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Dynamics of disordered states in the Bose-Hubbard model with confinement

Mi Yan, Hoi-Yin Hui, and V. W. Scarola
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

(Received 1 February 2016; published 22 May 2017)

Observations of center-of-mass dynamics offer a straightforward method to identify strongly interacting
quantum phases of atoms placed in optical lattices. We theoretically study the dynamics of states derived
from the disordered Bose-Hubbard model in a trapping potential. We find that the edge states in the trap
allow center-of-mass motion even with insulating states in the center. We identify short- and long-time-scale
mechanisms for edge-state transport in insulating phases. We also argue that the center-of-mass velocity can
aid in identifying a Bose-glass phase. Our zero-temperature results offer important insights into mechanisms
of transport of atoms in trapped optical lattices while putting bounds on center-of-mass dynamics expected at
nonzero temperature.
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I. INTRODUCTION

Ultracold atomic and molecular gases placed in optical
lattices realize strongly correlated states of matter captured by
Hubbard models [1–4]. Hubbard models are known to support
fundamentally important states that serve as paradigms for
understanding quantum collective behavior in solids. New
methods to observe and study these collective phases in
optical lattices have been invented to better probe interest-
ing quantum behavior. Example diagnostics include Bragg
spectroscopy [5,6] (applied recently to measure [7] local an-
tiferromagnetic spin correlations [8–10]), noise spectroscopy
[11–13], and center-of-mass transport.

Center-of-mass transport experiments in optical lattices are
often used to probe response in direct analogy to transport
in solids. In optical lattice transport the center of mass is
shifted, and the dynamics is observed using time of flight.
Transport studies of bosonic atoms in optical lattices have
been used to study superfluid and Mott insulating states,
states of the Bose-Hubbard model [14–24]. When the system
is in a superfluid state, it oscillates within the trapping
potential. The Mott insulator shows, by contrast, essentially
no dynamics for very strong interactions. More recently,
disorder has been implemented [21,23–39] to further probe
glassy states expected from a competition between strong
disorder and interparticle interactions. In the experiments of
Ref. [24] it was argued that the suppression of center-of-mass
transport indicated the presence of a Bose glass, a state of the
Bose-Hubbard phase diagram induced by disorder.

Optical lattice transport experiments have fundamental
and crucial differences from solid-state transport. Particles
in optical lattices are, to a good approximation, isolated
systems. The absence of a heat bath prevents direct ther-
malization. Thermalization of initial states occurs via inter-
particle interactions [40]. The system can therefore be slow
to thermalize during transport because there is no external
bath. Furthermore, the absence of lattice phonons avoids
conventional assumptions of dephasing often invoked in solids.
Other thermal effects are also very different. For example,
the absence of a particle number bath prevents transport via
variable-range hopping. But the most pronounced differences
arise from strong trapping. In optical lattice experiments the
response of the center of mass must be understood in the

context of a parabolic trapping potential which mixes phases
in the trap and leads to edge states [1,3,41].

In this work we study the dynamics of bosons in a
disordered Bose-Hubbard model in the presence of a trap.
We seek to identify the precise mechanisms of transport in
a trap and correlate the response with known phases. We
will include disorder to study the dynamic response of the
following phases to an external field: a disordered superfluid,
a Bose glass, and a disordered Mott insulator (as in Ref. [42]
but in the presence of confinement). We will also focus entirely
on the zero-temperature response to identify purely quan-
tum transport effects that should underpin low-temperature
experiments.

We find that the insulating states (Bose glass and Mott
insulator) have center-of-mass motion that is dominated by
edge effects. Our simulations show that when the center of the
system is in an insulating phase, it remains motionless under
a trap shift, while the edge states move, and therefore, so
does the center of mass. Figure 1 shows a schematic depicting
the distinct mechanisms of transport that we find. The left
panel depicts what we find at short times (with respect to the
single-particle intersite tunneling time scale). Here we find
that the edge states surrounding an insulator quickly move and
dominate the center-of-mass motion.

But at long times we find that disordered insulating states
drift slowly (the center of mass moves only a site or two for
times on the order of 100 times the intersite tunneling). The
insulating states reach a terminal velocity that does not change
with the applied field. This is contradictory to the conventional
Drude-type picture of particle motion. We instead propose a
two-stage process in which slow tunneling into edge states
(right panel of Fig. 1) slowly moves the center of mass while
leaving the central insulator motionless.

Our results reveal mechanisms for center-of-mass transport.
The presence of a trap leads to edge states. The edge states
are responsible for the motion of the center of mass via two
distinct mechanisms, one at short times and one at long times.
These mechanisms also differ from conventional pictures of
bulk transport in solids where an applied field leads to an
average drift of all particles. Our results establish a basis
for interpreting measurements of center-of-mass dynamics of
atoms trapped in optical lattices.
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FIG. 1. Schematic showing two distinct mechanisms for center-
of-mass dynamics after an initial shift of the trapping potential to the
left. The center of the system is in an insulating phase (either the Mott
insulator or the Bose glass), but the edges are superfluid. Left: We
find that initially (on times scales shorter than the intersite tunneling),
the edge superfluid quickly moves around the insulator to the left to
redistribute the total center of mass. Right: We find that (on time
scales much larger than the intersite tunneling) a two-stage process
shifts the center of mass. First, particles slowly tunnel out of the
central insulator into the edges (vertical arrows). Then the particles
quickly move to the left along the edge to redistribute the center of
mass.

II. MODEL

Ongoing optical lattice experiments containing bosonic
alkali atoms are accurately captured by the Bose-Hubbard
model [1]. Controlled disorder, applied through speckle laser
light or incommensuration [3], can significantly alter the
phase diagram and therefore impact transport. Transport
experiments [24] can be understood from an interplay of
temperature, disorder, trapping, and interactions [43]. In this
work we study zero-temperature effects to focus on just
disorder, trapping, and interactions.

We study the dynamics of states of the disordered Bose-
Hubbard model to assess transport properties in a parabolic
trapping potential. The Bose-Hubbard Hamiltonian is given
by

H = −t
∑
〈i,j〉

b
†
i bj + U

2

∑
i

n̂i(n̂i − 1) +
∑

i

μi n̂i , (1)

where b
†
i creates a boson at the site at lattice position Ri

and n̂i = b
†
i bi is the number operator. Here 〈i,j 〉 denotes

summation over nearest-neighbor sites; t is the single-particle
nearest-neighbor tunneling amplitude, and U is the on-site
repulsive interaction energy. The spatially inhomogeneous
chemical potential is

μi = −μ + �|Ri − R0(τ )|2 + εi, (2)

where the central chemical potential μ tunes the average
density. � is the strength of the harmonic trapping potential,
and |Ri − R0(τ )| defines the distance between a site i and the
trap center R0(τ ). We work on a two-dimensional square of
side lengths L = Lx = Ly . We choose L so that the density
for edge sites vanishes for all trap frequencies used. Distances
are measured in units of the lattice spacing a. The trap center is
a function of time τ and, in what follows, will be immediately
shifted along the negative x direction a distance �R0 to induce

particle number flow at τ > 0. The total pulse sequence is then
R0(τ ) = 0 for τ � 0 and R0(τ ) = −|�R0|x̂ for τ > 0. By
expanding the squared term in μi we see that the trap shift can
be thought of as an applied linear potential: ∼2�Ri · x̂(�R0).

Here εi denotes a random energy shift at the ith site. In our
study, the disorder is uniformly distributed with εi ∈ {−�,�}.
Specifically, we use the box probability distribution function:

P (ε) = �(� − |ε|)
2�

, (3)

where � is the strength of the disorder and � is the Heaviside
step function.

To study the dynamics we use a stochastic mean-field
decoupling performed using variational wave functions: the
time-dependent Gutzwiller ansatz [44–46]. The ansatz yields
wave functions whose static expectation values agree very well
with quantum Monte Carlo away from phase boundaries in two
dimensions in three dimensions (see, e.g., Refs. [47,48]). The
wave function at time τ is assumed to be in the product form:

|�GW(τ )〉 =
∏

i

[ ∞∑
n=0

f (i)
n (τ )|n〉i

]
, (4)

where f (i)
n (τ ) is the complex amplitude to find n atoms on

lattice site i at time τ .
The initial state can be found using the variational theorem.

We first assume a random initial guess for all of the f ’s.
We then minimize the energy of H by varying all f ’s
using a conjugate-gradient method. We find that keeping
the parameters fn for n � 4 is sufficient for the regime
studied here. Once the wave function is found, all initial-state
correlation functions can be computed.

We propagate the initial-state wave function in time using
the equations of motion consistent with the Gutzwiller ansatz.
The equations of motion for f (i)

n are [45]

ih̄∂τ f
(i)
n =

[
U

2
n(n − 1) + nμi

]
f (i)

n

− t
∑
〈i,j〉

(
ψ∗

j

√
n + 1f

(i)
n+1 + ψj

√
nf

(i)
n−1

)
, (5)

where ψj = 〈bj 〉 = ∑
n

√
nf

(j )∗
n−1 f

(j )
n is the mean-field super-

fluid order parameter. We numerically solve this set of coupled
first-order differential equations using the adaptive step-size
Runge-Kutta method. This allows access to all correlation
functions as a function of time.

The center-of-mass position and velocity are key observ-
ables often used in experiments to reveal insulating behavior.
We compute the total center-of-mass position along the x

direction and the center-of-mass velocity as a function of time:

XCM(τ ) = 1

N

∑
i

〈〈n̂i〉〉τ [x̂ · Ri],

VCM(τ ) = ẊCM(τ ). (6)

Here N is the number of particles, and 〈〈· · · 〉〉τ indicates
the disorder average of quantum state averages with respect
to |�GW(τ )〉. We find that disorder averaging with 1000
configurations is sufficient to obtain convergence.
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FIG. 2. Schematic mean-field phase diagram of the disordered
Bose-Hubbard model [Eq. (1)] in the absence of a trap, � = 0. The
black regions indicate the incompressible Mott insulators found at
integer densities. The gray regions indicate the compressible Bose
glass that separates the Mott from the superfluid. The three vertical
arrows depict how the trapping potential lowers the local chemical
potential as we move from the center of the system (top of the arrow)
to the edge (bottom of the arrow). The three arrows represent regimes
studied here, where the center of the system contains a disordered
Mott insulator (left), Bose glass (center), and disordered superfluid
(right).

III. STATIC PROPERTIES

In this section we review the static properties of the dis-
ordered Bose-Hubbard model at zero temperature. The
schematic mean-field phase diagram [49] reproduced by the
Gutzwiller ansatz [50] is depicted in Fig. 2. Here we see
that the Mott insulator is separated from the superfluid by
an intermediate Bose glass. The Mott insulator occurs at
integer filling and is incompressible. It has zero condensate
fraction. The Bose glass is compressible but has a nonzero
local condensate fraction due to superfluid puddles embedded
in an insulating background. The superfluid is characterized
by nonzero stiffness [51] and compressibility.

The trapping potential lowers the chemical potential in
moving from the center to the edge of the trap. The trap
can (at a mean-field level) be thought of as sweeping the
chemical potential vertically through the phase diagram. The
vertical arrows in Fig. 2 depict the three regimes of the
trapped disordered Bose-Hubbard model studied in this work.
The left, middle, and right arrows indicate parameters such
that the central region of the trap (the top of the arrow)
hosts a disordered Mott insulator, Bose glass, and disordered
superfluid, respectively. Due to the inhomogeneous trapping
potential, the superfluid and Bose glass coexist in the edge of
the trap in all three regimes.

To characterize the phases in the trap we compute local
correlation functions. Figures 3(a)–3(c) plot the local density
as a function of distance from the trap center. The density
qualitatively reveals the location on the phase diagram,
with 〈n̂〉 ≈ 1 indicating the Mott insulator. The local-density

FIG. 3. (a)–(c) plot the disorder-averaged local density in the
initial state as a function of distance from the center of the trap.
(a) and (c) have a superfluid and Mott insulator in the trap center,
respectively. (b) is in an intermediate regime. Model parameters are
chosen to be disorder strength � = 0.3U , trap strength � = 0.02U ,
and central chemical potential μ = 0.5U . (d)–(f) plot the same but
for the disorder-averaged local-density fluctuations in the initial state.
The density fluctuations in (e) and (f) show the edge superfluid.
(g)–(i) plot the disorder-averaged local superfluid order parameter in
the initial state. Error bars result from disorder averaging.

fluctuations 〈
�n2

i

〉 ≡ 〈
n̂2

i

〉 − 〈n̂i〉2 (7)

capture the local compressibility since 〈�n2
i 〉 ∝ κikBT , where

T is temperature and local compressibility is κi = ∂〈n̂i〉/∂μ.
Figures 3(d)–3(f) plot the density fluctuations as a function of
distance from the trap center. The sharp increase in the fluctu-
ations at the edge [in Figs. 3(e) and 3(f)] indicate compressible
edge states. We have also used the local superfluid order
parameter [in Figs. 3(g)–3(i)] and other correlation functions
to identify the location on the phase diagram.

IV. CENTER-OF-MASS DYNAMICS

This section presents our primary results by correlating
center-of-mass dynamics with phases in the center of the
trap. We find that even with moderately strong disorder, the
superfluid phase oscillates. Strong interaction significantly
damps superfluid motion. But when the center of the trap enters
the Bose-glass and Mott phases, the center-of-mass dynamics
slows considerably. By computing the density in the lattice
we find that the center of the system fails to move. Here the
dynamics is dominated by flow along the edges.

A. Superfluid dynamics

We start with the center-of-mass dynamics of the superfluid
(see the right vertical arrow in Fig. 2). Figures 4(a)–4(c)
show damped oscillations of the superfluid in the presence of
disorder. For large interaction strengths the superfluid quickly
relaxes to sit at the trap center [Fig. 4(c)]. Here the interplay of
interactions and disorder dephases the initial state to effectively
relax the system to the ground state of the new trap position.
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FIG. 4. The disorder-averaged center-of-mass position along the
x direction plotted as a function of time for various interaction
strengths U . The trap shift is chosen to be �R0 = a, and other
model parameters are the same as in Fig. 3. (a)–(c) are initially
in the disordered superfluid state. In (d) the center of the system
is initially in the Bose-glass state, whereas (f) is initially in the Mott
state. The inset in (d) shows the short-time behavior. (e) is initially
in an intermediate state. In (d)–(f), the center of mass has a nearly
constant velocity for τ � h̄/t .

This is in contrast to the motion of a noninteracting condensate
in a trap where revival occurs at the time scale of inverse trap
frequency [52,53]. Figure 5 plots the local density at three
different times to demonstrate the center-of-mass oscillations
of the superfluid.

B. Short-time insulator dynamics

We now turn to the center-of-mass trap dynamics in regimes
where either the Bose glass or Mott insulator lies in the center
of the trap (see the left two vertical arrows in Fig. 2). The
state propagated in Fig. 4(d) has a Bose glass in the center,
while Fig. 4(f) has a Mott insulator. Figure 4(e) shows an
intermediate regime on the border of the Mott–Bose-glass
transition. On short time scales, the Bose-glass and Mott
states should display insulating behavior because they are both
locally gapped.

Figures 4(d)–4(f) show two distinct regimes: short times
(τ � h̄/t) and long times (τ � h̄/t). At short times the center
of mass quickly slips to a new value. Here the initial slip is
most prominent in the Bose-glass regime [Fig. 4(d)]. The next
section will discuss the long-time dynamics.

To study the motion of the particles with an insulator in the
center, we compute

Iα
j = −i

(〈bj 〉∗
〈
bj+êα

〉 − 〈
bj+êα

〉∗〈bj 〉
)
, (8)

which is the local current [54] flowing from site j to site
j + êα . By plotting the local current distribution in the trap,
we can see how the particles move at certain times. The left
panels of Fig. 6 show the density and local current for U = 26t

(the Bose-glass regime) after a very short time. Here we see
that at short times the density flows in a ring around the edge.

To study the response of the center-of-mass velocity under
an applied field at short times, we compute the initial center-
of-mass velocity

VCM(0) ≡ lim
τ→0

1

τ

∫ τ

0
dτ ′VCM(τ ′). (9)

In the numerical calculation, we choose τ = 0.2h̄/t to
compute the initial velocity. Figure 7 shows that the initial
center-of-mass velocity responds linearly to the applied force.

The redistribution of the initial edge density corresponds
to motion of the edge superfluid at velocities consistent with
the band motion of individual edge particles. The left panel of
Fig. 1 depicts short-time edge flow. We verify that the times
required for edge particles to move a distance on the order
of the cloud size are consistent with our simulations. If we

FIG. 5. The disorder-averaged local-density deviation from the initial state, �ni ≡ 〈〈ni〉〉τ − 〈〈ni〉〉τ=0, plotted as a function of position in
the x−y plane for three different times. All model parameters are the same as in Fig. 4(a), where a superfluid occupies nearly the entire trap.
These parameters correspond to the right arrow in the phase diagram in Fig. 2. Here we see how the superfluid as a whole oscillates in the trap
even in the presence of disorder.
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FIG. 6. Top: the same as Fig. 5 but for an interaction strength of U = 26t [parameters in Fig. 4(d)], which corresponds to a Bose glass in
the center of the trap (central arrow in Fig. 2). Bottom: the disorder-averaged local current flow with the same parameters as in the top panel.
At τ = 0.8h̄/t we see the first mechanism of transport where at short times the edge state quickly slips around the central insulator, depicted in
the left panel of Fig. 1. At τ = 8h̄/t and 80h̄/t we see a different two-step mechanism of transport, depicted in the right panel of Fig. 1. Here
the particles first slowly tunnel out of the central insulator to get pushed, in the second step, quickly along the edges. In the two right snapshots,
lateral tunneling events and a shrinking of the central insulator can be seen.

FIG. 7. The disordered-averaged center-of-mass velocity at short
times [Eq. (9)] and long times [Eq. (10)] plotted as a function of the
trap shift for an interaction strength of U = 26t . For short times, the
center-of-mass velocity responds linearly to the length of the trap
shift. For long times, the center-of-mass velocity barely changes with
the trap shift.

consider a one-dimensional approximation to the edge state,
the tight-binding energy of a single particle is −2t cos(ka),
where k is the lattice wave vector. The semiclassical equation
of motion under an applied field is h̄dk/dτ = �R0�. For
short times, the velocity of the particle is then 2t�R0�τ/h̄2,
which is linear in the applied field. The U = 26t insulator
extends four lattice sites in the trap with trapping potential
� = 0.02U . The total time for the edge particle to travel
the length of the system under the trap shift �R0 = a is
then 2.77h̄/t , consistent with the result from our numerical
simulations, ≈ 2.5h̄/t .

Our results show that the initial dynamics of trapped insula-
tors reflect the motion of edge states. The edge moves quickly,
on time scales consistent with the motion of free particles. For
short times, the center-of-mass velocity responds linearly to
an applied potential. We now turn to the long-time regime.

C. Long-time insulator dynamics

After the initial slip we find a regime of constant center-of-
mass velocity at long times, τ � h̄/t [Figs. 4(d)–4(f)]. A naive
expectation would be that the constant velocity is established
by a slow drift of the center of mass as a whole where the
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FIG. 8. The disorder-averaged center-of-mass position plotted as
a function of time for (a) several different trap shifts for U = 26
and (b) several different U for �R0 = a. The model parameters are
otherwise the same as in Fig. 3. In (a) we see that different trap shifts
do not change the long-time center-of-mass velocity (the slope is
nearly constant). But in (b) we see that the slope depends on U .

disorder strength sets a scattering rate. We find that this picture
is not correct. Figure 8(a) shows that the long-time center-of-
mass velocity does not change with the application of a linear
potential and is therefore terminal (recall that the trap shift �R0

effectively applies a linear potential). This behavior contrasts
with behavior expected from a Drude-type model of transport
where the center of mass as a whole would respond linearly to
a weak potential.

To better understand the mechanism behind the terminal
velocity at long times we study the density as a function of
time. The density in the trap plotted for several different times
(the two right panels in Fig. 6) reveals a two-step process for
long-time edge flow (right panel of Fig. 1). First, a particle
tunnels out of the center to the edge at a rate determined by
the competition between the local gap in the center and the
trapping potential. In the second stage, the particle quickly
moves along the edge to redistribute the center of mass.
Repeated tunneling out of the center followed by flow along

the edge then results in a center-of-mass shift. Slow tunneling
into the edge allows edge flow at long times and therefore
dictates the time scale for center-of-mass motion.

To verify the two-step picture we construct a simple model
to estimate the velocity at long times. Appendix A uses a
two-site model to show that in the absence of disorder the
tunneling rate out of the center depends only on the trapping
frequency, tunneling, and interaction strength. The velocity in
our two-site model is therefore independent of the trap shift.
We also find that the velocity expected from our two-site model
compares well with our simulations.

The two-step picture and our simple model do suggest that
the center-of-mass velocity should depend on U . Figure 8(b)
shows that the long-time center-of-mass velocity varies
with U . Here stronger U suppresses tunneling out of the bulk
because the trap must compensate with high-edge energies to
confine the system. We have checked that the U dependence
of the two-site model is consistent with our simulation.

We now discuss the long-time center-of-mass velocity as
a direct measure of insulating behavior in the trap [55]. We
compute

VCM(∞) ≡ lim
τ→∞

1

τ

∫ τ

τ0

dτ ′VCM(τ ′), (10)

where the limit τ → ∞ is understood to imply a long-time
average such that the insulating states do not reach the center of
the trap. We choose τ0 = 20h̄/t to include only long times by
avoiding integration over the short-time dynamics. We expect
that VCM(∞) should vanish for both immobile states and for
states that oscillate about the trap center because there is no
net center-of-mass velocity for an oscillating state.

Figure 9 plots the long-time center-of-mass velocity in
the trap as a function of U . Varying U allows access to the
superfluid, Bose glass, and Mott. We find that VCM(∞) is

FIG. 9. The disorder-averaged center-of-mass velocity at long
times [Eq. (10)] plotted as a function of interaction strength. For
weak interactions the entire system is in the superfluid (SF) phase,
and frequent center-of-mass oscillations result in a zero net velocity.
For intermediate interaction strengths the Bose glass (BG) lies in
the trap center. Here the two-step edge flow mechanism depicted
in the right panel of Fig. 1 allows a small but finite center-of-mass
velocity. At large interaction strengths the center of the system is in
the Mott regime (MI), where tunneling into the edge (and therefore
the center-of-mass velocity) is strongly suppressed.
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zero in the superfluid phase because the superfluid oscillates
in the trap. But at long times the center of mass performs a
slow drift in insulating phases, leading to a nonzero VCM(∞).
The Bose-glass phase shows the largest velocity because the
tunneling out of the bulk into the edge is the fastest here.
But the large-U Mott limit restricts tunneling into the edge to
eventually stop center-of-mass motion.

The long-time center-of-mass velocity responds to disorder
and trapping. We have checked that the center-of-mass velocity
in the insulating phases is suppressed by increasing disorder or
trapping frequency. Here strong disorder and trapping impact
both processes depicted in the right panel of Fig. 1. They
suppress tunneling out of the center into the edge while also
restricting flow along the edge.

V. SUMMARY

We have studied the zero-temperature trap dynamics of
states prepared in a disordered Bose-Hubbard model. We
have computed the center-of-mass velocity of a disordered
superfluid, a disordered Mott insulator, and a Bose glass using
Gutzwiller mean-field theory. While the superfluid exhibits
damped oscillations for strong interaction strengths, the other
two states are essentially motionless insulators at the trap
center.

We find that the center-of-mass velocity of trapped insula-
tors is dominated by the flow of edge states. We also find two
time scales for the trapped insulators. At short time scales the
edge superfluid flows around the insulating bulk to move
the center of mass. But at longer time scales, tunneling out
of the bulk to the edge establishes a slow drift of the center of
mass.

Our results can be used to identify insulating states in
trapped optical lattices. We find that, at long times, the
edge flow around the Bose glass can lead to center-of-mass
velocities that are much larger than in the Mott. We have
studied parameter regimes that are similar to what has been ex-
plored in experiments. In Ref. [24], for example, experiments
were done using a speckle disorder potential applied to 87Rb
atoms in a cubic optical lattice. Here the Hubbard parameters
were t/U ∼ 0.005–0.3, and the trapping potential keeps the
density near 1.4 at the trap center. The speckle disorder
leads, most prominently, to an exponentially distributed on-site
disorder potential in μi [56] which differs from our study. But
finite-temperature effects should lead to the most important
difference between our study and previous experiments. Our
results have so far excluded finite-temperature effects while
experiments [24] have been done in the regime kBT ∼ 3t .

As the next step we will include nonzero temperatures in
the initial state. We expect that for very low temperatures,
kBT � t , our T = 0 results will be qualitatively similar. But for
intermediate temperatures, t � kBT < U , thermally assisted
tunneling out of the central insulators and into the edge will
significantly enhance the center-of-mass velocity. Our results
therefore offer a lower bound on the center-of-mass velocity.
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FIG. 10. Schematic showing sites of a lattice (dashes) along one
direction filled up to site 1 with particles. Site 2 is an empty edge
site. Tunneling from site 1 to site 2 is controlled with a potential V at
site 2. The dotted line depicts the parabolic trapping potential which
zeros the edge density.

APPENDIX: TWO-SITE TUNNELING TIME

In this section we model the tunneling out of an insulating
state at the trap center and into an edge state using a two-site
effective model. Figure 10 shows part of a Mott insulator
along one direction in the lattice. The curved line depicts the
trapping potential, which eventually zeros the edge density.
The trapping potential energy must be on the order of the
interaction energy to zero the density.

We consider a two-site tunneling model Hamiltonian,

H2 = −t(b†1b2 + b
†
2b1) + V b

†
2b2, (A1)

where V is the relative energy gap between the two sites. V is
a fitting parameter on the order of the Mott gap.

Solving the Schrödinger equation, we obtain the population
on site 2,

n2 = 2t2

4t2 + V 2
{cos[

√
4t2 + V 2(τ/h̄)] − 1}. (A2)

The tunneling rate from site 1 to site 2 can then be defined as

� = max
τ

dn2

dτ
= 2t2

h̄
√

4t2 + V 2
. (A3)

� gives correct limits: � → t for V → 0 and � → 0 for
V → ∞.

Using � as an estimate for the tunneling rate out of the
central insulator, we can estimate the order of magnitude of

Simulations
Eq. (A4)

FIG. 11. Comparison of the center-of-mass velocity at long times
between the estimate of the two-site model and numerical simulations
for various interaction strengths.
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the center-of-mass velocity. Once the particle tunnels out of
the center, it then travels along the edge a distance l. The
center-of-mass velocity in this approximation becomes

v = �l

N
= 2t2l

Nh̄
√

4t2 + V 2
, (A4)

where N is the total particle number in the trap. To compare
this estimate with our simulations we substitute appropriate
parameters. The fitting parameter of the gap V is chosen to
be the Mott gap U . Figure 11 shows that the results obtained
from the two-site model are of the same order of magnitude as
simulations.
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