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We theoretically show that spontaneously interlayer-coherent bilayer quantum Hall droplets should
allow robust and fault-tolerant pseudospin quantum computation in semiconductor nanostructures with
voltage-tuned external gates providing qubit control and a quantum Ising Hamiltonian providing qubit
entanglement. Using a spin-boson model, we estimate decoherence to be small ��10�5�.
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regime. Recently, Yang et al. [4] have made a proposal for
a quantum Hall two-level system using the charge de-
grees of freedom in two vertically coupled quantum dots

In a large magnetic field, the Coulomb interaction exhib-
its energy cusps at configurations corresponding to bulk,
bilayer quantum Hall states. We focus our attention on the
Among the stringent requirements for viable quantum
computer architectures are robust (i.e., relatively decoher-
ence-free) and scalable qubits (i.e., quantum two-level
systems) allowing single- and two-qubit operations nec-
essary for quantum computation [1]. The scalability re-
quirement makes semiconductor-nanostructure-based
quantum computer architectures particularly attractive,
and two spin-based semiconductor quantum computer
architectures, one using electron spins in GaAs quantum
dots [2] and the other using Si donor spin states [3], have
attracted considerable attention. The proposed advantage
of solid state spin quantum computation over the corre-
sponding charge or orbital state quantum computation is
the long decoherence time for spin states (�s or longer at
low temperatures) compared with orbital states (ps or
less) allowing, at least in principle, robust quantum com-
putation using spin qubits in semiconductor nanostruc-
tures. A very serious problem in solid state spin quantum
computation is, however, the measurement of single spin
states crucial for the quantum computation readout.
(There is no known solid state experimental technique
for measuring a single spin, i.e., one Bohr magneton, and
a great deal of experimental activity is currently being
focused on measuring a single spin in semiconductor
structures.) In this Letter, we theoretically establish the
practical possibility of a novel pseudospin quantum com-
putation in semiconductor nanostructures which syner-
getically combines the robustness of spins (i.e., long
decoherence time) with the ease of qubit-specific mea-
surement of charge states by using mesoscopic ‘‘coher-
ent’’ charge states in quantum Hall droplets [4,5].

Quantum Hall systems offer well-studied mesoscopic
quantum states with the potential for dynamic manipu-
lation with long dephasing times. Surprisingly, little work
has gone into exploring the possibility of engineering
quantum Hall states for the purpose of quantum compu-
tation. Mozyrsky et al. [6] have explored the possibility of
using nuclear spins as qubits with an interaction mediated
by a two-dimensional electron gas in the quantum Hall
0031-9007=03=91(16)=167903(4)$20.00 
in a large magnetic field, a system which is currently the
subject of intense experimental study [7]. In these sys-
tems, the layer degree of freedom acts as a pseudospin,
controllable through external gates. The incompressibility
of the finite size quantum Hall liquid preserves the integ-
rity of the two-level system while the mapping between
layer index and pseudospin relies on the presence of spon-
taneous interlayer phase coherence [8]. Drawing upon
the direct analogy between number fluctuations in the
Cooper pair box experiment [9] and fluctuations in the
layer degree of freedom in bilayer quantum Hall droplets
(BQHDs), an even-odd effect in the Coulomb blockade
spectra of BQHDs has been proposed [5] as a simple
measure of spontaneous interlayer phase coherence
(and, hence, the robustness) of the two-level system dis-
cussed in Ref. [5].

The remainder of this article will be concerned with
entangling two BQHDs which, when isolated, demon-
strate the even-odd effect independently. Establishing
controllable entanglement is crucial to performing large
scale quantum computing. Our primary result is that the
Coulomb interaction offers a natural entangling mecha-
nism, opening the possibility of large scale quantum
computing using BQHDs.We find that, for weak coupling,
the Coulomb interaction between two laterally separated
BQHDs can be mapped onto a quantum Ising model with
a tunable, effective magnetic field. This two-qubit Hamil-
tonian allows for relatively simple implementation of a
controlled-NOT operation [10] which, when combined
with single qubit operations, provides a universal set of
quantum gates [11].We further address the extent to which
phonons and voltage fluctuations in the leads dephase our
system.

We begin by considering a set of two parabolically
confined quantum dots vertically separated by a distance
d under a transverse magnetic field, B. The two dots will
form a BQHD for appropriate magnetic fields and layer
spacings. We further assume there to be a small, odd
number of electrons distributed between the two droplets.
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FIG. 1. Schematic representation of two bilayer quantum Hall
droplets separated by a center-to-center distance R. Individual
droplets are vertically separated by a distance d. The left set of
droplets has one extra electron in the top layer giving it a net
pseudospin, Sz � �1=2. The right set of droplets has pseudo-
spin Sz � �1=2. This configuration corresponds to the basis
state j"#i. �1

z and �2
z are the relative bias voltages between the

layers in the left and right set of droplets, respectively.
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maximum density droplet (MDD) which is the meso-
scopic realization of the bilayer quantum Hall state at
total Landau level filling �T � 1.

The Hamiltonian for an isolated BQHD in the Fock-
Darwin basis is

H � H0 � P̂PVcoulP̂P; (1)

where H0 �
1
2 �

���������������������
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0

q
�!c�L̂Lz, with L̂Lz being the

total angular momentum in the z direction. Also, !c is
the cyclotron frequency and !0 parametrizes the para-
bolic confining potential. P̂P is the lowest Landau level
(LLL) projection operator and Vcoul represents the usual
Coulomb interaction between electrons:
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where " is the GaAs dielectric constant, and rij is the
lateral separation between the ith and the jth electron. The
natural unit of length is the modified magnetic length
a � lB�1� 4!2

0=!
2
c�

�1=4 which reduces to the planar
magnetic length, lB �

��������������
�hc=eB

p
, when the cyclotron en-

ergy is much larger than the confining potential energy. In
the above, we have used a pseudospin representation to
describe the double layer system: " and # distinguish
different layers. In general, we define the pseudospin
operator:

S 

1

2

X
m

cya �m��abcb�m�; (3)

where cya �cb� creates (annihilates) an electron in the layer
a�b� with single-particle angular momentumm. � are the
usual Pauli matrices. ŜSz measures half the electron num-
ber difference between layers, and ŜSx is associated
with interlayer tunneling. We take the real spin to be fully
polarized either because of the large Zeeman coupling or
because of electron-electron repulsion, i.e., Hund’s rule.

We diagonalize H in the basis of LLL single-particle
eigenstates. In particular, we focus our attention on the
part of the Hilbert space containing the MDD state. It
was shown in Ref. [5] that, in the absence of tunneling,
the two degenerate states with Sz � � 1

2 are separated
from states with different Sz by a large charging energy.
These two states, labeled j"i and j#i, form the qubit basis
of our two-level pseudospin system.

Now consider a second BQHD along the x axis at a
distance R away from the first BQHD, as shown in Fig. 1.
To avoid lateral tunneling, we keep the distance between
BQHDs larger than the MDD diameter which is the
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diameter of the largest Fock-Darwin orbital, roughly
2

����
N

p
a, where N is the total number of electrons in both

BQHDs. To include the inter-BQHD Coulomb interaction,
we first note that for R� a the low lying energy levels of
the two BQHDs contain a set of four degenerate product
states. For R� 8a, the Coulomb interaction between
electrons in different BQHDs will favor the two pseudo-
spin unpolarized states. We will verify, by direct calcu-
lation, that the inter-BQHD interaction energy can be
made smaller than the intra-BQHD energy gap. We will
consider a regime where the inter-BQHD interaction is
too weak to produce intra-BQHD excitations, leaving the
density unperturbed. Then, to a first approximation, we
may take the basis states of the weakly interacting system
of two BQHDs to be product states.

We now calculate the inter-BQHD interaction matrix
between the four product states: fj""i; j"#i; j#"i; j##ig. First
note that the Coulomb interaction does not flip pseudospin
so that all off-diagonal matrix elements vanish. The four
diagonal matrix elements do not vanish. The inter-BQHD
Coulomb interaction, within our restricted Hilbert space,
therefore maps onto an Ising interaction:

HI �
J
2
�1
z�2

z ; (4)

where we define the exchange splitting to be

J � h""j
X
i;j

V�R; d; ri; r0j� j""i � h"#j
X
i;j

V�R; d; ri; r0j� j"#i;

(5)

where
V�R; d; ri; r0j� �
e2

"0a
1����������������������������������������������������������������������������������

�xi � x0j � R=a�2 � �yi � y0j�
2 � �d=a�2

q : (6)

r �r0� indicates the radial vector in the x-y plane in the left (right) BQHD and "0 is the inter-BQHD dielectric constant.
167903-2



P H Y S I C A L R E V I E W L E T T E R S week ending
17 OCTOBER 2003VOLUME 91, NUMBER 16
Note that with this definition the Coulomb interaction
will favor an antiferromagnetic interaction with J > 0.
The states j"i and j#i are nontrivial, many-body eigen-
states of H.

Figure 2 is a log-log plot of J as a function of the inter-
BQHD separation R for a total of 6, 10, and 14 electrons
distributed between two BQHDs with vertical spacing
d � a. For R� 8a, we find that J is appropriately smaller
than the intra-BQHD edge excitation gap which is
�0:04�e2=�"a�� [5]. At sufficiently large distances, an
odd number of electrons in a single BQHD in the MDD
state can be thought of as a dipole. Figure 2 shows that
J / R�3 for R * 25a, demonstrating that the inter-
BQHD interaction is dipolar only for sufficiently large
distances. In the regime of interest R� 8a, J decreases
much faster than R�3. We find that for R� 20a the
exchange splitting is already as low as J� 0:5 �eV at
B � 9 T. This suggests that the interaction between a
collection of BQHDs will be effectively nearest neighbor
given that we have not considered effects such as finite
layer thickness and, in general, screening of the inter-
BQHD interaction, which significantly reduce the
strength of the Coulomb interaction.

We now allow for interlayer tunneling within a single
BQHD. The tunneling Hamiltonian can be written in
terms of the pseudospin operator:

Ht � �tŜSx; (7)

where t is the single-particle, interlayer tunneling gap. In
the reduced Hilbert space j"i and j#i of the ith BQHD, we
find [4,5]
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FIG. 2. The exchange splitting, J, between the pseudospin
singlet and triplet states of a pair of bilayer quantum Hall
droplets versus lateral separation R. J is evaluated for systems
with a total of 6, 10, and 14 electrons. The vertical separation
between droplets is d � a. The droplet diameter is below 7:5a
for each curve. "0 is the dielectric constant between bilayer
quantum Hall droplets.
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In the limit of a small single-particle tunneling gap t,
�x � th"j ŜSx j#i. Also, �z is the relative bias voltage be-
tween layers. �x is the renormalized tunneling gap which
is greatly enhanced from the single-particle tunneling
gap, t, by the Coulomb interaction. Hred acts as the
Hamiltonian of an effective magnetic field pointing in
the x-z plane. The effective field will reorient the direc-
tion of the on-site pseudospin.

The system discussed here has the advantage of being
scalable. One may consider a large number of BQHDs
coupled via nearest neighbor interactions. Two examples
include a linear chain of closely spaced BQHDs or
a planar, triangular lattice. The reduced Hamiltonian of
a weakly coupled, many-BQHD system corresponds to a
quantum Ising model:

Htotal �
X
i

���i
x�

i
x � �i

z�
i
z� �

X
i;j

Jij

2
�iz�

j
z: (9)

To perform a quantum logic operation, the single qubit
parameters in Htotal should be tunable. First, �z may be
adjusted by applying a gating bias to each BQHD. �x can
be tuned by changing t through an in-plane magnetic field
or a gating mechanism which alters the lateral position of
the dots. The interqubit parameter, J, may be tuned by
placing a third BQHD between the original two BQHDs.
The inter-BQHD interaction can be turned on and off by
placing an even or odd number of electrons in the inter-
mediate BQHD or by depleting it completely. In fact, it is
not necessary to physically change J because it may be
possible to effectively tune the qubit coupling through a
series of refocusing pulses. This technique has been used
to implement quantum algorithms in NMR liquids gov-
erned by Htotal, where the fixed coupling is between
nuclear spins. It is also important to note that the archi-
tecture proposed here has the additional advantage of
being charge based, simplifying readout. Single electron
transistors, in principle, already have the capability
[10,12] of measuring the charge imbalance between states
with Sz � �1=2 and Sz � �1=2.

Finally, we consider the important issue of qubit ro-
bustness by showing long pseudospin coherence times in
BQHD systems. We consider two sources of dephasing in
a single BQHD: phonons and voltage fluctuations in the
leads. Phonons readily couple to single electron degrees
of freedom in quantum dots. This may potentially
destroy our proposed two-level system through leakage
to excited states.We note, however, that the rigidity of the
incompressible quantum Hall droplet lifts the large de-
generacy of the excited states, thereby suppressing pho-
non induced excitations. To show this quantitatively,
consider the following general Hamiltonian for electron-
phonon coupling:

He-p �
X
k

Mk)�k��ak � ay�k�; (10)
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FIG. 3. The probability, T, that a perturbation of the electron
density will excite a bilayer quantum Hall droplet from the
ground, maximum density droplet state to an edge state as a
function of wave vector, k. The vertical separation between
droplets is d � a. The particle number, N, is increased from 1
to 9, showing a dramatic decrease in T.
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where M is an arbitrary electron-phonon interaction ma-
trix element and ak and ayk annihilate and create phonons
of wave vector k in the x-y plane. )�k� is the density
operator, given by

)�k� �
XN
j�1

eik�rj : (11)

We use first order perturbation theory to estimate the
change in the rate at which phonons couple to our two-
level system as we increase the system size, in which case
the electron-phonon scattering rate is proportional to the
transition matrix element between the initial and final
electronic states. We calculate the transition matrix ele-
ment between our proposed two-level ground state, g, and
the lowest excitation, e:

T�g! e� � jhej)�k�jgij2: (12)

T measures the probability that a phonon of wave vector k
will induce an excitation from the ground state to the
excited state. The ground and excited states are computed
from H using exact diagonalization at angular momenta
corresponding to the MDD and its edge excitation, re-
spectively [5]. Figure 3 plots the matrix element T as a
function of jkj for several different particle numbers.
From the plot, we see that phonon coupling to edge modes
is suppressed as we increase the system size suggesting
that the incompressible system studied here will be less
sensitive to dephasing from phonons than analogous sys-
tems utilizing single-particle, charge degrees of freedom.

Another primary mechanism coupling pseudospin to
the environment is similar to the corresponding Cooper
pair box problem [10], through voltage fluctuations, +V,
(e.g., in the gating potential) leading to the standard spin-
boson model for decoherence of a single qubit:

HSB � ��x�x � �z�z � ,e+V�z; (13)
167903-4
where , is a dimensionless parameter related to the qubit
and gate capacitances. Following standard spin-boson
techniques [10], the voltage fluctuations due to an exter-
nal impedance with Ohmic dissipation can be modeled by
a harmonic oscillator bath, leading to an equivalent map-
ping of our pseudospin decoherence problem to the cor-
responding Cooper pair box decoherence [9,10] problem.
This then leads, after some straightforward algebra, to
the following low temperature estimate for the decoher-
ence factor -, which is the ratio of the dephasing rate to
the elementary logic operation rate:

- � ,2 4Rv
RK

�

�
Cg

2Cg � Cd

�
24Rv
RK

; (14)

where Cg and Cd are the gate and quantum dot capaci-
tances, respectively; Rv��50 �� is the typical impedance
of the voltage circuits, and RK � h=e2. Using results from
Ref. [5] to estimate the dot capacitance and reasonable
values for the gate capacitance, we get -� 10�5, estab-
lishing that robust fault-tolerant quantum computation
should be possible in pseudospin quantum Hall systems.
Although voltage fluctuations are likely to be the domi-
nant decoherence mechanism on our proposed BQHD
qubit, there are other possible dephasing channels which
should be considered in the future. In particular, we
suggest that the time scale of 1=f noise associated with
charge fluctuations [13] is long enough to be dealt with
using refocusing.
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