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Collisional models, or repeated interaction schemes, are a category of microscopic open quantum system
models that have seen growing use in studying quantum thermalization, in which the bath is modeled as a large
ensemble of identical ancillas that sequentially interact with the system. We demonstrate an equivalence between
the system dynamics generated by the collisional model framework and the Metropolis algorithm, subject to two
primary conditions. Namely, that each collisional model bath ancilla is prepared in a thermal state with a discrete
spectrum that matches the energy eigenstate transitions of the system and that the ratio of the ancilla partition
function to the number of system eigenstates remains small. If these conditions are satisfied, then the system
dynamics generated by both methods are identical for arbitrary initial states and in both the steady-state and
transient regimes. This allows the typically purely phenomenological Metropolis scheme to be used as a tool to
study exact prethermalization dynamics without the need to explicitly model the system-bath interaction.
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I. INTRODUCTION

The mechanisms and conditions under which a many-body
quantum system will thermalize is a question of significant
interest that bridges the fields of quantum thermodynamics,
condensed matter physics, atomic, molecular, and optical
physics, and quantum information. In the context of open
quantum systems it is well established that a quantum system
coupled to a heat bath environment evolving under the Marko-
vian Lindblad master equation will equilibrate to a thermal
state at the temperature of the bath [1]. While the Lindblad
equation is often tractable, it relies on strong assumptions
about the dynamics of both the system and environment as
well as the system-environment coupling, namely, the Born-
Markov and rotating wave approximations [1].

In recent years another approach to modeling open quan-
tum systems has seen growing use, especially in the field
of quantum thermodynamics, known as collisional models,
or repeated interaction schemes [2]. In the collisional model
approach the environment is assumed to consist of a collection
of many identical subsystems, referred to as ancillae. The
interaction between the system and environment occurs as a
series of discrete unitary interactions (“‘collisions”) between
the system and one ancilla of the environment.

By microscopically modeling the system-environment in-
teraction, collisional models have proven particularly useful
in studying non-Markovian dynamics [3-9], nonequilibrium
dynamics [10-15], quantum thermometry [16,17], quantum
synchronization [18,19], strongly correlated models [10,20],
quantum batteries and thermal machines [21-23], quan-
tum optics [24,25], and modeling noise in quantum devices
[7]. Collisional models have also served as a successful
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framework for studying concepts at the intersection of in-
formation theory and thermodynamics such as information
scrambling [26,27], Landauer’s principle [28,29], and quan-
tum Darwinism [30,31]. Notably, the typical Lindblad master
equation can be derived from the collisional model framework
under the assumptions of noninteracting, uncorrelated ancillae
[2,24,32,33].

The conditions necessary for a collisional model to result
in thermalization has seen significant study [34-39]. A critical
component for achieving thermalization is the condition that
the environment ancillae couple to each transition energy of
the system [37]. This is necessary to ensure that the system
Hilbert space is fully explored and each energy eigenstate can
be populated.

A notable drawback of the collisional model approach is
the need to operate in the joint system-bath Hilbert space,
which can become computationally unwieldy, especially
for large-dimensional bath ancillae. Nevertheless, collisional
models are conceptually important as they provide a mi-
croscopic framework that can operate outside of common
assumptions such as weak system-bath interactions.

Distinct from the deterministic evolution in collisional
models, Monte Carlo methods are another class of methods
that rely upon stochastic sampling of states in the Hilbert
space such that the dominant contributions to the ground
or the thermal states are captured [40,41]. These are itera-
tive, Markovian algorithms wherein each iteration, a random
change to the state is considered and either accepted or re-
jected based on a relative probability criterion. By stochastic
averaging over different iterations, the underlying probability
distribution can be built. The process must satisfy the princi-
ples of ergodicity and detailed balance, meaning that every
state can be connected to any other state through a finite
number of moves, to ensure a complete sampling of states.
Such Monte Carlo techniques are utilized in understanding the
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thermodynamic properties of lattice systems [42,43] and can
also be interpreted as a dynamic process related to the Glauber
Kinetic Ising models [44,45].

Here we perform a detailed comparison between a typical
collisional model approach of periodic system-bath interac-
tions and a modified Monte Carlo Metropolis algorithm. We
show that a Metropolis Monte Carlo scheme can replicate
collisional model dynamics in both the transient and steady-
state regimes when the Metropolis time step is chosen to be
the same as the time between collisions in the collisional
model. Our equivalence holds under the assumption of ther-
malizing dynamics generated by interaction with a bath whose
spectrum couples to each of the system’s energy eigenstate
transitions. It is also subject to the condition that the ratio of
the bath ancillae partition functions to the number of system
energy eigenstate transitions is small, which itself depends
on an interplay between temperature, model energy spectrum,
and system size.

Notably, by modifying the rejection step procedure to
implement a decoherence process the Metropolis algorithm,
like the collisional model, can generate dynamics from arbi-
trary initial states, including coherent states. This equivalence
shows that the Metropolis algorithm can be used not only as
a phenomenological model for reaching thermalization, but
can, under some circumstances, fully capture the transient
dynamics of thermalization. Furthermore, as the Metropo-
lis algorithm can be carried out without directly modeling
the bath, this equivalence allows for thermalizing collisional
model dynamics to be generated while only working in the
Hilbert space of the system. While both methods still re-
quire diagonalizing of the system Hamiltonian to generate
the transitions between energy eigenstates, the Metropolis
algorithm posses a computational memory advantage over the
collisional model since it only needs to store matrices that
scale with the system Hilbert space, rather than the larger joint
system plus bath Hilbert space.

In Secs. II and III we introduce the collisional model
and Metropolis algorithms, respectively, and demonstrate how
both approaches can lead to thermalization. In Sec. IV we de-
rive an analytical equivalence between the dynamics produced
by both models and numerically demonstrate the conditions
under which this equivalence is achieved using the Heisenberg
XXZ chain as a representative model.

II. COLLISIONAL MODEL THERMALIZATION

Following the typical repeated interaction framework we
consider a quantum system S and a collection of noninter-
acting environment ancilla systems a;. Initially, for a period
of tg the system evolves freely under the dynamics generated
by Hs. Then at time #; the system interacts with environment
ancilla a; for time At, governed by the interaction Hamilto-
nian Hg;. After the interaction, the environment is traced out,
yielding system state pg(f;),

ps(t1) = try, {Us1 [Usps(to)Ug ® pa, 10, }. (1)

This process, free evolution followed by interaction with a
fresh environment ancilla, is then repeated for n time steps.
Note that the time interval between collisions tg = t,,11 —
t, depends on the physical properties of the system and
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FIG. 1. Illustration of the collision model approach. S represents
the system and a; labels bath ancilla i. The system-bath interaction
Hj, occurs at time #, whereas the interaction Hg, occurs at a later
time t,.

environment, such as the system’s scattering cross section and
the density of particles (ancillae) in the environment. In Fig. 1
we provide a conceptual illustration of the collisional model
approach.

Ultimately, we are interested in how this process leads to
the thermalization of the system, quantified by whether pg(%,)
approaches a Gibbs state at inverse temperature § = 1/kpT,

ps(ty) — e P /7, 2)

where Zg = tr{e #fs} is the partition function of the system.
We begin by assuming that each bath ancilla is identical and
initialized in a thermal state,

Pa = efﬁH”/Za. 3)

Note that, in general, we should not expect the bath thermal
state to be the same as that of the system. However, to achieve
thermalization, the structure of the bath cannot be arbitrary
either.

The thermal state is diagonal in the energy eigenbasis,
with the population of eigenstate j given by the Boltzmann
factor e~PEi /Zg where E ; is the corresponding eigenenergy.
For thermalization of an arbitrary initial state, to populate
all the energy eigenstates, the system-bath interaction must
couple each possible energy eigenstate transition in the system
to a corresponding transition in the bath [37]. For micro-
scopically sized baths where the bath spectrum can be well
approximated as continuous this condition is trivially satis-
fied. However, for a bath with a discrete spectrum, as is often
the physically relevant case for many-body quantum thermal-
ization, this transition energy matching condition is a crucial
consideration.
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Collisional model thermalization of the XXZ model

As a demonstrative example for how the collisional model
can produce thermalization of a many-body quantum system,
we consider an N-site one-dimensional X X Z model with open
boundaries characterized by the Hamiltonian,

-1 N
, h
Hxxz = —J (U,faj,cﬂ + GJG§+1 + AU;G;H) + 2 Za{j,
g=1 q=1
“4)
where 0%, o € {x, y, z} are the Pauli matrices. First, let us con-
sider the simple case of N = 2. In this case the eigenenergies
are
E,=—-h—JA,
Es=h—-JA,

E, =J(A—2),
Ey=J(A+2). (5)

Let us now consider the structure of the bath. To guarantee
the energy matching condition for thermalization is fulfilled
we assume that the bath consists of an M + 1-level system
where M is the total number of transitions between the sys-
tem’s energy eigenstates. The bath’s energy levels are spaced
such that each transition energy in the system, E; — E;, corre-
sponds to an energy gap between the bath ground state and a
corresponding excited state |e; ;), €a;; — €0- The thermal state
of each bath ancilla is thus

M
1 _
pa= = D el ) et (6)
a a,;j:O
where Z, = Za[ e P s the typical partition function. The

bath operators B.D,‘..j = |0) (o, ;| correspond to the jump oper-
ator between the ground state of the bath and excited state
t; ;). Similarly, the system operators A; ; = |j){i| correspond
to the jump operator between the system energy eigenstates.
Assuming that the system energy eigenvalues are labeled
such that £y < E, < FEj..., the interaction Hamiltonian can be
written as

H; = gZ(IjHiI ® [0)(ai ;I + 10 (il @ lei ;}(0D).  (7)
i>j

For the XXZ chain with N = 2, there are M = (22N) =6

possible system energy eigenstate transitions. Thus, in this

case, each bath ancilla has a dimension of (22N ) + 1. The
spectra for both the system and the bath ancillae is plotted
in Fig. 2, demonstrating how the bath spectrum fulfills the
transition energy matching condition.

We note that this is only one possible approach to con-
structing a bath that fulfills the energy matching condition. For
example, another approach using low-dimensional ancillae
with time-dependent energy gaps that are rapidly swept across
the full system energy spectrum has also been demonstrated to
lead to thermalization [46].

The free evolution for the system is generated by the
unitary operator,

Us = e—inleS , 8)
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FIG. 2. Diagrams of the (a) system and (b) bath energy spectra
for the one-dimensional two-site XXZ model. The red arrows in-
dicate all possible transition energies in the system, and show how
those transitions are matched in the bath spectrum.

while the
interaction is

interaction unitary for each system-ancilla

USa — e*iH]At. (9)

Combining Egs. (8), (9), and (6) in Eq. (1), we numerically
simulate a 20-time-step collisional model for the two-site
XXZ chain. We assume the initial system state to be a pure
state composed of an equal superposition of all energy eigen-
states [yry) = 27N/?2 >, 1i). We note there is nothing special
about this choice of initial state, and thermalization will occur
from an arbitrary initial state. In Fig. 3 we plot the occupation
probabilities of each energy eigenstate as a function of the
time step, n. We see that the occupation probabilities rapidly
approach the thermal state values, indicating thermalization.

To verify that thermalization also occurs at larger system
sizes, we repeat our collisional model simulation for chains of
length N = 3 and N = 4. As plotting each eigenstate occupa-
tion probability rapidly becomes unwieldy at larger system
sizes, we instead use the trace distance as our measure of
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FIG. 3. Occupation probabilities of each energy eigenstate of the
two-site XXZ model as a function of the collisional model time
step. Dashed horizontal lines indicate the thermal state occupation
probabilities for each eigenstate. Parameters are J =h=A =1,
t,=At=1,g=1,and B = 2.
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FIG. 4. Trace distance between the time-dependent density ma-
trix and the system thermal state density matrix as a function of the
collisional model time step for the one-dimensional X XZ model with
N =2 (red, solid), N = 3 (blue, dashed), and N = 4 (green, dotted).
Parametersare  =h=A=1,t,=At=1,g=1,and 8 = 2.

thermalization. The trace distance is defined as

D(p,0) = 3tr{y/(p — 0)'(p — o). (10)

In Fig. 4 we plot the trace distance between the time-
dependent density matrix and the system thermal state density
matrix as a function of the collisional model time step for
the one-dimensional XXZ model. We see that the trace dis-
tance approaches zero as n increases, demonstrating that
the time-dependent density matrix converges to the thermal
state. However, as system size increases, more collisions are
required to thermalize the system.

III. THERMALIZATION UNDER THE MONTE
CARLO METROPOLIS ALGORITHM

Next, we construct a Monte Carlo algorithm with Metropo-
lis [47] updating to demonstrate thermalization in the same
context as the collisional model. The Metropolis updating
technique [47] was introduced as an algorithm to signifi-
cantly improve Monte Carlo convergence. The goal of the
Metropolis scheme is to generate a sequence of states such
that the distribution of these states closely resembles the de-
sired distribution. The key feature of this sampling procedure
is using the Metropolis filter function when deciding to accept
or reject a proposed move. There are two steps involved in
this method. The first one is to propose a move from the
present state x to x’, which is based on the conditional proposal
probability G(x'|x). The next step involves the acceptance
probability A(x’|x) which then determines the acceptance of
the proposed move. The detailed balance condition requires,
AX )G |x)P(x) = A(x|x")G(x|x")P(x"), where P(x) is the
underlying probability distribution to be sampled. Note that
the normalization factor in P(x) gets canceled and thus the
stochastic averaging can be done without explicitly computing
the normalization factor, one key advantage of the Metropolis
method. In the context of thermalization, P(x) is the Gibbs
distribution, with the partition function as the normalization
factor. Thus, the accept and reject criteria are based on the
energy difference between the proposed and the current state.
For classical systems, for instance, spin systems, the updates
are often local, involving the flipping of the spin at the chosen
site. However, in general, the update scheme can also be

nonlocal [48]. Since the spin basis states are the eigenstates
of the classical spin Hamiltonians, these “classical” updates
are sufficient to produce thermalization.

In the context of quantum systems, the eigenvectors are,
in general, nontrivial superpositions of the spin basis states.
In this case, the classical spin updates are not sufficient to
achieve thermalization. To do so, the update scheme must
ensure the algorithm explores all the system eigenstates. This
can be done using eigenstate jump operators, whose action
produces a jump from the present eigenstate to any other
eigenstate. The simplest choice for the proposal probability
G(x'|x) is a uniform distribution, meaning that all possible
“jumps” from the present eigenstate to other eigenstates will
be proposed with equal probability.

For studying thermalization, we consider an update scheme
based on jumps between different eigenstates. The steps of
the algorithm are outlined in Algorithm 1. The first step in-
volves computing the eigenvectors {1;} and eigenvalues {E;}
of the XXZ Hamiltonian given in Eq. (4) for a system of
size N. The set of eigenvectors and eigenvalues can then
be used for the Metropolis updating scheme. We consider
an arbitrary initial state, oy, which can be expressed in the
energy eigenbasis as pg = D, ; ax,| V) (¥ |. We then propose
a transition A; ; = |j) (i, with j # i, where |i) is an eigenstate
with nonzero population in pg and |j) is chosen randomly.
We then use the Metropolis condition based on the energy
difference E; — E; to decide whether the jump is accepted.
If the jump is not accepted, then we update the initial state
to %(li) (ilpo + poli)(i]). This process serves to kill off the
populations and coherences in py other than those associated
with |i), and acts as a discrete Monte Carlo implementation of
the Lindblad decoherence term [1]. This step is then repeated
many times, and the results are averaged over to construct the
density matrix for the next time step. Repeating the entire
sequence of proposal, accept/reject, and then averaging, n
times results in the construction of a time series that gives the
time evolution of the density matrix. Note that across Monte
Carlo runs for each time step coherences are only preserved
by sequences of rejections and are reduced by half each time.
Consequently, the coherences of the averaged time-dependent
density matrix decrease exponentially, as expected in the
decoherence process.

Our approach is related to the circuit-based quantum
Metropolis scheme proposed in Ref. [49]. In this scheme a
unitary operator is applied that rotates the initial eigenstate
into a superposition state. If a transition is accepted, then a
measurement selects one element of this superposition state as
the next eigenstate in the time series. Our Metropolis scheme
takes a different approach by randomly choosing one out of
all the potential eigenstate transitions, with equal probability
given to each transition. Our algorithm also differs by directly
incorporating decoherence during the rejection step. This al-
lows states with nonzero coherences to be taken as an input
to the algorithm, and (partially) preserves some coherences
in the output time series. Other quantum implementations of
Monte Carlo algorithms have also been proposed, such as the
Monte Carlo wave function method [50-52] and the quantum
trajectories method [53] used in quantum optics.

This stochastic sampling protocol in the Metropolis al-
gorithm is different conceptually from the collisional model
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ALGORITHM 1. Thermalization using Metropolis Algorithm.

Input: System size N, Hamiltonian parameters h1, ha, ..

., Inverse temperature (3

Input: Number of thermalization steps num_thermalization, Number of Monte Carlo runs num_runs.

Function Exact diag(hi,ha,...):

return {[¢)}, {E£};
Function Metropolis:
Exact diag(hi, ho,...);
Data: Initial state po
Initialize system into initial state po;
for n < 1 to num_thermalization do
for m «— 1 to num_runs do

if ©u < a then

else

Propose jump [¢') (b where [1)) is an eigenstate with non-zero population in p and v’ # ;
Calculate the energy of state 1) as E = ()| H|1)), and similar for state 1’. Compute the energy difference

AE = E' — E. Calculate the acceptance ratio o = min (1,exp(—BAE));
Generate a random number u from a uniform distribution [0, 1];

| Accept the proposed jump: apply jump operator [¢') (] p [¥) (¢'];

| Reject the proposed jump: apply decoherence map 5 (|v) (4| p + p |1) (1]);

| Average over Monte Carlo runs to generate current state p’.

approach. The microscopic modeling of the interaction and
the partial tracing steps in the collisional models is replaced
by proposing and then accepting or rejecting the jumps be-
tween the eigenstates. In other words, the system and the bath
interaction followed by the partial tracing of the bath leads to
the mixedness in the system density matrix in the collisional
model picture. However, in the Metropolis scheme the thermal
density matrix is constructed from averaging over many runs.
This has computational advantage, as the numerical steps
involves dealing with Hilbert space of the system alone, while
the same is not true in the collisional models. In the later
approach, the combined system and the bath evolves under
the interaction Hamiltonian, as mentioned in Eq. (1), thereby
involving the computation over the combined Hilbert space.
As an example, the thermalization of the X X Z model using
the Metropolis technique is illustrated in Fig. 5. The param-
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FIG. 5. Occupation probabilities of each energy eigenstate of the
two-site X XZ model as a function of the Metropolis algorithm time
step, averaged over 100 000 runs. Horizontal black dotted lines in-
dicate the thermal state occupation probabilities for each eigenstate.
Parametersare / = h = A =1and g = 2.

eters in the Hamiltonian are: J =1,h =1, A =1, and the
inverse temperature is = 2. As in the case of the collisional
model, we have taken the initial state to be a pure state com-
posed of an even superposition of all the energy eigenstates.
We can see the probabilities of the evolving state quickly
approach the expected thermal probability values based on the
thermal density matrix at the chosen inverse temperature.

IV. EQUIVALENCE OF BOTH MODELS

In the previous two sections, we demonstrated that both
the collisional model and Metropolis algorithm can result in
thermalization. We note that, qualitatively, the evolution of the
occupation probabilities appear very similar in both cases, as
can be seen by comparing Figs. 3 and 5. In this section we
prove explicitly that, under certain conditions, the dynamics
generated by both models are identical by showing that the
density matrices produced by each individual time step are
identical.

A. Collisional model: Single-time-step evolution

Let us first consider a single time step of the collisional
model. The density operator after the interaction with the bath
ancilla is given by

pS(tn-H) = tra{Ul(tn+1 5 tn)[pS(tn) ® pa]U[T(tn+l s tn)}~ (11)

We note that in this equation we have not explicitly included
the system evolution operators as in Eq. (1). For the purposes
of comparing the repeated interaction and Metropolis schemes
we are only concerned with the dynamics generated during
the system-environment interactions and thus any system evo-
lution that occurs before a collision can be folded into the
definition of pg(t,).
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The interaction unitary in Eq. (11) can be expanded
iteratively using the Dyson series,

In+1
Ur(tagr, 1n) =1—i/ dsHi()U(s,10).  (12)
1,

n

Taking the limit that the interaction time becomes very short,
we can truncate the Dyson series at the second order,

U(tas1. tn) ~ I — iAtH; — S APHY, (13)

where we have assumed that H;(t) = H; is time indepen-
dent and At =t,4; —t,. Using this expression for the time
evolution operator in Eq. (11) we have

)OS(thrl) =try {)OS(tn) Q pa + iAtpS(tn) (24 paHI

: (AD?

— iAtHps(ty) ® pa — > Hy ps(t,) ® pa
(At)? 2 2

- ) :OS(tn) ® paHl + (At) HIpS(tn) ® paHI
i(At)?

- H} ps(ty) ® paH;
i(At)? 5

+ B H;ps(t,) ® /)aHl
(At)*

+ H} ps(ty) ® paH7 |- (14)

The interaction Hamiltonian can be expressed in the general
form

Hy=g) (A ® B, + A} ®B.), (15)

where A, and B, are operators in the Hilbert spaces of the sys-
tem and bath, respectively. Under the assumption that gAr <
1 we truncate Eq. (14) at the second order in A¢. We further
note that any terms in Eq. (14) containing an odd power of
H; will vanish. This is due to the fact that odd number bath
correlation functions such as tr{B,p,} and tr{B] p,} are zero.
Thus, we can simplify Eq. (14) to

ps(tas1) = ps(ty) + At*tr,{Hy ps(t,) ® paHj
— 3Hps(tn) ® pa — 305(0) ® pH ). (16)

We next assume that the bath ancillae are all prepared in
identical thermal states structured so that their spectra ful-
fill the transition energy matching condition, as described in
Sec. II. Plugging the interaction Hamiltonian from Eq. (7) and
the bath density matrix from Eq. (6) into Eq. (16) and carrying
out the partial trace yields,

A 2
ps(tnt1) = ps(ta) + (th) Z |:Ai,j:0S(tn)A:‘r,j

@ i>j

. . 1 o
AL ps(tA e = s, 1N
—Bea; ;

2

{os(), 17) (jl}}, a7

where {A, B} = AB + BA is the standard anticommutator.
Note that, without loss of generality, we have also set the
ground state energy of the bath at zero ¢y = 0.

We pause for a moment here to review the assumptions we
have made so far. Equation (17) provides a discrete master
equation for the time evolution of the system density matrix
generated by a single, very short duration interaction with a
thermal bath ancilla. Furthermore, the spectrum of the bath
ancilla is engineered such that there exists an energy gap
between the ground state and an excited state of the bath for
every possible energy eigenstate transition of the system.

B. Metropolis algorithm: Single-time-step evolution

Now let us consider the same situation, namely, how the
average system state evolves under a single time step of the
Metropolis algorithm. For a system with d eigenstates, and
thus L = d — 1 possible transitions between an occupied en-
ergy eigenstate to another unoccupied eigenstate, the average
system state after a transition is given by

1
7 2 Aijpst)AL ] (18)
i#]

where, as in the case of the collisional model, A; ; = |j) (il
is the transition operator between system energy eigenstates
|i) and |j). Under the Metropolis algorithm, a transition is
accepted with probability e=#“ where w; ; is defined as

O EJ_E1<09

= (19)
Ej—Ei Ej—Ei>O.

a),;j

In the typical Metropolis scheme, if a transition is rejected,
then the state of the system is left unchanged. However, to
properly incorporate decoherence we modify this procedure
to instead apply the map L;[p] = %(|i)(i|p + pli){i]). Thus,
the average system state after a rejection is

1 1
I Z Lilpst)] = - Z(m (il ps(ty) + ps(t)i)(i]).
i#] i#]
(20)

Accounting for both the accept and reject possibilities, the
average system state after a single time step is

1 P
pS(IIH-I) = Z Z [Ai,jps(l‘n)Azje_ﬁ“"-/

i#]
+ (1= e P (i) il ps(tn) + ps(Ea)li) (iD)].
2y
Equation (21) simplifies to
1
ps(tui) = ps(tn) + 7 D [(A,», jps ()AL
i#]
1

= 5 lps(@). 1) (il})eﬂ“”‘f]- (22)
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To account for the piece-wise structure of w; ; we separate
the double summation into terms where i < j and i > j,

1
Ps(tay1) = pstn) + I Z |:<Ai,jps(tl1)AZj

i>j
1 1 .
— 5 lpste), |i><i|}>] 7 [(A,-,,ps(rn)A;, ;
i<j
1
— 5| st 1 <i|})e—ﬂ<Ef-E”}. (23)

Noting that A; ; = A; ; we can swap the indices in the second
summation of Eq. (23) rewrite it as a single summation,

1
ps(tnt1) = ps(ty) + I Z [Ai,jPS(fn)AiT.,j

i>j

;  B(E—E 1 "
+ AL ps()A e B — = o5t 1i)il)

e BE-E))

- —— lostt), |j>(jl}} (24)
Recalling that, in the collisional model, we structured the bath
energies such that E; — E; = €,,; we can compare Eqs. (24)
and (17) and see that they are identical when the condition
1/L = (gAt)?/Z, is satisfied. Implicit in this equivalence is
the premise that the duration of the time step, t,; —t,, is
the same for both the Metropolis algorithm and the collisional
model. As the Metropolis algorithm is a purely phenomeno-
logical model, the time-step duration is simply a model
parameter. Thus, we are free to choose it be identical to
the physically motivated time interval used in the collisional
model, as discussed in Sec. II.

C. Conditions of equivalence

In this subsection we will consider in detail the conditions
necessary to fulfill the equivalence demonstrated in the pre-
vious two subsections. Analytically, we have shown that the
discrete time evolution of the density matrix generated by
the collisional model, Eq. (17), and the Metropolis algorithm,
Eq. (24) have exactly the same structure. Notably, this equiva-
lence does not explicitly depend on a particular system size or
choice of model Hamiltonian. However, we note that the trun-
cated expansion in Eq. (16) used to derive the time-evolved
collisional model density matrix is only accurate under the
condition that gAr < 1. Furthermore, the collisional model
bath ancillae must be structured in a thermal state that fulfills
the transition energy matching condition. Finally, as men-
tioned previously, the exact equivalence between Eqgs. (24)
and (17) requires 1/L = (gAt)?*/Z,.

To satisfy both the conditions gAr < 1 as well as 1/L =
(gAt)?/Z, we see that we want the ratio of Z,/L to be as
small as possible. In Fig. 6 we plot this ratio as a function of
chain length for different temperatures. At low temperatures,
the ratio remains relatively flat with system size, while at high
temperatures it grows exponentially with system size.

This behavior can be understood by considering the high
and low temperature limits of Z,. We recall that the bath

partition function is given by Z, = Za_/ e P%ii | where €a,,

—f =00
—— (=200
e B=20
pf=2
£=02
—03—=0

O2 4 6 8 10

FIG. 6. Ratio of the partition function for the collisional model
bath ancillae, Z,, to the number of possible eigenstate transitions
at each time step in the Metropolis algorithm, L, for the one-
dimensional XXZ model as a function of chain length N at inverse
temperature 8 = 200 (blue, long dashed), 8 = 20 (pink, dotted), 8 =
2 (green, dot-dashed), B = 0.2 (orange, short dashed), and g — 0
(black, solid). The optimal zero temperature lower bound for the case
of a nondegenerate spectrum is included for comparison (red, solid).
Parametersare / = h = A = 1.

corresponds to the magnitude of the energy difference be-
tween system energy eigenvalues E; and E;. For an N-site spin
chain system the number of eigenvalues is 2". In this case, we
have L = 2" — 1 while the upper limit of the summation in
Z, will be (22N ) + 1. Thus, in the infinite temperature limit we
have

2N
poL . N1 2

N1 (25)
Here we see that as the system size grows, the ratio Z,/L, and
thus also gAt grow, rendering the approximate expansion for
the time evolution operator increasingly inaccurate and lead-
ing to the different dynamics between the models observed in
Fig. 7.

However, in the zero temperature limit, the only terms that
contribute to Z, are those where €,,; = 0. This occurs in the
case of the ground state energy of the bath and for any ¢,
corresponding to degenerate pairs of system energy eigenval-
ues. As the number of degenerate energy states depends on
the system size and model parameters, this leads to the non-
monotonic behavior of Z,/L observed at low temperatures in
Fig. 6. In the optimal scenario, where there are no degenerate
eigenvalues, the ratio becomes

(26)

In general, as long as the number of pairs of degenerate eigen-
values grows slower than the total number of eigenvalues, the
ratio Z, /L will remain small at low temperatures.

To compare the validity of the equivalence, in Fig. 7 we
plot the trace distance between the density matrix generated
by Eq. (11) for the collisional model and the density ma-
trix arising from averaging over 10° runs of the Metropolis
scheme for the one-dimensional X X Z model. Specifically, we
use Eq. (11) for the collisional model, rather than Eq. (17), as
we wish to test the regimes in which the approximations that
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FIG. 7. Trace distance between the density matrix arising from
the collisional model and the density matrix arising from the
Metropolis algorithm as a function of model time steps, n, for a
one-dimensional XXZ chain of length N =4 (red, solid), N =3
(blue, long dashed), and N = 2 (green, short dashed). Parameters
are J =h= A =1 and B = 20. For the collisional model we have
fixed the interaction parameter gAt = +/Z,/L and for the Metropolis
algorithm we have constructed the density matrix from averaging
over 10° runs.

went into the derivation of Eq. (17) are valid. In our com-
parison, we fix the collisional model interaction parameter
using the condition (gAt)2 = Z,/L. Thus, the only source of
the deviation between the density matrices for both models
comes from the fact that the truncated expansion of the time
evolution operator does not fully capture the dynamics of the
collisional model. We see that the trace distance first increases
(initially it is zero, as both methods start from the same initial
state), before decreasing, as both models ultimately result in
the thermal state density matrix.

We also see that the amount by which the trace distance in-
creases depends on the system size. The increase is the largest
for a system size of N = 3, but as system size is increased
further to N =4 the initial increase in trace distance falls
back to the level of the N = 2 case. This behavior is partially
explained by Fig. 6 where we see that, for an inverse tem-
perature of § = 20, the ratio Z,/L decreases between N = 2
and N = 4, thus rendering the second order approximation in
Eq. (13) increasingly more accurate. The larger trace distance
for N = 3, despite similar values of Z,/L, occurs due to the
fact that the trace distance is also affected by the choice of
initial state, which impacts the rank of the matrix ppm — pem
at subsequent time steps. The choice of an initial state that
is a pure state composed of an even superposition of all en-
ergy eigenstates produces the maximum rank for pp — pem
in the initial dynamics. However, even in this case, we see
that the contribution to the trace distance from Z,/L is much
more significant, as evidenced by the subsequent decrease in
trace distance for N = 4, which has a lower value of Z, /L.

In summary, the equivalence demonstrated here holds best
at low temperatures and large system sizes of models that have
relatively few degeneracies in their spectrum. The accuracy at
large system sizes is particularly relevant, as these are pre-
cisely the regimes where the collisional model dynamics are
most computationally expensive. Notably, while the calcula-
tion of the partition function Z, is computationally expensive,
the partition function is not actually used in the Metropolis

algorithm. It is only necessary to verify the equivalence. If
there is a priori reason to believe a model has a well-spaced
spectrum with few degeneracies, and thus that \/Z, /L is small,
then Z, is not required to generate the dynamics from the
Metropolis algorithm.

V. CONCLUDING REMARKS

In this work we have verified that both the collisional
model framework and the Metropolis algorithm lead to ther-
malization of a many-body system when, in the case of the
collisional model, the spectrum of the bath ancillae corre-
sponds to each of the energy eigenstate transitions in the
system. We have then demonstrated analytically that not only
do both schemes produce thermalization, but that the time-
dependent dynamics generated by both models are exactly
equivalent when a condition relating the collisional model
interaction strength and the ratio of bath ancilla partition
function to number of possible energy eigenstate transitions
is fulfilled.

The Metropolis algorithm is typically considered to be a
purely phenomenological method of sampling possible sys-
tem configurations, while collisional models are constructed
to simulate underlying microscopic interactions that give rise
to the system dynamics. These results demonstrate that, as-
suming the equivalence conditions are met, the Metropolis
algorithm can, in fact, capture the same dynamics of the ther-
malization process as the collisional model. This could make
the Metropolis model useful in situations where the transient
dynamics leading up to thermalization are important, such as
studying the performance of finite time quantum heat engines
[54-56] or verifying stochastic thermodynamic behavior such
as fluctuation theorems [57].

Despite the similarities discussed here, there remain some
important distinctions between the collisional model and
the Metropolis algorithm. By microscopically modeling the
system-bath interaction, the collisional model is significantly
more general and can be applied with arbitrarily structured
bath ancillae to study nonthermal steady states of open-system
dynamics.

In terms of computational cost, to simulate thermalizing
dynamics both models require computing the energy eigen-
states of the system, which is a computationally expensive
process that scales exponentially with the system size. How-
ever, the Metropolis algorithm is advantaged in that it simply
tracks individual eigenstate transitions and needs to know
only about the Hilbert space of the system. The collisional
model must take into account the much larger joint system-
bath Hilbert space and perform repeated partial traces after
each system-bath interaction. Thus, the cost of the collisional
model grows exponentially with the combined system plus
bath ancilla dimensions, while the cost of the Metropolis
scheme grows exponentially with the system size alone.

For example, consider a system whose Hilbert space di-
mension is d. For modeling thermalizing dynamics using a
bath whose spectrum has an excited state corresponding to
each transition in the system, as we have done in our demon-
stration of thermalization in the X X Z model, the Hilbert space
of each bath ancilla must be of dimension (‘;) + 1. Thus, the
total Hilbert space that the collisional model must operate in is
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of dimension O(d>). Even in the most optimal scenario, when
the spectra of the bath ancillae are identical to the spectrum
of the system, the joint system bath Hilbert space will be
of dimension O(d?). We must also keep in mind that the
Metropolis scheme does incur an additional cost from the fact
that the dynamics must be averaged over many repeated runs
to construct the time-dependent density matrix, while the the
collisional model directly models the density matrix evolu-
tion. However, each Metropolis experimental run still consists
of only a series of products of d-dimensional operators.
These results open several avenues for potential future
work. Here we have shown an equivalence between the
collisional model and Metropolis approaches in thermaliz-
ing dynamics for short collisional model interaction times
and subject to the condition that the ratio of bath partition
function to number of system energy eigenstate transitions

is small. It may be possible to generalize these results to
generic open-system dynamics by modifying the distribution
that the accept/reject probabilities are drawn in the Monte
Carlo approach. Collisional models have seen extensive use in
studying non-Markovian open-system dynamics. It would be
interesting to see if a similar equivalence could be found be-
tween non-Markovian collisional models and non-Markovian
Monte Carlo schemes for quantum evolution [58—60].
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