 7 (1=¥No+yNi=y(1=y)N

tion for deep confinemergfor further details, see Ref. 19t

is stressed that neither the Jain state nor the effective inter-

action contains any adjustable parameters; the former de- N, =(¥ ()| P (). (23
pends only on the filling factor, while the latter is determined 7
from a first principles, self-consistent local-density-
approximation(LDA) calculation, with the two-dimensional

density. th e t teroiunct i kinetic energy of the unprojected CF wave functidn(x),
ensity, the sample typteterojunction or square Quantum o cause it has components in the higher, electronic Landau
well), and the known sample parameters as the only input.

. ; " levels. The total kinetic energy on the sphere is giveff b
There are various sources of error in our results. The in- ay P 9 y

trinsic error in the wave functions is a relatively small effect,

as is the statistical uncertainty in our Monte Carlo calcula- k=
tions. The error in the thermodynamic extrapolatfois also

quite small for 1/3 and 2/%on the order of 1-2% but 5
somewhat larger for 3/7~15%). This gives the level of n 1 (Qcos( 0)—i i—Q)
accuracy of our reslts for the Coulomb interaction. For the sirf(6;) J d¢;
realistic situation with finite thickness, an additional source

of error is introduced by the approximations made in the (24)
determination of the effective interaction within the frame- where w,=eB/m, is the electronic cyclotron energy. We
work of the LDA, which have been estimated to be possiblyevammeKq,(w) within each Monte Carlo step using stan-

as large as 20%. The error quoted below in our results garq techniques for evaluating derivatives numerically.
refers only to the statistical uncertainty in the Monte Carlo

sampling and thermodynamic extrapolations.

I

(21)

The termsH; andH., in Eq. (22) require calculating the

s 35| 5,
Sin(ej)(?_aj S|n(0j)[?—6j

hwe N
2Q 2

j=1

NAw,
5

D. Monte Carlo

C. Landau-level mixing The energy of the exciton at=n/(2n+1),

Another possibly significant effect is that of Landau-level (WH|WS  (WISH| W)
mixing. There have been several studies of Landau-level &X= Vex eXV - Vgs g: ,
mixing on the transport gaf%;>* and the corrections have (TSIwe) (WIwD9)

(29
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is computed by Monte Carlo methods in the spherical
geometry?® Because moving a single particle at each step of I
the Monte Carlo changes the single CF wave func6i 012t
for all particles, the wave function must be computed fully at 0.08
each step. The exciton wave function is a linear superposi- T
tion of ~N/n Slater determinants, but each of these differs 004 L
from the ground state only in one row, and the clever tech- [
niques for upgrading Slater determinaftsignificantly re- 0.00 , , ,
duce the computing time, enabling us to study reasonably v=2/5
large systemsgup to 63 composite fermions were used in the FoY ,
present study To elaborate on our updating technique, first =012 N s
let [YF]9% denote an element of the matrix for the Slater X 008 | N /// N
determinant describing the ground stateQqti.e., V. As Q2 T ANl
before, a collectively indicates orbital quantum numbers. < .04 |
Also, Iet\Ifg1h denote the composite fermion wave function r .
with CF hole (CF particle located in them,, state of the 0.00 ve3/7
n,(n,+1) Landau level: L
012 ¢ \ N /
quh:PLLLq>§q>g“h. (26) 008 | \ Saoo”
N //
Then we compute the excited state by writing 0.04 | NT— —
: Ve =1 0'000 0 05 10 15 20 25
V=2 YR am YIS W8 @) ST PR

where [YCF]QS is the transpose of the inverse matrix of FIG. 1. The dispersions of the CF excitorwat 1/3, 2/5, and 3/7

[YCF195. Then Eqs(6) and(17) are combined to give for thg pure.Coqumb interactidﬂ(r):ez/er. The §o|id curves are
the dispersion curves for the CF exciton obtained from discrete

points of finite systems, with the typical Monte Carlo uncertainty
8‘1: 2 (n¢+q,—my;ne+q-+1,my)| |_’0>\p“Q’h. (28) shown at the beginning of each curve, vyhile thg dashed curve is the
mpy dispersion of the GMP mode obtained in the single-mode approxi-
mation(SMA). The results for 1/3 are for 8 particles, with the SMA
This reduces the number of operations fra@(N®) to  results taken from S. Het al. [Phys. Rev. B50, 1823(1994)]. For
O(NZ). 2/5 and 3/7, the dispersion of the CF exciton is determined from a
The ground and excited state energies are evaluated sudtudy of systems of up to 50 particlésithout extrapolation to the
ficiently accurately to obtain a reasonable estimate for théhermodynamic limit; the extrapolation is shown in later figlres
gap, using up to 10Monte Carlo steps of the Metropolis whereas that of the GMP mode is the thermoydnamic limit, taken
algorithm. Due to the lack of edges in the spherical geometrjfom Park and JainRef. 32. The energies are given in units of
being studied, we expect that the gap will have a linear de€”/elo, wheree=12.8 is the dielectric constant of GaAs, ands
pendence ol to leading order, which is borne out by our the magnetic length.
results. A linear extrapolation to the thermodynamic limit
N~1-0 is taken after correcting the energies for the finite lll. RESULTS
sizg deviation of the d(_ens_ity from its ther_modynamic value, The dispersion of the CF exciton for 1/3, 2/5, and 3/7 is
which amounts to multlplymg.the chord @stgnce by the fac'shown in Fig. 1 for the pure Coulomb interactiof(r)
tor Vpn/p=yN/2Qv, wherep is the density in the thermo- - _ ez Also shown for comparison is the dispersion of the

dynamic limit and py is the density for theN particle  Gyp mode obtained in the single mode approximatfon.
systent:' In other words, the chord d|stance_Rmin (The SMA requires a knowledge of the ground-state wave
—Ujvi| between two electrons on the spheR lgeing the  ction: the wave function?9° was used for this purpose.
radius of the sphejeis identified with the thermodynamic 5 the same ground state is used for both the CF exciton
distance and the GMP mode, and any energy difference between them
comes entirely from the use of different wave functions for
/2N the excitation. It has been known that the SMA does not
ri—ril=lo 7|uivi —ujoil. (29 gescribe the lowest energy excitation for large wave vectors
(klp>1).22 (We note, however, that the GMP mode is likely
The LDA interactionV pa(|ri—r;|) is determined for an to be of experimental significance, and may appear as a
infinite planar system, and the above prescription is used ibroad additional peak in inelastic light scattering
evaluating the interaction energy in our Monte Carlo calcu-experiments?) We find that even at small wave vectors the
lations in the spherical geometry. All results below are ther-CF exciton has a lower energy than the GMP mode, although
modynamic extrapolations, unless mentioned otherwise. Ththe difference here is less dramatic.
energies are quoted in units ef/ el . It is illuminating to discuss in what physical send&*
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FIG. 2. The dispersions of the CF excitonat 3/7 for a zero 0.03
width system, for a heterojunctiawith density 1.5< 10 cm?), /zz;}g
and for a square quantum well of width 30 nmith density 0.5

X 10 cm™2). The dispersions are for a system of 63 composite
fermions, obtained by interpolation through the discretealues
available in the study.

and ygM*

0.01 T .
0.00 0.02 0.04 0.06 0.08 0.10 0.12

1/N

FIG. 4. N dependence of the energies of certain fundamental and
are different. The latter treats all electrons in thesecondary CF rotong&diamonds and circl¢s and of the exciton

ground states in an equivalent manner, whereas the formenergy in the long-wavelength limisquares for a heterojunction
excites only a composite fermion from the topmost Landawsample with electron density=1.5x 10" cm™?. The parameters

level. This clarifies why the two are most similar at 1i8
fact, identical in the limit ok— 0 (Ref. 34] where only one

correspond to an experiment of Mellet al®

SMA
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CF LL is occupied. Further, iy, the application of the
density operator degrades the correlations in the ground
state, but inP¢* the correlations between electroftsrough

the Jastrow factgrare built inafter creating the excitation in
®,,, which, as shown by our results, is a more accurate ap-
proach. It is not surprising that an understanding of the phys-
ics of the ground state is crucial for an understanding of the
excitations as well.

Figure 2 shows that the finite thickness of the wave func-
tion reduces the energy of the exciton significantly. Of spe-
cial interest are the energy of the CF exciton in the limit
klo—0 and the energies of the fundamental and secondary
rotons. The thermodynamic limit of these energies are ob-
tained by an extrapolation of the energies obtained from fi-
nite systems, as shown in Figs. 3 and 4. Since only discrete
values ofk are available at finit&l, the energy of the roton is

TABLE I. Energies of the CF roton and the long-wavelength
neutral excitation at 1/3, 2/5, and 3/7, for a strictly two-dimensional
system, in units ofe?/el,. Also given is an estimate for the CF
roton “mass,” mg=uxme\VB[T], defined in Eq(30), wherem, is
the electron mass in vacuum. The statistical uncertainty in the last
digit(s) is shown in parentheses.

FIG. 3. N dependence of the energies of the fundamental antﬂ(l -0
0=

secondary CF roton@iamonds and circlesand of the exciton en-
ergy in the long-wavelength limisquares For eachN, the energy
of the rotons is obtained by fitting a parabola through three or more

points in the vicinity of the minimum. The energy in the thermody- roton

namic limit is ascertained by a linear fit through the energies as a
function of 1N. The parameters correspond to the experiment of

Mode v Energy MR
1/3 0.15 -
2/5 0.0871) -
3/7 0.0685) -
1/3 0.066L) 0.00793)
2/5 0.0371) 0.009a12)
3/7 0.0273) 0.009532)

Kanget al. (Ref. 7).
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FIG. 5. The energies of the fundamental and the secondary ro-
tons(solid and dash-dotted lines, respectiyedynd of the CF exci-
ton in the long-wavelength limiidashed lingas a function of the
density for a heterojunction. Experimental energies are also show
taken from Refs. 8(circle), 9 (diamond, 10 (square, and 11
(down-triangle; the filled symbols correspond to the roton, and the

empty ones to the long-wavelength mode.

n

p[10"em™]

FIG. 7. Same as in Fig. 6 but for quantum wells of width 25 and
30 nm. The experimental results are taken from Refsup-
ttiangle and 6 (right-triangle; the filled (empty symbols corre-
spond to the rotoiflong-wavelength mode

obtained by fitting the points near the minimum to a para-
bolic dispersion

h2(k—kg)?
SQW 15nm SQW 20nm EX: A —M— (30
= — 1& — 2mg
o \
012 [ ™~o 1/3 BANY 1/3
i \\\\ 1 RN for eachN, and then extrapolating to the thermodynamic
0.08 | 11 Tl limit. We note that it becomes necessary to go to larger sys-
\ ] tems as the effective filling of composite fermions increases;
0.04 | ] \ for example, forv=23/7, it was important to study up to 63
I T I TABLE Il. Comparison of theory and experiment for the roton
— 0.07 r \\\\2/5 \\\ 25 energy as well as the energy of the long-wavelength exciton, quoted
= r T \\\ in units ofe?/ el 5. In Ref. 9, the roton energies were determined for
NB 0.05 T~ 11~ T 2/3, 3/5, and 4/7, which, assuming particle-hole symmetry, are the
.zl. 0.03 s& & same as the roton energies at 1/3, 2/5, and 3/7, when measured in
Tl 11 . units of e?/ el .
0.06 F klo=0 Roton
v experiment theory experiment theory  Reference
0.047 13 0082 0.104) 0044  0.0501) 6
0.084 0.1181) - 0.0521) 5
0.02 - 0.0902) 0.0412)  0.0451) 9
00 20 40 00 20 40 0074  0.09%) 0047  0.0471) 8
11 -2 - 0.0921 0.0345) 0.0451) 10
p[10 cm ] ) q
FIG. 6. The energies of the fundamental and the secondary rc/> N 0.0541)  0.0212) 0.0241) 9
tons(solid and dash-dotted lines, respectiyeiynd of the CF exci- - 0.0581) 0.0283)  0.0271) 11
ton in the long-wavelength limifdashed lingas a function of den-
sity for the square-quantum-well geometry for two different 3/7 - 0.0442) 0.0142) 0.0172) 9

quantum-well widths.
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20.0 - probed by the Raman scattering in this c¥s€.In exact
v=1/3 diagonalization studies it has not been possible to obtain de-
~— Roton Gap finitive information regarding these issues due to the rather
< [ «—— Transport Gap -
c 150 small system sizes.
‘o While the ballistic phonon absorption experiments di-
g \ rectly measure the minimum ener@ye., the energy of the
< 100 \ fundamental roton*® the Raman experiments ideally probe
9 1 \ the klp—0 limit of the CF exciton dispersion, the wave-
o \ AN length of the light being much larger thdp. However, a
% 50 F A N breakdown of momentum conservation due to the presence
o AN of disorder can activate rotons as wéllas a result of a
\\\:‘\, singularity in the density of states. This has been crucial in
0.0 , . explaining multiple peaks in the Raman spectra for the
0.0 2.0 40 . 60 8.0 10.0 inter-LL excitations. Atyr=1/3, a low-energy Raman peak
p[10 cm’] has been interpreted as the roféhRecently, Kanget al’

Iso observed modes at 2/5 and 3/7, at energies of

2 2 ; ; :
mixing both for the fundamental rotofupper curvg and the acti- -03%/ el and 0.008% el o, respectively, which they inter-
vation gap(lower curve at v=1/3. The Landau-level mixing has pret a,s the long wavelength neutral mode. Our calculated
been treated as explained in the text. The results correspond to tif&1€rgies at 2/5 and 3/7 for a quantum well of width 30 nm
heterojunction geometry, for a ten-electron system. The filled symand density p=5.4X 10" cm 2 are 0.031(3§/el, and
bols correspond to the pure Coulomb interaction. 0.021(3% ely, respectively, for the roton, and

0.070(1k? el and 0.056(38?/ el , for the kl,=0 CF exci-

particles to obtain a reliable thermodynamic estimate. Thdon. At 2/5, the energy of the observed excitation is consis-
energies in thél,—0 limit and at the roton minimum are tent not only with the calculated roton energy but also with
given in Table |, along withm%, for a strictly two- those measured in ballistic phonon absorption experiments,
dimensional system, i.e., for the pure Coulomb interaction. and substantially smaller than the calculatdg—0 limit,
Figures 5, 6, and 7 plot the energy of the fundamental ana#hich might suggest an identification with the fundamental
a secondary CF roton and the long-wavelength CF excitorioton. We note here that the observation of the 1/3 roton
for heterojunction and square quantum-well geometries as implies that the violation of the momentum conservation is
function of the density, with finite thickness effects includedsufficiently widespread as to render the fundamental rotons
in self-consistent LDA, as discussed above. It also depictat 2/5 and 3/7 observable as well, which occur at roughly the
the experimental energies determined from ballistic phonosame wave vectorsk{,~1.6—1.7) as the 1/3 rotonk{j
absorption(at 1/3, 2/5, and 3)7as well as in inelastic light ~1.4). The energy of the 3/7 mode of Ref. 7 is anomalously
scattering experimeni@t 1/3. A more detailed comparison |ow, however. Further work will be required to ascertain the
is given in Table II. ] . . _ precise nature of these new Raman modes; an experimental
For the CF roton, the theoretical energies, obtained withyservation of multiple peaks, possible due to the existence

no adjustable parameters, are in excellent ag_reement With the several rotons and maxons, will be especially helpful in
observed ones. One may worry that the situation will be

spoiled by Landau-level mixing. This turns out not to be theda”fymg this issue.
case. As shown in Fig. 8, the LL-mixing corrections are on
the order of 5-10 % for typical densities, consistent with a
similar conclusion for the transport gdb?! As mentioned
earlier, the effect of Landau-level mixing on the gap dimin- ] o ) ]
ishes fast as one goes from an ideal two-dimensional system OUur main conclusion is that the composite-fermion theory
to a realistic system with finite thickness. The high degree oProvides an excellent account of the observed energy of the
agreement between theory and experiment also confirms th&F roton with no adjustable parameters. This is possible be-
the roton energies are not as significantly affected by disorc@use of the insensitivity of the roton energy to disorder.
der as those of the charged excitations.

In the small-wave-vector limit, the experimental and the-
oretical energies at 1/3 are off by30%. Given our experi-
ence with the roton, it is tempting to suspect that this dis-
crepancy is real. Here, exact diagonalization studies indicate We are grateful to Professor Aron Pinczuk for communi-
that the energy of the CF exciton comes close to other excieating his results to us prior to publication and for the con-
tations, and it is likely that the energy of the CF exciton will tinuous exchange of information, and to Xiaomin Zu for nu-
be significantly lowered due toomposite-fermiof.L. mix- merous helpful discussions. This work was supported in part
ing. Such a CF-LL mixing will occur through screening by by the National Science Foundation under Grant No. DMR-
other excitons, and is related to earlier suggestfotfshatat  9986806. We are grateful to the Numerically Intensive Com-
small wave vectors the true lowest energy excitation may b@uting Group led by V. Agarwala, J. Holmes, and J. Nuccia-
a quadrupolar excitation containing a bound paitwé ro-  rone at the Penn State University CAC for computing time
tons. There has been debate as to which excitation is beirand assistance at the LION-X cluster.

FIG. 8. The percent change in the energy due to Landau-lev
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