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Nondestructive dispersive imaging of rotationally
excited ultracold molecules

Qingze Guan, †a Michael Highman, †b Eric J. Meier,b Garrett R. Williams,b

Vito Scarola,c Brian DeMarco,b Svetlana Kotochigova a and Bryce Gadway*b

A barrier to realizing the potential of molecules for quantum information science applications is a lack of

high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general

scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic

anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected

through polarization rotation of an off-resonant probe laser beam. Using 23Na87Rb and 87Rb133Cs as

examples, we construct a formalism for choosing the molecular state to be imaged and the excited

electronic states involved in off-resonant coupling. Our proposal establishes the relevant parameters for

achieving degree-level polarization rotations for bulk molecular gases, thus enabling high-fidelity

nondestructive imaging. We additionally outline requirements for the high-fidelity imaging of individually

trapped molecules.

1. Introduction

Ultracold molecules are a promising platform for quantum infor-
mation science (QIS) applications.1–4 The abundance of long-lived
rotational states in molecules is an advantage compared with
using simpler quantum particles such as neutral atoms, for
example. However, the lack of high-fidelity imaging techniques
for general classes of molecules is a barrier to progress in this area.

For ultracold atoms and molecules, imaging plays a key role
as the method for state detection in a wide range of quantum
control and information processing applications. For example,
accurate readout of quantum processors based on trapped
atomic ions requires high-fidelity imaging.5 Measurement via
non-destructive, high-accuracy imaging is necessary to generate
defect-free qubit registers in optical tweezer experiments.6,7

Non-destructive imaging will also be critical to implementing
alternative approaches such as measurement-based universal
quantum computing8,9 using atoms and molecules in the
future. In this case, high-fidelity detection is also needed to
realize fault tolerance.10–12

In experiments with neutral atoms and atomic ions, high-
fidelity imaging is achieved using closed transitions between

ground and excited states. For these ‘‘cycling’’ transitions,
thousands of absorption and spontaneous emission events
can occur before quantum amplitude leaks out of the manifold
of imaging states. Certain classes of molecules with nearly
diagonal Franck–Condon factors also possess quasi-closed
cycling transitions.13,14 These transitions have paved the way
for the direct laser cooling,15 trapping,16 high-fidelity fluores-
cence imaging of molecular samples,17 and even individually
trapped molecules.18 However, the internal state complexity of
molecules due to rotational and vibrational degrees of
freedom19 generally preclude most molecules from possessing
cycling transitions.

In particular, the bi-alkali molecules do not have closed or
quasi-closed cycling transitions. Bi-Alkali molecules can be
readily prepared from pre-cooled atoms near20–22 or in the
quantum degenerate regime23 and have already demonstrated
many-body physics.24–26 Direct imaging techniques for the
bi-alkalis are presently based on absorption imaging using
open, lossy optical transitions.27 Alternatively, these molecules
can be detected via the imaging of the constituent atoms
following the coherent reversal of STImulated Raman Adiabatic
Passage (STIRAP).20,28 Both approaches are inherently destructive
and lack the fidelity necessary for QIS applications.

In this paper, we present an alternative imaging technique
that is applicable to a broad range of molecules, including the
bi-alkalis. We propose to use the inherent anisotropic polariz-
ability of rotationally excited molecules to allow nondestructive
detection through birefringent phase shifts imparted on an off-
resonant ‘‘probe’’ laser beam. We describe conditions under
which degree-level polarization rotations of a probe beam can
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be achieved for bulk molecular gases, and we outline paths to
extend this capability to the imaging of individual molecules.
We construct a formalism for computing observable phase
shifts and apply it to two example molecules, 23Na87Rb and
87Rb133Cs (with 87Rb133Cs examined in Appendix E). We iden-
tify specific states and transitions (at 770 nm, 791 nm, and
884 nm for 23Na87Rb and 935 nm and 1146 nm for 87Rb133Cs)
that optimize imaging resolution. Our calculations show that
nondestructive imaging of birefringent phase shifts is within
the reach of current technology.

The organization of the paper is as follows: in Section 2 we
discuss general aspects of dispersive imaging and propose a
setup to measure phase shifts. In Sections 3 and 4 we discuss
the criteria for selecting the imaging and target states, respec-
tively. Sections 5 and 6 summarize our findings for application
to imaging of bulk molecular gases and individually trapped
molecules, respectively. Finally, in Section 7, we review the
main results of this paper and identify a few specific areas in
which the dispersive imaging of molecules may have future
impacts.

2. Background on dispersive imaging

Dispersive imaging is based upon interference of two or more
off-resonant laser beams that have acquired a relative phase
due to their different propagation through an atomic29,30 or
molecular medium. While the two beams can propagate along
distinct paths31,32 or involve distinct spatial regions of a single
probe beam,30,33 approaches based upon co-propagating
polarization34,35 or frequency36 components have the benefit
that they are simple, robust, and inherently afford significant
common-mode noise rejection. For atoms, which typically
possess cycling transitions, dispersive imaging has proven
especially useful for niche applications in which one does not
want to disturb density or temperature, so as to allow for
continuous monitoring of a sample.37,38

For molecules that lack true cycling transitions, however,
dispersive imaging may provide the best means to achieve high-
fidelity imaging. Therefore, the development of such a techni-
que has the potential to find more widespread use for bi-alkali
molecules and other species, while still allowing for nondes-
tructive imaging. Polarization-based dispersive imaging thus
promises to leverage one of the characteristic qualities of
molecules – their anisotropic tensor polarizability39,40 – for
high-fidelity imaging and internal state detection.

Fig. 1(a) schematically shows an example of a polarization-
based setup for the dispersive imaging of molecules. A probe
laser propagates through a molecular cloud along the ŷ axis
perpendicular to a uniform magnetic field

-

B applied along the
ẑ axis. We call this the ‘‘perpendicular’’ imaging scheme, in
reference to the fact that the probe laser propagation and
magnetic field direction are perpendicular. For bi-alkali mole-
cules that are first associated from atoms into molecules by
means of a sweep across a Feshbach resonance, the magnetic
field strength B would typically be a few hundred Gauss, as

determined by the Feshbach resonance. We consider the inci-
dent probe laser polarization êin as being linear and in the
x–z plane. The output laser polarization êout will be elliptical if
the molecular rotational state J,M has an anisotropic dynamic
polarizability tensor aee0(o) (for which the indices e and e0 are x,
y, or z in Cartesian coordinates) and êin has components both
parallel and perpendicular to the quantization axis. Here, the
rotational quantum number J labels eigenstates of

-

J, the sum of
the electronic and molecular-orbital angular momenta, and
M is the projection along the quantization axis. The phase
difference f(o) between the z- and x-components of the output
laser beam is given by

fðoÞ ¼ 2prcL
l

DaðoÞ; (1)

Fig. 1 Schematic of dispersive imaging setup for molecules. (a) Molecules
are illuminated by a probe beam propagating along the ŷ direction,
perpendicular to an external magnetic field B

-
along the ẑ direction.

The ẑ axis serves as the quantization axis. The probe laser polarization êin

is linear and in the x–z plane. The ellipticity of the output polarization êout

depends both on êin and the rotational state |J,Mi of the molecule(s).
The probe beam in the perpendicular imaging case off-resonantly (with a
frequency detuning of D) couples an excited rotational state with primarily
M = 0 character to a J0 = 0 excited electronic state, as displayed in the level
diagram. (b) One possible experimental setup for perpendicular imaging.
Light with linear polarization at 451 to the quantization axis acquires a
differential phase shift through rotationally excited molecules. The light is
collected by a high numerical aperture (NA) objective. The phase shift is
translated to a polarization rotation via a quarter wave plate (QWP) with
fast axis set at 451 from vertical. A polarizing beam splitter (PBS) turns the
rotation into a power difference that is detected by a camera.
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where l is the photon wavelength of the probe laser of angular
frequency o, r is the number density of the molecules, L is the
sample length, c is the speed of light in vacuum, and Da(o) =
azz(o) � axx(o) is the differential polarizability. Eqn (1) assumes a
low differential index of refraction: Dn = rcDa { 1. It is also
important to note that a is actually a modified polarizability
volume, where a = aSI/2e0c, e0 is the vacuum permittivity, and
aSI is the polarizability in standard SI units. As will be
conveniently used later in this paper, a/h, where h is Planck’s
constant, has units MHz (W cm�2)�1, which is experimentally
understood as the ac Stark shift at a given laser intensity.
Eqn (1) defines our key observable and therefore motivates
evaluation of Da(o). As we will see, large differential polariz-
ability arises from anistropic states which we find in the J = 1
manifold depicted in Fig. 1(a).

Fig. 1(b) shows a schematic of a proposed detection
apparatus. After passing through the molecular sample, the
phase difference of the two polarization components of
the probe beam is translated to a polarization rotation by
the use of a quarter wave plate. The rotation is then translated
to a probe power difference by, e.g., a polarizing beam splitter
and a camera.

Alternative to this ‘‘perpendicular’’ probing scenario, the
system can be probed using a linearly polarized laser beam
propagating parallel to the magnetic field direction. This may
be useful in certain contexts, e.g., as in the case of planar 2D
samples resolved by a quantum gas microscope. In this
‘‘parallel’’ imaging scheme, the phase shift is also given by
eqn (1) with Da = a++(o) � a��(o) where the indices ‘‘+’’ and
‘‘�’’ indicate spherical tensor components of the dynamic
polarizability tensor. We note that for this case in which the
molecular sample displays circular birefringence, optical
activity leads to a direct rotation of the probe beam’s linear
polarization.

The efficiency of the perpendicular and parallel imaging
schemes are comparable, yet the distinction is critical as the
orientation of the probe laser and quantization axis will
determine the relevant states that display the largest aniso-
tropy. A detailed derivation of eqn (1) for the two probing
schemes is given in Appendix A. In what follows we will focus
primarily on the perpendicular imaging scheme in the main
text and reserve the discussion of the parallel imaging
scheme to Appendices A and D.

A strong signal in an experimental setup will be induced by a
large differential polarizability. For example, in a typical ultra-
cold sample density of r = 1012 cm�3, probe wavelength
l = 770 nm, and a sample length L = 30 mm, the differential
polarizability Da/h must have a value of 3.6 MHz (W cm�2)�1 to
achieve a phase difference of 11. As we will discuss, these
magnitudes of Da can be found near resonant electric dipole
transitions from anisotropic J a 0 rotational states of mole-
cules. We note that even the J = 0 rotational ground state may
have an induced anisotropic polarizability, if the degeneracy of
the J0 = 1 manifold’s M states is broken by an amount that is
large compared to their natural linewidth. For imaging on
narrow transitions, this can be accomplished by the application

of an electric field for polar molecules, and potentially even by
state-dependent ac Stark shifts.

We expect our scheme to be generally applicable to
molecular states with large anisotropies in dynamic polariz-
ability. Such states should appear for generic families of
molecules. To make quantitative estimates we focus on
states of two specific bi-alkali molecules. In the main text
we focus on imaging 23Na87Rb molecules occupying the J = 1
rotational level of its v = 0 vibrational level of the electronic
ground state X1S+. We also discuss imaging for 87Rb133Cs in
Appendix E as another example of the applicability of our
technique.

3. Selection of imaging states

The optimal imaging states have a large differential polariz-
ability. Since anistropy enhances differential polarizability,
we search for states that are as anisotropic as possible.
Specifically, we focus on the J = 1 rotational manifold, and
we look for the state with the highest occupation of the M = 0
projection at the relevant magnetic field for the specific
Feshbach resonance used in the molecule creation. For
23Na87Rb molecules occupying the v = 0, J = 1 ro-vibrational
state of their electronic state X1S+ we are guided by recent
work41 using a magnetic field strength of 335.6 G. We will
show that the best imaging state at this field also happens to
be lowest in energy.

As depicted in Fig. 1(a), the J = 1 rotational state of the v = 0
ground-state molecule has three projections M = �1, 0, +1. The
projection degeneracy is broken by hyperfine interactions
between the two nuclear quadrupole moments and the rotation
of the molecule as well as Zeeman interactions for the nuclear
spins.42–44 We denote the nuclear spins of 23Na and 87Rb by
-

iNa and
-

iRb, respectively. Both have quantum number, or value, of
3/2. Their projection quantum numbers along the magnetic field
direction are mNa and mRb, respectively. For all interactions the
sum Mtot = M + mNa + mRb is a conserved quantity. We use the
nuclear quadrupole moments and nuclear g factors from ref. 41
and 45. Coupling to rotational states J a 1 is negligible as the
rotational constant46 is orders of magnitude larger than the
energy scales of the hyperfine and Zeeman interactions.

There are 48 hyperfine-Zeeman eigenstates of the v = 0, J = 1
level of ground state 23Na87Rb. In zero magnetic field the total
angular momentum

-

Ftot =
-

J +
-

iNa +
-

iRb is conserved and states
can also be labeled by Ftot as well as Mtot. For magnetic field
strengths larger than about 100 G the nuclear Zeeman inter-
action is stronger than the hyperfine interactions and states
with the same Mtot avoid each other. There, the energetically
lowest J = 1 state has Mtot = +3. For B fields not exceeding 500 G
the 48 levels span an energy range of no more than h � 5 MHz.
Fig. 2 plots the relevant eigenenergies.

For perpendicular dispersive imaging we investigate the low-
est energy state depicted in Fig. 2 (cyan dot). We check that the
hyperfine state has a relatively high component of the projection
quantum number M = 0 and relatively small contribution of other
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M projections. Our calculations show that the energetically lowest
J = 1 level has the largest M = 0 contribution and to very good
approximation is described by the superposition

jperp

�� E
¼ c0 X1Sþ;

v ¼ 0; J ¼ 1; M ¼ 0

mNa ¼ 3=2; mRb ¼ 3=2

�����
+

þ c1 X1Sþ;
v ¼ 0; J ¼ 1; M ¼ 1

mNa ¼ 3=2; mRb ¼ 1=2

�����
+ (2)

with coefficient c0 = 0.892 and c1 = 0.452. We will therefore
proceed with this state as the imaging state.

4. Selection of target excited states
1. Selection criteria and relevant quantities

We aim to select target excited states that satisfy three criteria.
First and foremost the dynamic polarizabilty should display a
large anisotropy near the resonance transition to the target
excited state. This will ensure detectability via large phase
differences in eqn (1) for our imaging state, jperp. Secondly,
the target state, |cti, should have a small natural linewidth in
order to minimize heating, particle loss, and dephasing.
We also impose a third criteria as a matter of practical
experimental concern. We additionally search for a target state
where the transition has as large a transition width as possible,
thus allowing for easier laser stabilization as well as more
robust operation. This section defines the quantities we need:
the natural linewidth, dynamical polarizability and photon
scattering rate, to search for useful target excited states based
on the above criteria.

We first consider the natural linewidth, gn, of the target
state:47,48

gn ¼
4

3

1

4pe0�hc3
X
g~e

otg
3 cth jdt gðRÞR̂ �~e jg

�� E��� ���2: (3)

Here the sum of ~e is over the polarization direction of the
spontaneously emitted photon and the summation g for hetero-
nuclear alkali-metal dimers is over all eigenstates |jgi, both
bound and scattering states, with energy Eg of the X1S+ and
a3S+ potentials. Both potentials dissociate to atoms in the
electronic ground state. The transition energy reads h�otg = Et �
Eg, where Et is the energy of the target state. The quantity dt’g(R)
is the R-dependent transition electric dipole moment operator,
where R is the interatomic separation. The interatomic axis has
orientation R̂.

We find it convenient to define the orientation-dependent
‘‘transition widths’’ Gee for transitions between the imaging
state |jperpi and target state |cti using probe polarization ~e as

Gee ¼
4

3

1

4pe0�hc3
ot-perp

3 cth jdt perpðRÞR̂ �~e jperp

�� E��� ���2: (4)

Here, h�ot-perp = Et � Eperp and Eperp is the eigenenergy of the
imaging state. Since the imaging state |jperpi is a bound state
of the X1S+ potential, it is thus included in the sum over states
in eqn (3). All else held equal, target states with as large a value
of Gee as possible may be practically desirable, as transitions to
these states will be less sensitive to laser noise and technical
variations of the state energies.

To highlight the anisotropy in Gee we define the differential
transition width

G = Gzz � Gxx (5)

for Da(o). We argue (see Appendix C) that for our particular
choice of target excited states, G fully captures the anisotropy.
For the n0-th ro-vibrational target states we use here, |ct,n0i, we
find (see Appendix C)

G ¼ 4

3

1

4pe0�hc3
c0j j2

3
� c1j j2

6

 !
ot-perp

3 mn0j j2; (6)

where the vibrational matrix elements mn0 depend on the target
state and are defined explicitly in Appendix C. Here n0 = 0, 1, 2,. . .

is used to label the eigenstates by order of their eigenenergies.
We now turn to the dynamic polarizability. The dynamic

polarizability tensor components aee(o) of the imaging state
|jperpi at probe frequency o are determined by a sum over
ro-vibrational levels and scattering states of all electronic states.
For frequencies close to the target state resonance, such that
o E ot-perp but |o � ot-perp| c gn, the polarizability can be
described as

aeeðoÞ ¼ �
3p
2

c2

ot-perp3
Gee

D
þ að0Þee ; (7)

where D = o � ot-perp is the probe laser detuning. The back-
ground polarizability a(0)

ee contains the contributions from all
other far-detuned molecular states and for our purposes can be
taken as independent of o. We note that a similar background
contribution to the polarizability anisotropy, Da(o), can also be
defined. This background anisotropy is several orders of mag-
nitude smaller than the MHz (W cm�2)�1-level contributions we
consider near resonance, and in practice can be safely

Fig. 2 Eigenenergies of the hyperfine states of the v = 0, J = 1
ro-vibrational level of the X1S+ electronic ground state of 23Na87Rb as a
function of magnetic field strength B. The dashed vertical line indicates the
magnetic field strength B = 335.6 G. The cyan dot and orange square mark
states used for the perpendicular and parallel (Appendix D) imaging
schemes, respectively. The zero of energy of this plot relates to the
zero-field (B = 0) energy of the v = 0, J = 0 level with no electron-
nuclear quadrupole interaction.
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neglected. We seek to find states where the difference of
two components of this polarizability tensor, |azz � axx|, is
maximized for a fixed detuning. Such an anisotropy can be
achieved by looking for transitions with significant angular
dependence of Gee.

Finally, we will also compute the photon scattering rate to
estimate heating and loss of coherence near a resonance. For
|D| c gn it is given by:

gsc ¼
X
ee

3p
4

c2

ot-perp3
Geegn
D2
þ bð0Þsc

� �
� I ; (8)

where I is the probe laser intensity and b(0)
sc the background

imaginary polarizability. Minimal values of gsc are ideal to avoid
heating and scattering loss into dark states.

2. Target excited states for 23Na87Rb

In this section we will show that starting from the imaging state
(a hyperfine state of the v = 0, J = 1 ro-vibrational level of the
X1S+ state) we can use optical wavelengths to access mixed J0 = 0
ro-vibrational states of the coupled A1S+–b3P0 complex. We will
show by direct calculation that these states satisfy the criteria
discussed in Section 4.1.

We now present results for our exhaustive search for useful
target states. Fig. 3 effectively summarizes the findings of this
section by plotting the transition to the relevant target states
against the molecular potential. The details in obtaining these
target states can be found in Appendix B. Our search led to a
focus on three states highlighted in Fig. 3. To select target
states that are convenient for imaging we have computed the
natural linewidth and differential transition width for all
eigenstates of the J0 = 0 A1S+–b3P0 system. The lowest energy
excited level is to the n0 = 0 eigenstate. It has a 99.75%
admixture ab,n0 = 0 in the |b3P0i state. A transition from an
imaging state to this target state has a wavelength of 884 nm.
The transition from our imaging state to the n0 = 29 target
eigenstate has a wavelength of 791 nm. This target state has a
96.85% admixture in the |A1S+i state. Finally, the 770 nm
transition is to the n0 = 39 eigenstate. This target state has a
94.65% admixture in the |b3P0i state and was used in ref. 41 as
the intermediate state in the STIRAP process to form 23Na87Rb
molecules in their absolute ground state.

Fig. 4(a) shows the components of the differential dynamic
polarizability of |jperpi for the 770 nm transition as a function of
detuning D. Visible are the poles of both a J0 = 0 and J0 = 2
transition. Since the state |jperpi has an 80% and 20% popula-
tion in the M = 0 and M = 1 components, respectively, the
transition width Gxx of axx(o) is much smaller than the corres-
ponding width of azz(o). Due to these unbalanced populations,
the differential transition width G is positive for negative detun-
ing, hence the differential dynamic polarizability Da. On the
vertical scale of the figure the background contribution Da(0) to
Da(o) is negligible. Narrowing in on the J0 = 0 transition, we
summarize in Fig. 4(b) the results for Da for the 770 nm, 791 nm,
and 884 nm transitions. Here we see the resonant transition near
791 nm to target state n0 = 29 with its large A1S+ admixture has

the largest differential transition width G by far. This is a
consequence of the large transition dipole moment between
the X1S+ and A1S+ states. Naively, this suggests that this transi-
tion is the best of the three candidate transitions for perpendi-
cular imaging. We, however, must also account for spontaneous
emission and, in particular, whether the photon scattering rate
gsc is minimized.

To look for the transition with the best balance between large
transition width and small photon scattering rate, we have
additionally determined Da(o) for |jperpi as a function of o near
transitions to many of the J0 = 0 eigenstates of the A1S+–b3P0

complex. We have also computed the natural linewidths and
differential transition widths, gn and G, of these target states.
Fig. 5 shows widths gn and G as well as the ratio gn/G for the first
66 J0 = 0 eigenstates of the A1S+–b3P0 complex. The colored
markers in each panel correspond to the three transitions shown
in Fig. 3 and 4(b). The left-most four points with the smallest
transition energy correspond to transitions to the bound states at
the bottom of the b3P0 potential.

Fig. 3 Ground and relevant excited adiabatic relativistic potentials of the
23Na87Rb molecule as functions of atom–atom separation R. The two
energetically lowest adiabatic potentials are identified by non-relativistic
labels X1S+ and a3S+ respectively. The zero of energy of the graph is set at
their dissociated limit. The two remaining excited adiabatic potentials have
a narrow avoided crossing at Rc E 7.5a0. For R 4 Rc the electronic
wavefunctions of the third and fourth adiabat are well described by the
non-relativistic A1S+ and b3P0 symmetry, respectively. For R o Rc this
assignment is inverted. The three vertical lines indicate transitions from
the~ v = 0, J = 1 imaging state in the X1S+ state to three mixed J0 = 0
ro-vibrational states of the coupled A1S+–b3P0 complex. The transition
wavelengths are 770 nm, 791 nm, and 884 nm for the magenta, orange,
and cyan lines, respectively. The magnetic field is B = 335.6 G.
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Fig. 5(a) shows that the natural linewidths gn group roughly
into three bands: those with values smaller than 2p � 2 MHz,
those with values larger than 2p � 5 MHz, and those in between.
The first corresponds to transitions to target states with a
dominant admixture of the |b3P0i state and thus would have
been forbidden without spin–orbit coupling between the A1S+

and b3P0 states. The second group corresponds to transitions to
target states with a dominant admixture in the A1S+ state leading
to the largest gn. Finally, the scattered points between these two
bands correspond to target states with almost equal admixture of
b3P0 and A1S+ components. The natural linewidths for the
884 nm, 791 nm, and 770 nm transitions are calculated to be
2p � 0.027 MHz, 2p � 6.3 MHz, and 2p � 0.50 MHz, respectively.

Fig. 5(b) shows the differential transition widths G. Their
values are positive, oscillate with transition energy, and have a
Gaussian envelope. For a transition with larger G, we have a
larger absolute range of detunings in which the differential
polarizability can reach the desired magnitude. In fact, G is
largest when the target state has a large A1S+ admixture and
the vibrational matrix element mn0 is large. The latter occurs when
the inner turning point of the vibrational motion on the A1S+

potential coincides with the equilibrium separation of the X1S+

potential. The 791 nm transition to the n0 = 29 A1S+–b3P0

eigenstate, already discussed in the context of Fig. 3 and 4(b),
has the largest G. Finally, we observe that the differential transi-
tion widths for the 884 nm, 791 nm, and 770 nm, transitions are
2p � 4.0 kHz, 2p � 190 kHz, and 2p � 19 kHz, respectively.

Fig. 5(c) shows the ratio gn/G as a function of transition
energy from the |jperpi state. This quantity gives insight to the
‘‘verticality’’ of the transition, wherein smaller ratios corre-
spond to the fewest decay paths available to the targeted excited
state. For example, for a target state that can only sponta-
neously decay to the ground state (same electronic, vibrational,
and hyperfine levels as the imaging state) we find the lower
bound for this ratio is

gn
G
¼ 3

c0j j2� c1j j2=2
: (9)

For the state |jperpi, this limiting ratio is 4.3. A lower bound
ratio of 3 is found in the ideal case of a pure |J = 1, 0i state for
perpendicular imaging, limited by the J0 = 0 target state’s ability
to decay to any of the three M states of the J = 1 manifold.

Fig. 4 (a) Values of axx, azz, and Da for a large range of detunings of the
770 nm transition from the ground v = 0, J = 1 � 1S+ imaging state |jperpi.
The second resonance at roughly 12 GHz corresponds to transitions to the
J0 = 2 states. (b) Differential dynamic polarizabilities Da as a function of
frequency detuning D to the target states for the 770 nm, 791 nm, and
884 nm transitions of 23Na87Rb identified in Fig. 3. The magnetic field in
both graphs is 335.6 G.

Fig. 5 The natural linewidth gn (a) of eigenstates of the J0 = 0 A1S+–b3P0

complex of 23Na87Rb and their differential transition width G (b) from the
ground v = 0, J = 1� 1S+ imaging state |jperpi for perpendicular imaging as
functions of transition energy E. The transition energies are relative to
the energy of |jperpi. (c) The ratio gn/G as a function of transition energy.
The cyan square, orange triangle, and magenta diamond correspond to
the transitions shown in Fig. 3 featuring transition wavelengths of 884 nm,
791 nm, and 770 nm, respectively. The values of gn/G for the cyan square,
the orange triangle, and the magenta diamond are 7.8, 32, and 26,
respectively. The magnetic field in all graphs is 335.6 G.
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Transitions that realize this lower bound are known as vertical
transitions. For the case of a J = 0 imaging state with aniso-
tropic polarizability induced by, e.g., an applied electric field,
the lower bound ratio for vertical transitions is also equal to 3,
due to the dipole-allowed decay paths to J = 0 and 2 states.

The ratio gn/G is larger than 10 for all transitions to J0 = 0
A1S+–b3P0 eigenstates except for the n0 = 0 eigenstate, where its
value is 7.8. Thus this 884 nm transition is closest to vertical.
For all the transitions, the excited state does not only sponta-
neously decay to the imaging state but also to other
ro-vibrational states of the X1S+ potential as well as those of
the a3S+ potential. The most typical value for gn/G is between
20 and 40. Lastly, we calculate gn/G values of 32 and 26 for the
791 nm and 770 nm transitions, respectively. We note that
these values are all reduced by a factor of 1.44 for the case of
parallel imaging.

The next section summarizes how these results for gn/G
and gsc relate to an interplay and trade-off with respect to
maintaining low inelastic scattering rates and allowing for
robust operation.

5. Summary of perpendicular imaging
conditions for bulk gases

We have shown that polar molecules prepared in rotationally
excited states can act as an anisotropic medium, resulting in
birefringent phase shifts on an off-resonant probe laser field.
Furthermore, our calculations show that these phase shifts are
large enough to be detectable. For the three transitions identified
in 23Na87Rb in the previous section, we summarize in Table 1 the
detuning, in units of the respective transition linewidth, neces-
sary to achieve a birefringent phase shift jbulk = 11 and the
resulting inelastic loss rate gsc. Because the ratios of the natural
linewidth to the transition linewidth, gn/G, differ for the various
excited states considered, we see a range of detunings that are
necessary to attain the 11 polarization rotation. Here, we have
considered typical density values, r = 1012 cm�3, for molecular
gases formed from pre-cooled atoms,20,23 and a sample length
L equal to 30 mm (long, but readily achievable for single-beam
trapping). For the inelastic loss rates presented in Table 1, we
have considered a probe beam intensity of 0.02 mW cm�2

(relating to the peak probe intensity for a beam with 50 mW of
power and a 1 inch diameter).

In the previous section, advantages of choosing the target
states corresponding to the 791 nm and 884 nm transitions
were briefly discussed. The 791 nm transition is the strongest
yet it maintains a reasonably small gn/G ratio. These work to
keep the inelastic scattering rate low while reducing the
amount of laser stability needed to maintain a particular value
of detuning (in units of G). The 884 nm transition, albeit much
weaker, has the lowest gn/G ratio at 7.8 and is therefore subject
to the smallest amount of imaging induced heating.49 Because
of the narrow differential transition width of 884 nm transition,
its requirements for laser stabilization and its sensitivity to
noise and drifts of the state energies will be more pronounced.

However, because this dispersive imaging scheme can be
operated dozens or hundreds of differential transition widths
away from resonance, it is in general rather insensitive to such
frequency variations.

The 770 nm transition sits at a compromise, in both transition
strength and gn/G ratio, between the 791 and 884 nm transitions.
The primary benefit is that experiments with ground state
23Na87Rb will necessarily have the laser stabilization infrastructure
for this wavelength in place, as it is used in the production of
ground state molecules by STIRAP. As the STIRAP ‘‘dump’’ (Stokes)
laser is typically fixed to the J = 0 - J0 = 1 transition frequency by
locking to a cavity by the Pound–Drever–Hall (PDH) method, a
stable imaging beam detuned by D from the J = 1 - J0 = 0
transition may easily be engineered without the need for an
additional stabilized laser. This could be accommodated by using
acousto-optic modulators to introduce GHz-level frequency shifts
(2B � D B h � 4 GHz for 23Na87Rb), or by dynamically changing
the frequency offset used for PDH sideband locking (in the case
that a broadband fiber electro-optic modulator can be utilized)
prior to imaging. Given the availability of suitable imaging light in
23Na87Rb experiments,41 the realization of nondestructive disper-
sive imaging of 23Na87Rb molecular gases should be imminently
achievable.

If similar conditions also exist for other molecules, as may
be expected, then this nondestructive technique would be
readily applicable in many existing cold molecule experiments.
It is worth mentioning that sizable polarization rotation signals
for bulk gases relies in part on the ability to create a sample
with a high density. While bi-alkali molecules have been
brought to number densities of order 1012 cm�3, current cool-
ing techniques for other molecules do not yet lead to these
densities. Therefore, the primary experimental barrier to the
application of the imaging approach with generic molecules is
the development of new cooling techniques.

6. Imaging single molecules

A natural and impactful extension of this imaging scheme
would be to enable the resolution of individually trapped

Table 1 Summary of relevant quantities for the three chosen transitions
of the A1S+–b3P0 system of 23Na87Rb. The first column gives the transition
wavelength. The second and third columns give the detuning, in units of
transition linewidths and MHz, respectively, necessary to attain a 11
polarization rotation on a molecular sample of density 1012 cm�3 and a
sample length of 30 mm. The fourth column shows the ratio of the natural
linewidth to the differential transition width. The last column is the inelastic
scattering rate gsc when achieving 11 rotations for a probe intensity of
0.02 mW cm�2. All quantities relate to the case of ‘‘perpendicular’’ imaging.
In the case of ‘‘parallel’’ imaging, gn/G is reduced by a factor of 1.44 and the
inelastic scattering rate gsc is reduced by a factor of 1.87 for an equivalent
rotation angle f

Wavelength (nm) 11 D(G) 11 D/2p (MHz) gn/G gsc/2p (Hz)

884 159 0.64 7.8 4.08
791 134 25.43 32 16.91
770 124 2.35 26 14.85
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molecules.18,50,51 For an individual point-like scatterer, such as
a single molecule tightly confined to a lattice site or optical
tweezer, the peak polarization rotation will be smaller than the
values we have discussed for bulk molecular gases. This is
because individual molecules will have a maximum effective
optical density (OD), while the signal from a bulk gas can be
boosted by the collective, integrated contribution of many
molecules along the imaging direction. To compensate for this
loss of collective OD enhancement, operation closer to reso-
nance is required to attain degree-level rotations from single
molecules. Furthermore, as discussed in ref. 35, a high numer-
ical aperture imaging system is required to enable the detection
of individual particles.

We first consider the achievable polarization rotation signal
under the most ideal conditions: utilizing a state-of-the-art
imaging system with an NA of 0.852 and operating on the more
vertical 884 nm transition. We additionally consider the case of
‘‘parallel’’ imaging, which reduces the amount of inelastic scat-
tering by roughly a factor of two for the equivalent rotation signal.
At a detuning of D = 19G, a point-like scatterer would result in a
peak polarization rotation of f E 1.521 under these conditions.
While this degree of rotation is comparable to what has been
used to detect single atoms,35 one also has to account for how
much scattering can be tolerated for the molecules. For an
imaging intensity of I = 0.02 mW cm�2, as was considered in
Table 1, this would result in an inelastic scattering rate of 152 Hz.

We can restrict to an imaging time t such that only one
inelastic scattering event occurs and the molecule interacts with
Np E Its/hf probe photons, where s E l2/p is the off-resonant
scattering cross-section for imaging light of wavelength l (fre-
quency f). With this restriction, one finds that the maximum
achievable signal-to-noise ratio (SNR) for shot-noise-limited per-

formance, SNRmax ¼ f
ffiffiffiffiffiffiffiffiffi
ZNp

p
,53 just barely exceeds 1 even if we

assume a perfect efficiency Z for collection and detection. Under
realistic conditions, the actual SNR will be reduced due to
additional noise, reduced efficiency, by the use of imaging
systems with more modest NA, and potentially by use of the
‘‘perpendicular’’ scheme or more lossy imaging transitions.

To achieve the high SNRs necessary for high-fidelity detec-
tion, this dispersive imaging technique would thus have to be
combined with, e.g., enhancement by a high-finesse optical
cavity54–56 or by the addition of repumping lasers, which would
enable more scattering events prior to the loss of population to
dark states.57 In the latter case, repumping in a way that is
commensurate with polarization-based dispersive imaging
could be achieved by using J = 0 ground state molecules.
Dispersive imaging on narrow, nearly vertical transitions57,58

could be enabled by the application of an electric field or
optical fields, thereby breaking the degeneracy of the J0 = 1
sublevels and inducing an anisotropic polarizability.

7. Discussion

In this paper we have presented a nondestructive technique for
imaging excited rotational states of ultracold molecules using

well known techniques from the toolbox of ultracold atoms. We
described the anisotropic nature of excited rotational states and
detailed how this can be translated to a measurable polariza-
tion rotation of a low intensity probe beam. We have defined
three criteria to select optimal transitions with large anisotro-
pic polarizabilities: a nearly pure M component of the imaging
state, a large differential transition width, and a small ratio
between natural linewidth and transition width. The first
criterium can be realized by taking advantage of selection rules,
the second is expected to occur for the most dipole-allowed
transitions, while the last favors transitions that are as vertical
as possible. These three criteria are generic and provide gui-
dance to any search for transitions that can be used to image
any ultracold molecule. Often, we have to select transitions that
find a compromise among these criteria.

For 23Na87Rb and 87Rb133Cs we identified electronic transi-
tions, as described in Appendix E, one might use to image the
first rotational excited state and presented expected polariza-
tion rotations for conditions in the current state-of-the-art
ultracold molecule experiments. Both 23Na87Rb and 87Rb133Cs
have acceptable narrow vertical transitions. Since 23Na87Rb is
lighter, however, it has a smaller spin–orbit coupling strength
and its most vertical transition is narrower than the most
vertical transition of 87Rb133Cs. We thus expect that imaging
of 23Na87Rb will be more sensitive.

Our proposed nondestructive imaging technique could be
especially important for systems that lack alternative detection
schemes based on optical cycling transitions, such as hetero-
nuclear bi-alkalis and homo-nuclear alkali dimers. Addition-
ally, our scheme has a reduced level of complexity as compared
to imaging protocols that involve interactions between Rydberg
atoms and polar molecules.59,60

The nondestructive nature of the proposed imaging method
for bulk gases is well-suited to applications in the study of cold
chemistry. For instance, the continuous monitoring of a single
sample of molecules may allow for the study of losses by
chemical reaction,61 while avoiding sensitivity to shot-to-shot
variations in the number of molecules produced. Through the
incorporation of cavity-based enhancement of dispersive sig-
nals, the discussed approach has potential to impact funda-
mental physics, such as in the search for bosonic dark matter
particles.62 One could continuously monitor molecular samples
prepared in a ‘‘dark’’ rotational states that gives rise to no
polarization rotation signal, looking for events in which popula-
tion jumps to ‘‘bright’’ rotational states that yield a polarization
rotation signal. Dispersive measurements aided by cavity
enhancement could be utilized for measurement-based55,63–65

and coherent55,66 generation of squeezing of molecular rotation,
which could then be transferred to alternate degrees of freedom
to enable applications relevant to fundamental physics.67–69

The extension of the proposed approach to the detection of
individual molecules could be enabled either by cavity enhance-
ment of the dispersive phase shift or by the addition of one or
more repump lasers when utilizing narrow, ‘‘vertical’’ imaging
transitions. These ideas are not fully developed as of yet and
will require future studies. Such an extension would be of
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critical importance for QIS applications in fiducial state
preparation6,7 and qubit readout. Furthermore, this technique
could enable effective quantum state preparation and high-
fidelity detection in molecules, strengthening the relevance of
molecules for use in quantum analog simulation70,71 and
precision measurement.72,73
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Appendix A: phase shift for parallel and
perpendicular imaging

In this section we derive eqn (1). The wave equation for an

electric field
-

E(-r,t) in an anisotropic medium is74

rðr � ~Eð~r; tÞÞ � r2~Eð~r; tÞ þ m0e0e
@2

@t2
~Eð~r; tÞ ¼ 0: (A1)

Here, the relative permittivity e should be understood as a tensor
form. For diatomic molecules in a magnetic field along the
z-direction, each eigenstate has a fixed projection of the total
angular momentum along z. For molecules that occupy one of
these eigenstates with no degeneracy, both the dynamic polariz-
ability tensor a and the relative permittivity tensor e are diagonal in

the spherical basis êþ1 ¼ �ðx̂þ iŷÞ
� ffiffiffi

2
p

, ê�1 ¼ ðx̂� iŷÞ
� ffiffiffi

2
p

, and
ê0 = ẑ, where x̂, ŷ, and ẑ are the unit vectors of the three Cartesian
coordinates. Given the condition rcaii { 1(i = +, �, 0) where r is
the molecular number density, we can apply the Clausius–Mossotti
relationship74 to relate the relative permittivity tensor to the
dynamic polarizability tensor component by component via

eii E 1 + 2rcaii. (A2)

We look for a plane wave eigen-mode of
-

E,
-

E(-r,t) =
-

Fexp(
-

k�-r � ot). (A3)

Plugging eqn (A3) into eqn (A1) and writing the equation in
the spherical tensor basis, we have

Here, ki and
-

Fi are the i-component of the vector
-

k and
-

F, i.e.,
ki = êi*�

-

k and Fi = êi*�
-

F. For a fixed propagation direction
-

k/|
-

k|,
the magnitude |

-

k| of the wave vector of an eigen-mode is solved
by setting the determinant of the 3 � 3 matrix in eqn (A4) equal
to zero.

For the parallel imaging scheme, we have
-

k = k0ê0. In this
case, the system is probed along one of the principle axes. We
have the two eigen-mode solutions,

k0;þ ¼
2p
l

ffiffiffiffiffiffiffiffi
eþþ
p

(A5)

and

k0;� ¼
2p
l

ffiffiffiffiffiffiffiffi
e��
p

; (A6)

where l is the probing laser wavelength. Using eqn (A2), (A5)
and (A6), the phase shift f reads

f ¼ k0;þ � k0;�
� �

L

� 2prcL
l

aþþ � a��ð Þ:
(A7)

For the perpendicular imaging scheme, we have
~k ¼ �ky

�
ð
ffiffiffi
2
p

iÞ êþ1 þ ê�1ð Þ. The two eigen-mode solutions read

ky;x ¼
2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eþþe��
eþþ þ e��

s
(A8)

and

ky;z ¼
2p
l

ffiffiffiffiffiffi
e00
p

: (A9)

The solutions in eqn (A8) and (A9) correspond to a plane wave
with the dominant polarization along the x- and z-directions,
respectively. The phase shift f for the perpendicular imaging
scheme reads

f ¼ ky;z � ky;x
� �

L

� 2prcL
l

a00 �
a�� þ aþþ

2

	 

:

(A10)

In obtaining eqn (A10), we Taylor expand ky,x in eqn (A8) and
neglect all the higher order terms of (rcaii)

n with n 4 1.
For the diatomic molecule in a magnetic field along the

z-direction, the dynamic polarizability tensor of an eigen-
state in the Cartesian coordinate have axx = ayy and axz =
azx = ayz = azy= 0. Since the trace of a tensor is independent
of the representation and the coupling between the x,y
degrees of freedom and the z degree of freedom vanishes,
we have

a++ + a�� = 2axx (A11)

and

a00 = azz. (A12)

Based on eqn (A11) and (A12), the phase shift f in
eqn (A10) is

f � 2prcL
l

azz � axxð Þ (A13)

o2e0m0eþþ � j~kj2 þ kþ1j j2 kþ1k
�
�1 kþ1k

�
0

k�þ1k�1 o2e0m0e�� � j~kj2 þ k�1j j2 k�1k
�
0

k�þ1k0 k��1k0 o2e0m0e00 � j~kj2 þ k0j j2

0
B@

1
CA Fþ1

F�1
F0

0
@

1
A ¼ 0: (A4)
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Appendix B: calculation of the
eigenstates of the A1R+–b3P0 system

To calculate the dynamic polarizabilities azz(o) and axx(o), we
sum up contributions from the ro-vibrational and scattering
states of ground and excited electronic states using the
approach developed in ref. 75. For the strongly coupled
A1S+–b3P0 system we rely on the electronic potentials surfaces,
transition dipole moments, and spin–orbit coupling functions
of ref. 76. The relevant R-dependent electric transition dipole
moments df’i(R) between the pairs (i,f) = (X1S+,A1S+) and
(i,f) = (a3S+,b3P) have been taken from ref. 76 and 77. Transi-
tions between the pairs X1S+–b3P and a3S+–A1S+ of non-
relativistic states are dipole forbidden. Moreover, the electric
dipole moment operator only couples basis states with the
same nuclear spin projection quantum numbers. For distant
non-resonant electronic states, not shown in Fig. 3, we use the
potentials and transition dipole moments of ref. 48.

In this work, we are interested in the dynamic polarizabil-
ities and the photon scattering rate near the resonance transi-
tions to J0 = 0 target states of the A1S+–b3P0 system. The
rotational states with J0 = 0 only exist for electronic states with
projection quantum number Os = 0�, where O is the projection
of the total electron spin and angular momentum on the
internuclear axis and s = � denotes a reflection symmetry.
In alkali-metal dimers only O0 = 0+ states can be excited from
the X1S+ ground state. To further specify the target state we
assembled the relevant 0+ potentials of 23Na87Rb from ref. 76
and 78. Fig. 3 shows the X1S+ potential and the energetically
lowest two O0 = 0+ relativistic potentials dissociating to atom
pair states with one atom electronically excited. The latter two
potentials have been obtained by diagonalizing at each R a
2 � 2 potential matrix containing the non-relativistic A1S+

and b3P electronic potentials coupled and shifted by an
R-dependent relativistic spin–orbit interaction. For complete-
ness, Fig. 3 also shows the a3S+ potential from ref. 78 as the
b3P0 state can decay into this state by spontaneous emission.
This process contributes to gn, the natural linewidth.

The couplings in the J0 = 0 A1S+–b3P0 system are sufficiently
strong such that a quantitative representation of the molecular
vibration requires a coupled-channel calculation starting from
the non-relativistic basis of |A1S+i and |b3P0i states, their
potentials, and spin–orbit induced coupling. The normalized
J0 = 0 target vibrational wavefunctions are given by

ct;n0
�� �

¼ 1ffiffiffiffiffiffi
4p
p fA;n0 ðRÞ A1Sþ

�� �
þ fb;n0 ðRÞ b3P0

�� �� �
� iNam

0
Na

�� �
iRbm

0
Rb

�� �
;

(B1)

where the functions fA,n0(R) and fb,n0(R) are obtained from the
coupled-channel calculation and index n0 = 0, 1, 2,. . . labels
eigenstates by order of their eigenenergies. For J0 = 0 states the
nuclear spin wavefunction is separable from that of the elec-
trons and molecular rotation. The energy of two energetically
nearest neighbor states with different mNa

0 and mRb
0 are spaced

by the nuclear Zeeman interaction and of order h� 0.1 MHz for

our magnetic field strength. The quantities as;n0 ¼Ð1
0 r2dr fs;n0 ðRÞ

�� ��2 are the admixtures of eigenstate n0 in electro-

nic components s = A or b. For ease of notation we suppress the
rotational and nuclear spin quantum numbers in denoting
target states |ct,n0i. Effects of Coriolis-induced coupling to
ro-vibrational levels of O0 = 0�, 1, and 2 potentials of the b3P
state are negligible for our purposes.

Appendix C: derivation of differential
transition width

In this section we argue that eqn (5) and (6) offer a good
approximation to the differential transition width G. First we
note that the superposition of nuclear spin states in |jperpi in
eqn (2) leads to contributions to Da(o) from two nearly-
degenerate target states with the same state label n0 and
quantum number J0 = 0 and M0 = 0, but different nuclear spin
projections mRb

0 of 87Rb. At B = 335.6 G these two target states
are split by h � 0.1 MHz. We find that the value is on the order
of or smaller than the natural linewidth of eigenstates of
the A1S+–b3P0 complex. In fact, as the superposition of states
in |jperpi also corresponds to a superposition of states with
different rotational projection quantum numbers M, the M = 0
component contributes to azz(o) and the M = 1 component
to axx(o). Then for detunings |D| c gn, we can neglect the
h � 0.1 MHz energy difference and define the differential
transition width as in eqn (5). Then for the n0-th J0 = 0
ro-vibrational target state |ct,n0i of the A1S+–b3P0 system, we
arrive at eqn (6), where the vibrational matrix element is:

mn0 ¼
ð1
0

R2dRfA;n0 ðRÞdA XðRÞjperpðRÞ (C1)

and fA,n0(R) and jperp(R) the radial wavefunction of the A1S+

component of |ct,n0i and the radial wavefunction of the ima-
ging state |jperpi, respectively [see Appendix B].

Appendic D: target states for parallel
imaging scheme

We can also probe the molecular system with light propagating
parallel to the magnetic field direction, the so-called ‘‘parallel’’
probing scheme. In such a case, the probe laser is linearly
polarized with the polarization lying in the plane perpendicular
to the B-field. We selected one of the higher energy hyperfine-
Zeeman states as our imaging state for parallel imaging. This
level is the only state with Mtot = �4 and is thus given by

jparal

�� E
¼ X1Sþ;

v ¼ 0; J ¼ 1; M ¼ �1
mNa ¼ �3=2; mRb ¼ �3=2

����
�
: (D1)

It has the second highest energy of the v = 0, J = 1 � 1S+

hyperfine states. The only Mtot = +4 state can be used as an
imaging state as well. For these ‘‘circularly polarized’’ |M| = 1
states, the relevant differential polarizability is

Da(o) = a++(o) � a��(o), (D2)
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where a++ and a�� are spherical tensor components of the rank-
2 dynamic polarizability tensor. This differential polarizability
relates to a circular birefringence of the molecules, which will
give rise to direct rotation of the probe beam’s linear polariza-
tion vector.

Fig. 6 shows the dynamic polarizabilities a++(o), a��(o),
and Da(o) for the 770 nm transition to the n0 = 39 state of
the A1S+–b3P0 complex. The poles at D = 0 GHz and 11.65 GHz
correspond to resonant transitions to J0 = 0 and J0 = 2 rotational
states, respectively. The J0 = 0 pole is absent in the curve for
a��(o) as only M0 =�2 states are accessible for this polarization
tensor component.

In the parallel probing scheme, the differential transition
width G for the J0 = 0 transition is larger than that for the
perpendicular probing scheme. In fact, the parallel differential
transition width is (c1

2 � c2
2/2)�1 = 1.44 times larger for

all eigenstates n0, leading to differential transition widths
of 2p � 5.7 kHz, 2p � 274 kHz, and 2p � 27.8 kHz for the
884 nm, 791 nm, 770 nm transitions, respectively. The natural
linewidths for the parallel probing scheme are the same as
those for the perpendicular probing scheme. Thus, for the
same detuning, the parallel probing scheme gives a slightly
larger phase difference f than the perpendicular probing
scheme.

Finally, we note that the Mtot = �4 states, which are most
ideal for the parallel probing scheme, can also be utilized for
the perpendicular probing scheme. In this case, the pole in the
azz polarizability vanishes near the J = 1 to J0 = 0 transition,
while axx features a prominent pole, as the linear polarization
along the x̂ axis can drive both s+ and s� transitions. While the
transition widths for these states in the perpendicular scheme
are reduced by a factor of 2 from the values they take in the
parallel scheme, they will nevertheless give rise to appreciable
polarization rotation. More generally, a birefringent response
should be possible for any state with J a 0 in either imaging
scheme, while for each approach particular states will provide
the largest possible rotation signals.

Appendix E: imaging 87Rb133Cs
molecules

In this section, we analyze nondestructive imaging of the v = 0, J = 1
ro-vibrational level of the X1S+ state of 87Rb133Cs. Ultracold
87Rb133Cs, another bi-alkali molecule, has been created using
STIRAP from cold atom gases close to an interspecies Feshbach
resonance near B = 182 G.79,80 Fig. 7 shows the 96 hyperfine/
Zeeman eigenenergies of the v = 0, J = 1 level as a function of
magnetic field strength B. The nuclear spins of 87Rb and 133Cs are
3/2 and 7/2, respectively, and we use the nuclear quadrupole
moments and nuclear g factors from ref. 81.

We determine dynamic polarizabilities at B = 182 G, indi-
cated in Fig. 7, close to the Feshbach resonance location used
by ref. 80. For the perpendicular imaging scheme, we use the
imaging state

jperp

�� E
¼ c0 X1Sþ;

v ¼ 0; J ¼ 1; M ¼ 0

mRb ¼ 3=2; mCs ¼ 7=2

�����
+

þ c1 X1Sþ;
v ¼ 0; J ¼ 1; M ¼ 1

mRb ¼ 1=2; mCs ¼ 7=2

�����
+ (E1)

with c0 = 0.925 and c1 = 0.374. It is the energetically lowest J = 1
hyperfine state and, again, has the largest M = 0 contribution of
all J = 1 hyperfine states. For parallel imaging, we consider the
M = �1 state

jparal

�� E
¼ X1Sþ;

v ¼ 0; J ¼ 1; M ¼ �1
mRb ¼ �3=2; mCs ¼ �7=2

����
�

(E2)

with stretched nuclear Zeeman states such that |mRb| = iRb and
|mCs| = iCs. The polarizability for the hyperfine state with all
projection quantum numbers of opposite sign is the same as
that for |jparali. All three states are marked in Fig. 7.

For the imaging state, we use the X1S+ potential from ref. 82
and 83. For the target A1S+–b3P0 complex, we use the potentials
and spin–orbit matrix element from ref. 84. To calculate the

Fig. 6 Dynamic polarizabilities a++(o) and a��(o) and corresponding
differential dynamic polarizability Da(o) for parallel imaging based on the
|jparali imaging state near the 770 nm transition of the 23Na87Rb molecule
shown in Fig. 3. We use B = 335.6 G.

Fig. 7 The 96 hyperfine and Zeeman energy levels for the v = 0, J = 1
manifold of the X1S+ state of 87Rb133Cs. The vertical line indicates mag-
netic field B = 182 G. At this magnetic field strength the level with
a magenta dot corresponds to the optimal state for the perpendicular
probing scheme, while the cyan square and orange diamond correspond
to the best states for the parallel probing scheme.
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natural linewidths of the A1S+–b3P0 complex, the spontaneous
decay to the a3S+ potential is included. The a3S+ potential is
taken from ref. 82 and 83. Other excited electronic potentials
have been taken from ref. 85. Finally, transition electric dipole
moments are taken from ref. 48 and 86.

Fig. 8 shows the natural linewidth gn, the differential transi-
tion width G = Gzz � Gxx, and the ratio gn/G as functions of the
transition energy from |jperpi to J0 = 0, M0 = 0 target eigenstates
of the coupled A1S+–b3P0 complex for the perpendicular ima-
ging scheme. The natural linewidths in Fig. 8(a) are much
smaller than 2p � 1 MHz for target states with transition
energies E less than hc � 10 035 cm�1. These eigenstates have
energies below the minimum of the A1S+ potentials and, thus,
have a large b3P0 admixture and small natural linewidths. For
E/hc 4 10 035 cm�1, the ordering of the eigenenergies alternate
between the one with dominant A1S+ and the one with domi-
nant b3P0 admixture leading to alternating large and small
natural linewidths.

The differential transition width G for the perpendicular
imaging scheme is shown in Fig. 8(b). The values of G are less
than 2p � 5 kHz for E/hc o 10 035 cm�1 due to the forbidden
nature of the dipole transitions from the X1S+ state to the b3P0

state. For target states with 10 035 cm�1 o E/hc o 11 400 cm�1,
the differential transition widths are positive and oscillatory
with a Gaussian envelope. The largest G is 2p � 0.201 MHz for
the target state with a transition wave length of 935 nm. For the
parallel imaging scheme, not shown, the differential transition
widths are 1.27 times larger than those in Fig. 8(b), as again
follows from the coefficients ci in eqn (E1).

From Fig. 8(c) we see that the ratio between the natural line-
width and the differential transition width is larger than 100 for
the target states with E/hc o 10 035 cm�1 with the exception of the
first two. For 10 035 cm�1 o E/hc o 11 400 cm�1, some of the
ratios are smaller than 100. The smallest ratio is 12 and occurs for
the transition to the bottom of the b3P0 potential. The ratio for the
second lowest eigenstate is 29. The few transitions around and
including the one with the largest transition width have the ratios
close to 19. Consequently, the two energetically lowest eigenstate
and quite a few eigenstates with transition wavelengths near
935 nm can be used for nondestructive imaging.

The smallest value for ratio gn/G for both 23Na87Rb and
87Rb133Cs occurs for the transition to the energetically lowest
eigenstate of the A1S+–b3P0 complex. For 23Na87Rb this ratio is
a little bit smaller than for 87Rb133Cs, and, hence, imaging of
23Na87Rb molecules will be less destructive than for 87Rb133Cs.
We find that this difference is due to the larger spin–orbit
coupling strength of the heavier 87Rb133Cs. This leads to more
mixing between the A1S+ and b3P0 states. Thus, G for the most
vertical transition of 87Rb133Cs is larger than that for 23Na87Rb.
On the other hand, more weights of b3P0 also indicate more
spontaneous decay to a3S+. Nevertheless, the ratio gn/G remains
a little bit larger for 87Rb133Cs than for 23Na87Rb.

We note that the STIRAP ‘‘dump’’ transition for 87Rb133Cs
relates to a transition to the b3P1 excited state, outside of the
range of transitions we have explored. For 23Na87Rb it was
determined that the STIRAP ‘‘dump’’ transition can be readily
applied to nondestructive dispersive imaging of bulk molecular
gases. It remains to be determined if such a convenient choice
for an imaging laser could be applicable for the other bi-alkali
species, and more generally for other molecules produced
by STIRAP.
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Phys. Rev. A: At., Mol., Opt. Phys., 2008, 78, 033434.

82 O. Docenko, M. Tamanis, R. Ferber, H. Knöckel and
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