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Rotons of composite fermions: Comparison between theory and experiment

Vito W. Scarola, Kwon Park, and Jainendra K. Jain
Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

~Received 27 December 1999!

This paper reports results of our comprehensive theoretical study of the rotons of composite fermions. The
calculated roton energies at Landau-level fillings of 1/3, 2/5, and 3/7 are in excellent agreement with the
energies measured in inelastic light scattering and ballistic phonon absorption experiments.
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I. INTRODUCTION

Interacting electrons in the lowest Landau level capture
even number of flux quanta to form a quantum fluid of co
posite fermions, which has been the subject of intense in
tigation over the last decade.1–3 At certain special filling fac-
tors this fluid is incompressible, which results in th
phenomenon of the fractional quantum Hall effect~FQHE!.4

This paper is concerned with the neutral excitations of
incompressible states of composite fermions. These w
first observed by Pinczuk and co-workers5,6 by inelastic light
scattering at a filling factorn51/3, and subsequently by sev
eral groups by light7,8 as well as ballistic phonon9–11 scatter-
ing at other filling factors as well~e.g., atn52/5, 2/3, and
3/7!.

Theoretically, the neutral excitations of the FQHE we
first considered by Girvin, MacDonald, and Platzm
~GMP!12 in 1985. By analogy to the Feynman-Bijl wav
function for the collective excitation of superfluid4He,

xk
FB5x0(

j
e2 ik•r j ~1!

they considered the so-called single-mode-approxima
~SMA! variational wave function

xk
SMA5PLLL x0(

j
e2 ik•r j ~2!

for the neutral excitation of incompressible fractional qua
tum Hall effect ~FQHE! states, which will be referred to
below as the GMP mode. Herex0 is the ground state wav
function, ( je

2 ik•r j is the density operator,k is the wave
vector,r j is the position of thej th particle, andPLLL is the
lowest Landau level~LL ! projection operator. The dispersio
obtained from this was shown to have a finite energy in
limit of small wave vectors, and to possess a minimum a
finite wave vector, where the neutral excitation is called
‘‘roton,’’ again by analogy to4He. Rotons are of specia
significance in the FQHE since they are the lowest-ene
excitations, there being no phononlike massless mode
small wave vectors, and therefore determine the low te
perature thermodynamics of the FQHE. We shall see be
that the wave functionxk

SMA is a reasonable approximation
n51/3 at small to intermediate wave vectors, but it is ina
equate at filling fractions other than 1/3. Interestingly, t
roton energy predicted by the Feynman-Bijl wave functi
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xk
FB for 4He was also not accurate, being off by a factor o

compared to experiment, but after incorporating backfl
corrections13 and further improvements,14 an excellent agree
ment with experiment was obtained, which is recognized
one of the major triumphs of the theory of4He. No backflow
correction is required for the wave function in Eq.~2!,12 and
it is not clear how one might go about modifying it. We wi
see that an understanding of the physics of the ground s
contains the clue to the resolution of this puzzle.

A different principle for obtaining the wave function o
the neutral excitation suggested itself within the framewo
of the composite fermion~CF! theory of the fractional quan
tum Hall effect.3,1,2 A composite fermion is the bound sta
of an electron and an even number of magnetic flux quant~a
flux quantum is defined asf05hc/e), formed when elec-
trons confined to two dimensions are exposed to a str
magnetic field. According to this theory, the interacting ele
trons at the Landau-level filling factorn5n/(2pn61), n
andp being integers, transform into weakly interacting com
posite fermions at an effective fillingn* 5n; the ground state
corresponds ton filled CF-LL’s, and the neutral excitation to
a particle-hole pair of composite fermions, called the C
exciton. We shall see that the CF exciton in general
several minima in its dispersion; at the lowest-energy m
mum the neutral excitation is called the fundamental CF
ton ~or simply the CF roton!, and the other minima are
known as the secondary CF rotons. The Jain wave funct
for the CF ground state and the CF exciton are construc
by analogy to the wave functions of the electron ground s
at filling factor n, Fn

gs , and its exciton,Fn
ex :

Cn/~2pn11!
gs 5PLLL)

j ,k
~zj2zk!

2pFn
gs , ~3!

Cn/~2pn11!
ex 5PLLL)

j ,k
~zj2zk!

2pFn
ex , ~4!

where zj5xj1 iy j is the position of thej th particle, and
PLLL denotes the projection of the wave function into t
lowest Landau level.Fn

gs and Fn
ex are constructed for non

interacting electrons, and are therefore fully know
Cn/(2pn11)

gs andCn/(2pn11)
ex have been found to be extreme

accurate in tests against exact diagonalization results a
able for small systems,3,15,16 which convincingly establish
the validity of the CF exciton description of the lowes
energy neutral mode forall FQHE states in the lowest Lan
13 064 ©2000 The American Physical Society
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PRB 61 13 065ROTONS OF COMPOSITE FERMIONS: COMPARISON . . .
dau level. Even atn51/3, the CF roton energy is approx
mately 15–20% lower than that the lowest energy obtai
in the SMA approach.1

There have been two developments in recent years
have renewed interest in the question of the roton ene
First, and most important, there has been tremendous ex
mental progress in the measurement of the energy of
roton both by inelastic Raman scattering5–8 and by ballistic
phonon absorption,9–11and its energy has been determined
Landau-level fillings of 1/3, 2/5, and 3/7. Second, while t
basic theoretical framework for the CF exciton has been
place since 1989, and many studies have established its
lidity over the years, it is only recently that it has becom
possible to deal with large systems needed for a relia
quantitative estimation of the roton energy. We have carr
out a comprehensive calculation of the roton energy at s
eral filling factors in the lowest Landau level. The fini
transverse thickness of the electron wave function, wh
modifies the short-range part of the interaction between e
trons as a function of the distance in the two-dimensio
plane, has been incorporated through a self-consistent lo
density approximation. We note that, to our knowledge, t
is the first time that the roton energy has been calculated
a realistic interaction potential for any filling factor, and o
study constitutes the most reliable comparison betw
theory and experiment even for the neutral excitation an
51/3.

Another motivation for undertaking the present work is
follows. The Jain wave functions are in an extremely go
quantitative accord with the idealized computer experime
~i.e., exact diagonalization studies on small systems!, with
the energies of the low-lying states obtained accurately at
level of 0.1%. The comparison with the real experiments
however not as satisfactory. Quantitative tests of the the
of the fractional quantum Hall effect have focused in the p
primarily on the gap tochargedexcitation, namely, a far
separated CF particle-hole pair, determined experiment
from the temperature dependence of the longitudinal re
tance. It was believed for some time that after including
effects of transverse thickness and Landau-level mixing,
theory gives a decent account of the experimental gap at
This, in turn, was based on assertions that finite thickn
causes almost a factor of 2 reduction in the gap, which
further decreased by 20–30 % due to Landau level mixi
with these corrections the theoretical and experimental g
were in reasonable agreement.17 However, a more carefu
investigation shows that the estimation of the magnitude
the various corrections was oversimplified. First of all, t
transverse thickness brings about a smaller reduc
(;30%) of the gap than believed earlier.18,19 Second,
Landau-level mixing is not as significant an effect for sy
tems with a realistic width as it is for strictly two
dimensional systems;20,21 this can be understood from th
fact that the short distance part of the effective interacti
which is primarily responsible for causing Landau-level m
ing, becomes weaker due to the finite thickness. In e
estimations it was incorrectly assumed that the two effe
are additive, thereby overestimating the size of the net red
tion in the gap. Recent calculations, believed to be m
reliable, show a substantial discrepancy between theory
experiment even after finite thickness and Landau-level m
d
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ing are taken into account.18,19 It is natural to suspect tha
this is caused by the ever-present disorder, for which
quantitatively reliable theoretical treatment is available at
moment.

It will therefore be useful to focus instead on quantiti
that are not very sensitive to disorder. What are these? S
the relevant disorder potential is caused by the charged d
ions, it is plausible that quantities that do not involve charg
excitations will be less affected by disorder. One such
ample is that of transitions between different FQHEground
states at the same filling factor, as happens, for exam
when the spin polarization of the ground state changes f
one value to another as a function of the Zeeman energ22

The other example is that of the CF roton. The disorder is
likely to affect its energy as significantly as it does the e
ergy of the charged excitation, since the roton has a m
weaker dipolar coupling to disorder due to its overall cha
neutrality, and the coupling is further diminished because
disorder in modulation doped samples is typically smooth
the scale of the size~on the order a magnetic length! of the
spatially localized roton. There is also compelling expe
mental evidence for the insensitivity of the roton energy
disorder:9 the same roton energy was found for samples
which the gaps in transport experiments differed by as m
as a factor of 2.

Thus, apart from its importance in its own right, the rot
provides a wonderful opportunity for testing the quantitati
validity of our understanding of the excitations of the fra
tional quantum Hall state. We find that our calculated ene
of the CF roton agrees with experiment typically at a level
10%, which is quite satisfactory, especially given that th
is no adjustable parameter in the calculation.

There have been other theoretical calculations of the
persion of the CF exciton, especially using the framework
the Chern-Simons formulation of composite fermions.23,24

The results are in qualitative consistency with those obtai
from the microscopic wave functions.

II. CALCULATIONAL METHOD

A. Wave functions

The spherical geometry25,26 will be used in our calcula-
tions, in which electrons move on the surface of a sph
under the presence of a radial magnetic field produced b
magnetic monopole at the center. The monopole stren
will be denoted byQ, which can be either an integer or
half-integer according to Dirac’s quantization condition, co
responding to a total flux of 2Qh/e through the surface o
the sphere. The composite fermion theory maps the prob
of interacting electrons atQ to that of composite fermions a
q5Q2p(N21). The wave functions for interacting elec
trons atQ are then constructed as

CQ
gs5PLLLF1

2pFq
gs ~5!

and

CQ,L
ex 5PLLLF1

2pFq,L
ex . ~6!

Here,Fq are Slater determinantal wave functions of non
teracting electrons atq, andF1 is the wave function of the
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fully occupied lowest Landau level written at a monopo
strengthq15(N21)/2, given by

F15)
j ,k

~ujvk2ukv j !, ~7!

where uj[cos(uj/2)exp(2ifj/2) and v j
[sin(uj/2)exp(ifj/2). The single-particle eigenstates atq are
called the monopole harmonics,26 which are given by15

Yq,n,m~r j !5Nq,n,m~21!q1n1meiqf juj
q2mv j

q1m(
s50

n

~21!s

3S n

sD S 2q1n

q1n1m2sD ~v j* v j !
n2s~uj* uj !

s, ~8!

wheren50,1, . . . is theLandau-level index,l 5q1n is the
orbital angular momentum, andm is thez component of the
orbital angular momentum. The normalization coefficie
are

Nq,n,m5F ~2q12n11!~q1n1m!! ~q1n2m!!

4p~2q1n!!n! G1/2

. ~9!

The wave functions for noninteracting electrons are writ
in terms of Slater determinants constructed fromYa(r j ),

Det@Ya~r j !#, ~10!

wherea collectively denotesq, n, andm. It was shown ear-
lier that the process of multiplication byF1

2p followed by
lowest Landau-level projection is tantamount to substitut
the single-electron wave functionsYa(r j ) in Fq by the
single CF wave functionsYa

CF(r j ), defined as16

Ya
CF~r j !5PLLL)

k

8

~ujvk2ukv j !
pYa~r j !, ~11!

where the prime signifies the conditionkÞ j . Applying the
projection operator yields16

Yq,n,m
CF ~r j !5Jj

peiqf jF @2q1p~N21!11#!

@2q1p~N21!1n11#! G
3Nq,n,m~21!q1n1muj

q2mv j
q1m(

s50

n

~21!sS n

sD
3S 2q1n

q1n1m2sD v j
n2suj

s@Ū j
s
•V̄j

n2s
•1#, ~12!

where

Jj[)
k

8

~ujvk2v juk!e
( i /2)(f j 1fk), ~13!

Ū j[p(
k

8 vk

ujvk2v juk
1

]

]uj
, ~14!

and
s

n

g

V̄j[p(
k

8 2uk

ujvk2v juk
1

]

]v j
. ~15!

Using the single CF wave function as a correlated ba
function, the wave functions of interacting electrons are w
ten in terms of Slater determinants constructed fr
Ya

CF(r j ):

Det@Ya
CF~r j !#. ~16!

Note that due to the spherical symmetry, the total angu
momentumL is a good quantum number; it is preserved
going from the state atq to the state atQ according to the
prescription above, since the total angular momentum ofF1
is zero~it is a filled shell!.

The wave function for the ground state atQ is obtained
from the Slater determinantal wave function atq which cor-
responds ton filled Landau levels. In fact, this condition
fixes the relation betweenQ and the number of particles fo
n5n/(2n11): n shells are filled forq5(N2n2)/2n, which
corresponds toQ5(111/2n)N2(11n/2) ~assuming here
and below that each electron capturestwo flux quanta, i.e.,
p51). Of course, in the limit of largeN, we obtain the
desired filling factor 2Q/N→n/(2n11).

The wave function of the excitonFq,L
ex is a linear combi-

nation of Slater determinants, each of which corresponds
state obtained by exciting an electron in themh state of the
topmost occupied LL to theme state of the lowest unoccu
pied LL. The z component of the total angular momentu
can be chosen to be zero, with no loss of generality, so
me5mh . Denoting the Slater determinant with a particl
hole excitation asFq

mh , the exciton state with a definite tota
angular momentumL is given by

Fq,L
ex 5(

mh

^nt1q,2mh ;nt1q11,mhuL,0&Fq
mh , ~17!

wherent is the LL index of the topmost occupied CF LL
and mh52q2nt , . . . ,q1nt . The CF exciton state is ob
tained from it as explained earlier, by multiplying it byF1

2

followed by lowest Landau-level projection, as in Eq.~6!;
the final outcome is to make in the above wave function
replacementY→YCF. It is completely determined from sym
metry alone, i.e., does not contain any adjustable param
Note that the relative amplitudes of various Slater deter
nants~coherence factors! remain unchanged in going from
the electron exciton atq to the CF exciton atQ.

It is convenient to present the results as a function ok,
the wave vector of the planar geometry. Following the us
approach, we shall writek5L/R, whereR5AQl0 is the ra-
dius of the sphere, andl 05A\/eB is the magnetic length.

B. Effective interaction

The Hamiltonian for the many electron system in a u
form magnetic field is given by

H5
1

2mb
(

i
S 2 i\¹W i1

eAW ~r i !

c
D 2

1
1

2 (
j Þk

V~r jk!1Ve-b ,

~18!
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where the vector potentialAW (r ) is given by (B/2)
(2y,x,0), B is the magnitude of magnetic field,mb is the
band mass of the electron,V(r ) is the effective two-
dimensional electron-electron interaction, andVe-b is the
electron-background interaction, with the background
sumed to be comprised of a uniform positive charge. In
limit of B→`, the electrons are confined to the lowest La
dau level; the kinetic energy becomes an irrelevant cons
and drops out of the problem. In what follows, we will r
strict the Hilbert space to the lowest Landau level excep
our discussion of Landau-level mixing.

For a strictly two-dimensional system,V2D(r jk)
5e2/(eur j2r ku), where e is the dielectric constant of th
background material. As we will see, an important quant
tive correction comes from the finite transverse extent of
electron wave function, which alters the form of the effecti
two-dimensional interaction at short distances. The effec
interaction can be calculated straightforwardly from a kno
edge of the transverse wave functionj(z):

V~r !5
e2

e E dz1E dz2

uj~z1!u2uj~z2!u2

@r 21~z12z2!2#1/2
. ~19!

The transverse wave functionj, in turn, is determined in a
standard manner by self-consistently solving the Schro¨dinger
and Poisson equations, taking into account the interac
effects through the local density approximation including
exchange correlation potential.27 Two geometries, single het
erojunction~also called triangular quanaum well! and square
quantum well, are considered due to their experimental
evance. To simplify the calculation, we assume that the e
tron wave function is confined entirely on the GaAs side
the heterojunction, which is a reasonably good approxim
tion for deep confinement~for further details, see Ref. 19!. It
is stressed that neither the Jain state nor the effective in
action contains any adjustable parameters; the former
pends only on the filling factor, while the latter is determin
from a first principles, self-consistent local-densit
approximation~LDA ! calculation, with the two-dimensiona
density, the sample type~heterojunction or square quantu
well!, and the known sample parameters as the only inp

There are various sources of error in our results. The
trinsic error in the wave functions is a relatively small effe
as is the statistical uncertainty in our Monte Carlo calcu
tions. The error in the thermodynamic extrapolation28 is also
quite small for 1/3 and 2/5~on the order of 1–2 %!, but
somewhat larger for 3/7 (;15%). This gives the level o
accuracy of our reslts for the Coulomb interaction. For
realistic situation with finite thickness, an additional sour
of error is introduced by the approximations made in
determination of the effective interaction within the fram
work of the LDA, which have been estimated to be possi
as large as 20%.29 The error quoted below in our resul
refers only to the statistical uncertainty in the Monte Ca
sampling and thermodynamic extrapolations.

C. Landau-level mixing

Another possibly significant effect is that of Landau-lev
mixing. There have been several studies of Landau-le
mixing on the transport gap,20,21 and the corrections hav
-
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been estimated on the order of 5–10 % for typical expe
mental parameters. We will extend the work of Meli
Alaverdian and Bonesteel20 to estimate the effect of Landau
level mixing on the CF roton of the 1/3 state. This is t
simplest method for treating Landau-level mixing, and w
be sufficient for our purposes. In this approach, one con
ers a variational wave function which is a linear combinati
of the projected and unprojected wave functions,

CQ~g!5~PLLL1g!F1
2Fq , ~20!

and fixes the parameterg by minimizing the total energy.
Now it is also necessary to compute the kinetic energy of
state. In this choice of the variational wave function, ho
ever, the ground state atn51/3, there is no Landau-leve
mixing in sinceF1

2Fq is already in the lowest Landau leve
so CQ

gs(g)5F1
2Fq

gs , apart from an overall normalization
factor. The total energy as a function ofg,

H̄g5
^C~g!uHuC~g!&

^C~g!uC~g!&
, ~21!

requires matrix elements ofH and unity with respect to the
projected and the unprojected state. The direct matrix
ments, e.g., ^PLLLF1

2FquHuPLLLF1
2Fq& or

^F1
2FquHuF1

2Fq&, can be calculated in the Monte Carlo a

proximation, and will be denoted byH̄0 andH̄` . The cross
elements, e.g.,̂ PLLLF1

2FquHuF1
2Fq&, can be written in

terms of direct matrix elements by choosing, say,g51. This
gives

H̄g5
~12g!H̄0N01gH̄1N12g~12g!H̄`N`

~12g!N01gN12g~12g!N`
, ~22!

where

Ng5^C~g!uC~g!&. ~23!

The termsH̄1 and H̄` in Eq. ~22! require calculating the
kinetic energy of the unprojected CF wave function,C(`),
because it has components in the higher, electronic Lan
levels. The total kinetic energy on the sphere is given by26

K5
\vc

2Q (
j 51

N F 21

sin~u j !

]

]u j
S sin~u j !

]

]u j
D

1
1

sin2~u j !
S Q cos~u j !2 i

]

]f j
2QD 2G2

N\vc

2
,

~24!

where\vc5eB/mb is the electronic cyclotron energy. W
evaluateKC(`) within each Monte Carlo step using sta
dard techniques for evaluating derivatives numerically.

D. Monte Carlo

The energy of the exciton atn5n/(2n11),

Dex5
^Cn

exuHuCn
ex&

^Cn
exuCn

ex&
2

^Cn
gsuHuCn

gs&

^Cn
gsuCn

gs&
, ~25!
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is computed by Monte Carlo methods in the spheri
geometry.25 Because moving a single particle at each step
the Monte Carlo changes the single CF wave functionYCF

for all particles, the wave function must be computed fully
each step. The exciton wave function is a linear superp
tion of ;N/n Slater determinants, but each of these diffe
from the ground state only in one row, and the clever te
niques for upgrading Slater determinants30 significantly re-
duce the computing time, enabling us to study reasona
large systems~up to 63 composite fermions were used in t
present study!. To elaborate on our updating technique, fi
let @YCF#a, j

gs denote an element of the matrix for the Sla
determinant describing the ground state atQ, i.e., CQ

gs . As
before, a collectively indicates orbital quantum number
Also, let CQ

mh denote the composite fermion wave functio
with CF hole ~CF particle! located in themh state of the
nt(nt11) Landau level:

CQ
mh5PLLLF1

2Fq
mh . ~26!

Then we compute the excited state by writing

CQ
mh5(

j 51

N

Ynt11,mh

CF ~r j !@YCF# (nt ,mh), j
gs CQ

gs , ~27!

where @YCF#gs is the transpose of the inverse matrix
@YCF#gs. Then Eqs.~6! and ~17! are combined to give

CQ,L
ex 5(

mh

^nt1q,2mh ;nt1q11,mhuL,0&CQ
mh . ~28!

This reduces the number of operations fromO(N3) to
O(N2).

The ground and excited state energies are evaluated
ficiently accurately to obtain a reasonable estimate for
gap, using up to 107 Monte Carlo steps of the Metropoli
algorithm. Due to the lack of edges in the spherical geome
being studied, we expect that the gap will have a linear
pendence onN21 to leading order, which is borne out by ou
results. A linear extrapolation to the thermodynamic lim
N21→0 is taken after correcting the energies for the fin
size deviation of the density from its thermodynamic valu
which amounts to multiplying the chord distance by the fa
tor ArN /r5AN/2Qn, wherer is the density in the thermo
dynamic limit and rN is the density for theN particle
system.31 In other words, the chord distance 2Ruuiv j
2ujv i u between two electrons on the sphere (R being the
radius of the sphere! is identified with the thermodynami
distance

ur i2r j u5 l 0A2N

n
uuiv j2ujv i u. ~29!

The LDA interactionVLDA(ur i2r j u) is determined for an
infinite planar system, and the above prescription is use
evaluating the interaction energy in our Monte Carlo cal
lations in the spherical geometry. All results below are th
modynamic extrapolations, unless mentioned otherwise.
energies are quoted in units ofe2/e l 0.
l
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III. RESULTS

The dispersion of the CF exciton for 1/3, 2/5, and 3/7
shown in Fig. 1 for the pure Coulomb interactionV(r )
5e2/er. Also shown for comparison is the dispersion of t
GMP mode obtained in the single mode approximation32

~The SMA requires a knowledge of the ground-state wa
function; the wave functionCgs was used for this purpose
Thus the same ground state is used for both the CF exc
and the GMP mode, and any energy difference between t
comes entirely from the use of different wave functions
the excitation.! It has been known that the SMA does n
describe the lowest energy excitation for large wave vec
(kl0.1).12 ~We note, however, that the GMP mode is like
to be of experimental significance, and may appear a
broad additional peak in inelastic light scatterin
experiments.32! We find that even at small wave vectors th
CF exciton has a lower energy than the GMP mode, altho
the difference here is less dramatic.33

It is illuminating to discuss in what physical senseCk
ex

FIG. 1. The dispersions of the CF exciton atn51/3, 2/5, and 3/7
for the pure Coulomb interactionV(r )5e2/er . The solid curves are
the dispersion curves for the CF exciton obtained from discr
points of finite systems, with the typical Monte Carlo uncertain
shown at the beginning of each curve, while the dashed curve is
dispersion of the GMP mode obtained in the single-mode appr
mation~SMA!. The results for 1/3 are for 8 particles, with the SM
results taken from S. Heet al. @Phys. Rev. B50, 1823~1994!#. For
2/5 and 3/7, the dispersion of the CF exciton is determined from
study of systems of up to 50 particles~without extrapolation to the
thermodynamic limit; the extrapolation is shown in later figure!,
whereas that of the GMP mode is the thermoydnamic limit, tak
from Park and Jain~Ref. 32!. The energies are given in units o
e2/e l 0, wheree512.8 is the dielectric constant of GaAs, andl 0 is
the magnetic length.
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and xk
SMA are different. The latter treats all electrons in t

ground states in an equivalent manner, whereas the for
excites only a composite fermion from the topmost Land
level. This clarifies why the two are most similar at 1/3@in
fact, identical in the limit ofk→0 ~Ref. 34!# where only one

FIG. 2. The dispersions of the CF exciton atn53/7 for a zero
width system, for a heterojunction~with density 1.531011 cm22),
and for a square quantum well of width 30 nm~with density 0.5
31011 cm22). The dispersions are for a system of 63 compos
fermions, obtained by interpolation through the discretek values
available in the study.

FIG. 3. N dependence of the energies of the fundamental
secondary CF rotons~diamonds and circles! and of the exciton en-
ergy in the long-wavelength limit~squares!. For eachN, the energy
of the rotons is obtained by fitting a parabola through three or m
points in the vicinity of the minimum. The energy in the thermod
namic limit is ascertained by a linear fit through the energies a
function of 1/N. The parameters correspond to the experimen
Kang et al. ~Ref. 7!.
er
u

CF LL is occupied. Further, inxk
SMA the application of the

density operator degrades the correlations in the gro
state, but inCex the correlations between electrons~through
the Jastrow factor! are built inafter creating the excitation in
Fn , which, as shown by our results, is a more accurate
proach. It is not surprising that an understanding of the ph
ics of the ground state is crucial for an understanding of
excitations as well.

Figure 2 shows that the finite thickness of the wave fu
tion reduces the energy of the exciton significantly. Of sp
cial interest are the energy of the CF exciton in the lim
kl0→0 and the energies of the fundamental and second
rotons. The thermodynamic limit of these energies are
tained by an extrapolation of the energies obtained from
nite systems, as shown in Figs. 3 and 4. Since only disc
values ofk are available at finiteN, the energy of the roton is

e

d

re

a
f

FIG. 4. N dependence of the energies of certain fundamental
secondary CF rotons~diamonds and circles!, and of the exciton
energy in the long-wavelength limit~squares! for a heterojunction
sample with electron densityr51.531011 cm22. The parameters
correspond to an experiment of Melloret al.9

TABLE I. Energies of the CF roton and the long-waveleng
neutral excitation at 1/3, 2/5, and 3/7, for a strictly two-dimensio
system, in units ofe2/e l 0. Also given is an estimate for the CF
roton ‘‘mass,’’ mR* [mR* meAB@T#, defined in Eq.~30!, whereme is
the electron mass in vacuum. The statistical uncertainty in the
digit~s! is shown in parentheses.

Mode n Energy mR*

kl050 1/3 0.15 -
2/5 0.087~1! -
3/7 0.068~5! -

roton 1/3 0.066~1! 0.0079~3!

2/5 0.037~1! 0.0090~11!

3/7 0.027~3! 0.0095~32!
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FIG. 5. The energies of the fundamental and the secondary
tons ~solid and dash-dotted lines, respectively! and of the CF exci-
ton in the long-wavelength limit~dashed line! as a function of the
density for a heterojunction. Experimental energies are also sho
taken from Refs. 8~circle!, 9 ~diamond!, 10 ~square!, and 11
~down-triangle!; the filled symbols correspond to the roton, and t
empty ones to the long-wavelength mode.

FIG. 6. The energies of the fundamental and the secondary
tons ~solid and dash-dotted lines, respectively! and of the CF exci-
ton in the long-wavelength limit~dashed line! as a function of den-
sity for the square-quantum-well geometry for two differe
quantum-well widths.
obtained by fitting the points near the minimum to a pa
bolic dispersion

Dk
ex5D1

\2~k2k0!2

2mR*
~30!

for eachN, and then extrapolatingD to the thermodynamic
limit. We note that it becomes necessary to go to larger s
tems as the effective filling of composite fermions increas
for example, forn53/7, it was important to study up to 6

o-

n,

o-

FIG. 7. Same as in Fig. 6 but for quantum wells of width 25 a
30 nm. The experimental results are taken from Refs. 5~up-
triangle! and 6 ~right-triangle!; the filled ~empty! symbols corre-
spond to the roton~long-wavelength mode!.

TABLE II. Comparison of theory and experiment for the roto
energy as well as the energy of the long-wavelength exciton, qu
in units ofe2/e l 0. In Ref. 9, the roton energies were determined
2/3, 3/5, and 4/7, which, assuming particle-hole symmetry, are
same as the roton energies at 1/3, 2/5, and 3/7, when measur
units of e2/e l 0.

kl050 Roton
n experiment theory experiment theory Referen

1/3 0.082 0.104~1! 0.044 0.050~1! 6
0.084 0.113~1! - 0.052~1! 5

- 0.090~2! 0.041~2! 0.045~1! 9
0.074 0.095~1! 0.047 0.047~1! 8

- 0.092~1! 0.036~5! 0.045~1! 10

2/5 - 0.054~1! 0.021~2! 0.026~1! 9
- 0.055~1! 0.025~3! 0.027~1! 11

3/7 - 0.044~2! 0.014~2! 0.017~2! 9
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particles to obtain a reliable thermodynamic estimate. T
energies in thekl0→0 limit and at the roton minimum are
given in Table I, along withmR* , for a strictly two-
dimensional system, i.e., for the pure Coulomb interactio

Figures 5, 6, and 7 plot the energy of the fundamental
a secondary CF roton and the long-wavelength CF exc
for heterojunction and square quantum-well geometries
function of the density, with finite thickness effects includ
in self-consistent LDA, as discussed above. It also dep
the experimental energies determined from ballistic pho
absorption~at 1/3, 2/5, and 3/7! as well as in inelastic light
scattering experiments~at 1/3!. A more detailed comparison
is given in Table II.

For the CF roton, the theoretical energies, obtained w
no adjustable parameters, are in excellent agreement with
observed ones. One may worry that the situation will
spoiled by Landau-level mixing. This turns out not to be t
case. As shown in Fig. 8, the LL-mixing corrections are
the order of 5–10 % for typical densities, consistent with
similar conclusion for the transport gap.20,21 As mentioned
earlier, the effect of Landau-level mixing on the gap dim
ishes fast as one goes from an ideal two-dimensional sys
to a realistic system with finite thickness. The high degree
agreement between theory and experiment also confirms
the roton energies are not as significantly affected by dis
der as those of the charged excitations.

In the small-wave-vector limit, the experimental and th
oretical energies at 1/3 are off by;30%. Given our experi-
ence with the roton, it is tempting to suspect that this d
crepancy is real. Here, exact diagonalization studies indi
that the energy of the CF exciton comes close to other e
tations, and it is likely that the energy of the CF exciton w
be significantly lowered due tocomposite-fermion-LL mix-
ing. Such a CF-LL mixing will occur through screening b
other excitons, and is related to earlier suggestions12,36that at
small wave vectors the true lowest energy excitation may
a quadrupolar excitation containing a bound pair oftwo ro-
tons. There has been debate as to which excitation is b

FIG. 8. The percent change in the energy due to Landau-l
mixing both for the fundamental roton~upper curve! and the acti-
vation gap~lower curve! at n51/3. The Landau-level mixing ha
been treated as explained in the text. The results correspond t
heterojunction geometry, for a ten-electron system. The filled s
bols correspond to the pure Coulomb interaction.
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probed by the Raman scattering in this case.12,35 In exact
diagonalization studies it has not been possible to obtain
finitive information regarding these issues due to the rat
small system sizes.

While the ballistic phonon absorption experiments
rectly measure the minimum energy~i.e., the energy of the
fundamental roton!,36 the Raman experiments ideally prob
the kl0→0 limit of the CF exciton dispersion, the wave
length of the light being much larger thanl 0. However, a
breakdown of momentum conservation due to the prese
of disorder can activate rotons as well,37 as a result of a
singularity in the density of states. This has been crucia
explaining multiple peaks in the Raman spectra for
inter-LL excitations. Atn51/3, a low-energy Raman pea
has been interpreted as the roton.6,8 Recently, Kanget al.7

also observed modes at 2/5 and 3/7, at energies
0.031e2/e l 0 and 0.008e2/e l 0, respectively, which they inter
pret as the long wavelength neutral mode. Our calcula
energies at 2/5 and 3/7 for a quantum well of width 30 n
and densityr55.431010 cm22 are 0.031(3)e2/e l 0 and
0.021(3)e2/e l 0, respectively, for the roton, and
0.070(1)e2/e l 0 and 0.056(3)e2/e l 0 for the kl050 CF exci-
ton. At 2/5, the energy of the observed excitation is cons
tent not only with the calculated roton energy but also w
those measured in ballistic phonon absorption experime
and substantially smaller than the calculatedkl0→0 limit,
which might suggest an identification with the fundamen
roton. We note here that the observation of the 1/3 ro
implies that the violation of the momentum conservation
sufficiently widespread as to render the fundamental rot
at 2/5 and 3/7 observable as well, which occur at roughly
same wave vectors (kl0'1.6– 1.7) as the 1/3 roton (kl0
'1.4). The energy of the 3/7 mode of Ref. 7 is anomalou
low, however. Further work will be required to ascertain t
precise nature of these new Raman modes; an experim
observation of multiple peaks, possible due to the existe
of several rotons and maxons, will be especially helpful
clarifying this issue.

IV. CONCLUSION

Our main conclusion is that the composite-fermion theo
provides an excellent account of the observed energy of
CF roton with no adjustable parameters. This is possible
cause of the insensitivity of the roton energy to disorder.
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