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Quantum simulation using time evolution in phase-estimation-based quantum algorithms can yield unbiased
solutions of classically intractable models. However, long runtimes open such algorithms to decoherence. We
show how measurement-based quantum simulation uses effective time evolution via measurement to allow
runtime advantages over conventional circuit-based algorithms that use real-time evolution with quantum gates.
We construct a hybrid algorithm to find energy eigenvalues in fermionic models using only measurements on
graph states. We apply the algorithm to the Kitaev and Hubbard chains. Resource estimates show a runtime
advantage if measurements can be performed faster than gates, and graph states compactification is fully used.
In this letter, we set the stage to allow advances in measurement precision to improve quantum simulation.
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I. INTRODUCTION

Unbiased quantum simulation [1,2] of intractable models
aids in validating approximations. Compelling open problems
include the two-dimensional Hubbard model of the cuprates
and, more generally, materials and quantum chemistry mod-
els [3–17]. Such interacting fermionic models are typically
NP-hard because they suffer from the fermion sign problem
[18] and are generally parameterized as H = ∑

i, j wi jc
†
i c j +∑

i, j,k,l Vi jkl c
†
i c†

j ckcl , where c†
j creates a fermion in quan-

tum state j (a composite index for spin, lattice site, etc.),
and wi j (Vi jkl ) is the single (two)-particle Hamiltonian matrix
element. Since they are NP-hard, classical simulation time
increases exponentially with particle number. Unbiased quan-
tum simulation of models captured by H will therefore offer
high-impact benchmarks. Variational quantum algorithms of-
fer promise on near-term devices [19] because they can be
used to rigorously bound ground state energies.

Recent work [20] combines a variational quantum algo-
rithm with measurement-based quantum computing (MBQC)
[21,22] for efficient management of variational ansatz states.
MBQC starts with a resource state, e.g., a graph state such
as the square lattice cluster state (SLCS), formed by taking
qubits aligned along the Pauli-x direction and then entan-
gling them pairwise with controlled-Z gates. All quantum
algorithms can then be executed using just single-qubit mea-
surements on the resource state. MBQC-based variational
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algorithms [20] can therefore use measurements to bound
ground state energies.

Phase-estimation-based quantum simulation algorithms
[4,23–27] can go beyond variational bounds to yield exact
eigenfunctions and eigenvalues of H for use in benchmarking
excited state properties. In circuit-based quantum computing
(CBQC), such algorithms take an input wave function |ψI〉
and repeatedly apply quantum gates to time-evolve H with M
small time steps δtg to eventually extract information. Quan-
tum algorithms based on this procedure yield an advantage
over classical algorithms but for runtimes that increase expo-
nentially with the required bit precision in, e.g., eigenvalues.
Long runtimes can be prohibitive [11,12,28] if, for Ng gates
per time step, the qubits cannot be kept coherent for long
execution times TC ∼ MNgδtg.

We propose revisiting phase-estimation-based quantum
simulation runtime from the MBQC perspective. We con-
sider the following regime: (i) A large number of qubits are
available, (ii) the time taken for an accurate single-qubit mea-
surement δtm can be made small enough to avoid decoherence
of the resource state, and (iii) the entangling gates are per-
formed in parallel mostly at the beginning. Assumption (iii)
allows slow/error-prone entangling gates to be implemented
and error corrected in a time that is negligible compared with
the time to execute all measurements.

In this letter, we explicitly map real-time evolution in
CBQC (repeated application of gates that take a finite amount
of time) to repeated measurement in MBQC [22]. To this
end, we make the following advances: (i) We construct
a route to use MBQC to effectively time-evolve H using
just single-qubit measurements. We show that long effec-
tive time evolution corresponds to M sequential measurement
rounds in MBQC, thus requiring coherence among non-
measured qubits for a total time TM ∼ MNmδtm, where Nm

is the number of measurements per round. (ii) We con-
struct an example hybrid MBQC algorithm with a quantum
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FIG. 1. (a) Schematic for the hybrid quantum eigenvalue
estimation algorithm. (b) Measurement-based quantum comput-
ing (MBQC)/circuit-based quantum computing (CBQC)-favorable
regimes determined by the hardware-dependent parameter δtg/δtm.
The point Nm/Ng is obtained by setting the MBQC and CBQC
runtimes to be the same TM = TC. (c) Measurement-based effective
time evolution used for a two-site Jordan-Wigner string where in-
formation flows from left to right. Each box/circle hosts a single
qubit entangled along red-dotted lines. Open (filled) circles are input
(output) qubits. Open squares are Pauli-x measurements that can be
performed in parallel, and the dotted box around the central star
indicates an adaptive measurement with an angle dictating the time
step. The left panel uses the square lattice cluster state (SLCS); the
right panel is one of many equivalent graph states that can be used
instead, see Supplemental Material [30].

phase-estimation-based subroutine that yields exact eigenen-
ergies: quantum eigenvalue estimation using an offline
(classical) time series [6,29]; see Fig. 1(a). (iii) We apply
the algorithm to solve the Kitaev [31,32] and Hubbard [33]
chains because they can be solved exactly and can therefore
be accurately checked as first implementations. To compare
TM and TC for our algorithm, we compute scaling of MBQC
measurement time and precision costs as well as gate counts
in an equivalent CBQC algorithm.

Our central finding is that MBQC can yield a runtime
advantage over CBQC, i.e., TM < TC, by shifting the burden of
requiring low δtg but high-fidelity gates in CBQC simulation
to the requirement of low δtm and high single-qubit measure-
ment precision in MBQC simulation. Figure 1(b) summarizes
our finding by showing that, if δtg/δtm is large, MBQC will
have shorter runtimes. Here, Nm/Ng is set by the algorithm.
We find that graph state compactification [34] can yield hybrid
MBQC algorithms with Nm/Ng = 1. In this letter, therefore,
we establish a route to use improvements in quantum sensing
[35] to advance the state of the art in quantum simulation with
effective time evolution.

II. MEASUREMENT-BASED TIME EVOLUTION

Time evolution of Hamiltonians containing noncommuting
terms H1 and H2 requires a decomposition. The first-

order Trotter-Suzuki decomposition is simplest [36,37]:
exp[−i(H1 + H2)t] = [exp(−iH1t/M ) exp(−iH2t/M )]M +
O[(t/M )2]. Here, the time step t/M is repeated M times until
the output state is converged within a tolerance δT [38], and
h̄ = 1.

To map between fermions and qubits in H , we
use the Jordan-Wigner (JW) transformation [39]: c†

j =∏ j−1
k=1[−σ (k)

z ][σ ( j)
x + iσ ( j)

y ]/2, where σa with a ∈ {x, y, z} are
the Pauli matrices. Long JW strings containing N qubits
can arise in certain models, e.g., those with long-range
hopping/interaction in H . Longer-range terms allow simula-
tion of higher-dimensional fermionic models H because they
map to one-dimensional chains with long-range hopping and
long-range interaction. Time evolution of a string requires
the ability to execute nontrivial unitaries: R(1,2···N )

a1a2···aN
(θ ) =

exp[−i(θ/2)
∏N

j=1 σ
( j)
a j ], where θ is a rotation angle.

The JW transformation enables construction of a time-to-
angle mapping for MBQC simulation. Figure 1(c) shows an
example measurement pattern needed for time evolution of a
hop between neighboring sites c†

1c2 + c†
2c1. In the absence

of the central measurement (star), the measurement pattern
swaps information on qubits 1 and 2 [22,30]. However, the
additional adaptive measurement in the second round of mea-
surements with φ̄1,2 on the central qubit (star) incorporates
results from the first round to yield [22] R(1,2)

zz (θ )|ψI〉, where θ

defines the part not relying on random measurement outcomes
in φ̄1,2. This operation is a time propagator, and one can show,
see Supplemental Material [30], that, with a few more mea-
surements, this measurement pattern effectively time-evolves
a hop between sites 1 and 2.

Figure 1(c) generalizes to time evolution of longer-range
terms in H on a larger SLCS using only O(1) adaptive mea-
surements. Consider, e.g., a long-range hop between sites 1
and N : c†

1cN + c†
N c1. To implement effective time evolution

of the JW term, we must execute the unitary R(1,2···N )
zz···z (θ )

(and follow up with a few rotations on the end qubits). This
can be implemented with two rounds of measurements on
[(2N − 1)2 − (N − 1)] qubits on the central area of the mea-
surement pattern (excluding input and output qubits). The
first round measures all but a central qubit, and the second
round measures just the central qubit in an adaptive basis,
see Supplemental Material [30], thus showing a considerable
simplification in implementing long JW strings.

The number of measurements and qubits needed for effec-
tive time evolution on a SLCS, e.g., the left side of Fig. 1(c),
can be significantly reduced. The Gottesman-Knill theorem
[40] shows that all qubits with Pauli-x measurements can be
excluded since Clifford operations can be efficiently executed
classically. After mathematically removing local Pauli mea-
surements, the SLCS maps to a compactified cluster state
(CCS) [34]. The mappings show that a much smaller graph
state is needed. For example, the right side of Fig. 1(c)
shows an equivalent execution of R(1,2)

zz (θ ) (see Supplemen-
tal Material [30] for a proof), where the number of qubits
(measurements) reduces from 12(10) to 5(3). In general,
a CCS offers a reduction in measurement and qubit over-
head for executing effective time evolution using R(1,2···N )

zz···z (θ )
by as much as O(N2), depending on which CCS is cho-
sen. We construct example time-evolution subroutines on
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FIG. 2. (a) Subroutine for implementing exp(−iHKt )|ψI〉 for four sites using only measurements on a square lattice cluster state (SLCS),
as in Fig. 1(c). Adaptive measurements are carried out with the angles defined in Eq. (4). The indices j, k ∈ {1, 2, 3, 4} are assigned along the
direction of information flow (red arrows). Measurement angles denoted by stars execute effective time evolution, while other shapes denote
measurements to perform rotations at the ends of the Jordan-Wigner (JW) strings. All qubits but inputs with Pauli-x measurements (open
boxes) can be removed in compactified cluster states (CCSs). (b) The same but for a two-site Hubbard chain with angles defined by Eq. (7)
and j, k, l ∈ {1, 2, 3, 4}.

SLCSs with the understanding that use of a CCS reduces
the number of required qubits and measurements at the ex-
pense of modifying qubit connectivities which is efficiently
programmable [41].

III. KITAEV CHAIN

We construct an MBQC subroutine for time evolution of an
example model with noncommuting terms, the Kitaev chain
[31,32]:

HK = w

N−1∑
j=1

(−c†
j c j+1 + c jc j+1 + H.c.) − μ

N∑
j=1

δn j, (1)

where w � 0 is the hopping and pairing energy, μ � 0 is
the chemical potential, and δn j = c†

j c j − 1
2 . The ground state

exhibits a quantum phase transition at μ = 2w between a non-
topological strong-coupling phase (μ > 2w) and a topological
weak-coupling phase (μ < 2w).

We map fermions to qubits to construct both circuit- and
measurement-based time propagators. The JW transformation
maps HK to the quantum Ising model. The first-order Trotter-
ized form of exp(−iHKt ) is⎡

⎣∏
j,k

R( j, j+1)
xx (−2φM )R(k)

z (−2gμφM )

⎤
⎦

M

, (2)

where gμ = μ/(2w), and

φM = wt

M
(3)

is a measurement angle. Equation (2) can be implemented
in two different ways: using real-time evolution in CBQC
or effective time evolution in MBQC, where M dictates the

circuit or measurement depth, respectively. Equation (3) is
central because it maps real time t to measurement angle.

We use the stabilizer formalism to map Eq. (2) to effective
time evolution in MBQC. Figure 2(a) shows the measurement
pattern implementing Eq. (2) to time-evolve input qubits 1–4
(open circles) with just single-qubit measurements. The mea-
surement angles in the x-y plane are

φ̄ j,k = 2Pφ̄ j,k
φM, φ̄ j = −Pφ̄ j

(2gμφM + γ ),

ψ̄ r
j = Pψ̄ r

j
ψ r, (4)

where ψ r ∈ {±α,±β, γ } for r = ±1,±2, 3, −α = β = γ =
π/2, and Pθ = (−1)SK

θ . Here, SK
θ accumulates all measure-

ment outcomes during single-qubit measurements and is
derived in the Supplemental Material [30]. The measurement
outcomes are also used for offline processing with a byproduct
operator, see Supplemental Material [30], that defines the
basis for interpreting output measurements.

The left, middle, and right panels depict measurements
[stars in Fig. 2(a)] that entangle input qubits 1-2, 2-3, and 3-4,
respectively. The measurement pattern in Fig. 2(a) and Eq. (4)
define the full effective time-evolution algorithm for a Kitaev
chain of any N or M because additional panels in Fig. 2(a) can
be concatenated, see Supplemental Material [30]. The red dots
and arrows show information flow for use in concatenation.

IV. HUBBARD CHAIN

We now turn to the Hubbard chain [33] with a longer JW
string and an important interaction term:

HH = −w

N−1∑
j=1,σ

(c†
j,σ c j+1,σ + H.c.) + U

N∑
j=1

n j,↑n j,↓, (5)
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where σ ∈ {↑,↓}, U is the Hubbard interaction strength,
and n j,σ = c†

j,σ c j,σ . To map fermions to qubits, we introduce
[42] spinless fermion operators: c̃2 j−1 = c j,↑ and c̃2 j = c j,↓.
The JW mapping then leads to an equivalent qubit Hamil-
tonian: (w/2)

∑2N−2
j=1 [σ ( j)

x σ
( j+1)
z σ

( j+2)
x + σ

( j)
y σ

( j+1)
z σ

( j+2)
y ] +

(U/4)
∑N

j=1[I2 j−1 + σ
(2 j−1)
z ][I2 j + σ

(2 j)
z ], where the JW

strings used for the hopping terms need a three-qubit en-
tangling gate, and I = diag(1, 1). The first-order Trotterized
form of exp(−iHHt ) is[ ∏

j,k

R(2 j−1,2 j)
zz (gU φM )R(2 j−1)

z (gU φM )R(2 j)
z (gU φM )

× R(k,k+1,k+2)
xzx (φM )R(k,k+1,k+2)

yzy (φM )

]M

, (6)

where gU = U/(2w).
Equation (6) can be used in CBQC or mapped to single-

qubit measurements in MBQC. Figure 2(b) depicts the N = 2
measurement pattern for Eq. (6) with measurement angles:

φ̄±
j,k,l = −Pφ̄±

j,k,l
φM, φ̄ j,k = −Pφ̄ j,k

gU φM,

ψ̄ r
j = Pψ̄ r

j
ψ r, φ̄±

j = ±Pφ̄±
j

[
gU φM + (1 ± 1)γ

2

]
,

χ̄±
j = ±Pχ̄±

j
(λ + α), (7)

where ψ r ∈ {±α,±β, ±γ ,±λ} for r = ±1,±2,±3,±4,
λ = α, and Pθ = (−1)SH

θ . Here, SH
θ is derived in the Sup-

plemental Material [30]. The Hubbard chain measurement
pattern can also be concatenated to time-evolve larger N or
M, see Supplemental Material [30], and overhead can be
significantly reduced in a CCS.

Both examples, Eq. (4) for HK and Eq. (7) for HH, demon-
strate constraints on effective time evolution. Long effective
time evolution from a larger number of Trotter steps in MBQC
corresponds to smaller measurement angles since φM ∝ 1/M.
Repeated small-angle measurements (long effective time evo-
lution) in MBQC therefore require improvements in qubit
measurement precision as opposed to faster gates in CBQC.

V. EIGENVALUE ESTIMATION

To demonstrate resource requirements, we construct a
minimal hybrid quantum eigenvalue estimation algorithm by
combining MBQC subroutines with an offline time-series
estimator [Fig. 1(a)]. A |ψI〉 close to a desired eigenstate
is fed into the MBQC time-evolving subroutine yielding
〈ψI|e−iHt |ψI〉 if the output qubits are measured using quantum
state tomography (or an ancilla qubit [6]) to find the wave
function phase relative to the input qubit basis. The MBQC
output is obtained L times and used in a classical discrete
Fourier transform:

A(ωm)= δt

π

L−1∑
n=0

Re{exp[(iωm − η)tn]〈ψI| exp(−iHtn)|ψI〉},

(8)

where we define tn = nδt , ωm = mδω (n, m = 0, 1, · · · , L −
1) in units of δt and δω satisfying δωδt = 2π/L. Peaks in

FIG. 3. Main: Simulation using Eq. (8), where peaks reveal the
exact eigenenergies of the four-site Kitaev chain with gμ = 0.4,
η/w = 0.02, and δω/w = 0.01. Trotter error is δT = 10−2 for M <

8500, and L = 1272 is chosen for clarity. |ψI〉 is chosen to be the
ground state at gμ = 0. The blue line indicates the error-free case,
and the green and red lines plot the impact of random perturbations
[45–56% (green); 70–82% (red)] in the measurement angles φ̄ j and
ψ̄3

j . Inset: Eigenenergies of Eq. (1), where the energies touching the
dashed line match the peak positions in the main panel.

A(ω) yield eigenvalues of H to within δT. We introduce the
broadening parameter η > 0 for visualization of Lorentzian
peaks and as a proxy for experimentally limited resolution.

The main panel in Fig. 3 shows a demonstration result
from a simulation using HK in Eq. (8), where several eigen-
values are returned as peaks. One can show, see Supplemental
Material [30], that peak centers are intact while peak weights
are shifted for certain types of measurement errors. Figure 3
uses large L and M for clarity, but in practice, L and M
can be lowered. They are minimized by restricting the search
to just the ground state energy, while three independent al-
gorithm input parameters δω, L, and M must be chosen to
meet three tolerances: (i) δω should be smaller than η to
resolve peak structure, (ii) a sum rule tolerance δF > |1 −
δω

∑L−1
m=0 A(ωm)| sets L, and (iii) M is set by requiring δT to

be much smaller than the first spectral gap.

VI. MEASUREMENT PRECISION

The number of Trotter steps yields the measurement depth
and sets φM . Large M improves Trotter accuracy at the ex-
pense of requiring improved measurement precision (small
φM). To estimate the minimum M needed to obtain ground
state energies, we consider HK with gμ = 0.01–0.4. We find
empirically, see Supplemental Material [30], that, for each n
in Eq. (8), the minimum M varies from 1.8 × 103 (gμ = 0.01)
to 7.8 × 104 (gμ = 0.4) to resolve the ground state energy
of HK to within 1% of the spectral gap (δT = 10−2) for η =
0.02w, δω = 0.01w, L = 46, and N = 4. We have checked
N � 8 with other η, δω, and L combinations and obtained
similar results for M. In general, the M needed will depend
on the model, model parameters, tolerances, and scales as
O[(Ntn)2δ−1

T ] [43], thus implying that the required measure-
ment depth and precision to execute effective MBQC time
evolution can become demanding [44].

Given bounds on M, we can estimate measurement preci-
sion requirements for HK. Here, φM depends on n. The largest
measurement angle (in units of 2π ) needed to implement
Eq. (8) with Eq. (4) is χL−1, where χn ≡ nw/(δωLM ). We
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TABLE I. Resources for a single time step in Eq. (8) computed
by counting and concatenation, see Supplemental Material [30], in
three scenarios(rows): (i) MBQC on an SLCS including all Pauli-x
and adaptive measurements, (ii) MBQC on a CCS with the least
number of measurements, and (iii) CBQC. In (i) and (ii), measure-
ments on input/output qubits are not counted. (ii) and (iii) show the
same scaling (Nm/Ng = 1) for two different experimental processes,
measurements and two-qubit gates.

Approach HK HH

SLCS measurements, Nm (17N − 10)M (156N − 144)M
CCS measurements, Nm (7N − 1)M (34N − 32)M
Circuit-based gates, Ng (7N − 1)M (34N − 32)M

empirically find, see Supplemental Material [30] (far from the
critical point at gμ = 1), χn � 0.14, thus allowing the use of
Eq. (3). The smallest measurement angle increment needed
in Eq. (4) is gμχn. We find gμχn � 4.8 × 10−4 for all gμ < 1
and n. We therefore see that a large M requires small angle
measurements as we implement effective time evolution.

VII. MEASUREMENT AND QUBIT OVERHEAD

The measurement subroutines defined by Eqs. (4) and
(7) allow estimates of resource requirements in our hybrid
quantum eigenvalue estimation algorithm. Table I shows, see
Supplemental Material [30], that, for the local models con-
sidered here, a CCS will have Nm/Ng = 1. However, with
nonlocal qubit terms, e.g., for nonlocal hopping in H , MBQC
with a CCS will have an O(N ) advantage in measurement
vs gate counts in CBQC unless nonlocal gates are used to
implement the JW strings [45]. The number of qubits needed
is O(M ) larger for MBQC than for CBQC. MBQC qubit

overhead can be lowered by re-entangling measured qubits
[21].

VIII. DISCUSSION

Our demonstration algorithms show that unbiased quantum
simulation using effective time evolution is possible using
only single-qubit measurements on graph states. We find that
long MBQC effective time evolution for use in quantum
simulation requires high measurement precision to be useful
in benchmarking approximate classical algorithms. Alterna-
tive time-evolution decompositions [16,46–49] will lower
overhead.

MBQC offers advantages in systems with slow/error-prone
entangling gates [50], e.g., photonics [51,52] and atoms in
optical lattices [21]. In the latter case, parallelized collisional
gates encoded large SLCSs in long-lived atomic hyperfine
states [53]. Recent progress in single-site measurements [54]
and control [55] allow optical lattice implementation of
MBQC effective time-evolution algorithms.

The above algorithms have a low error threshold [56,57].
An improvement with higher thresholds is available [58,59].
The above algorithms can also be used in conjunction with
an adaptive Bayesian algorithm (instead of a time series) in
eigenvalue estimation learning certain types of error [60,61].

Finally, applications to higher-dimensional fermionic mod-
els are highly desired. Nearest neighbor hoppings/interactions
in a higher-dimensional fermionic lattice can be mapped to
long-range hoppings/interactions in a chain [6]. After map-
ping, our hybrid MBQC algorithm can be applied to the chain
at the expense of increasing the length of JW strings.
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