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Scaling of computational order parameters in Rydberg-atom graph states
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Graph states are computationally powerful quantum states with many applications, including use as resource
states for measurement-based quantum computing (MBQC). We demonstrate construction of graph states on a
Rydberg atom quantum analog simulator. We show how an always-on interaction can be used to simultaneously
entangle all Rydberg atoms into a graph state. We construct and implement many-body computational order
parameters for graph states using nonlocal measurement-based logic operations in the Clifford group. The order
parameters measure the efficacy of entanglement to allow MBQC on graph states of any size. We parametrize
finite-size scaling of these order parameters. Our results define a route to efficiently test computational power in
quantum devices.
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I. INTRODUCTION

Graph states are useful quantum many-body spin wave
functions that are straightforward to construct [1]. Consider
a collection of spins defining graph vertices such that each
spin is oriented along the positive-x direction. Application
of two-spin entangling operations, e.g., a controlled-Z (CZ)
operation between spins, establishes the graph edges. The
resulting many-body states have applications in metrology
[2,3], they help speed up variational solvers [4], they pos-
sess [5–13] symmetry-protected topological order [14], and
they are useful in characterizing topological stabilizer quan-
tum error correction codes [15,16]. Graph states are also
measurement-based quantum computing (MBQC) resource
states [17–19].

Starting with a graph state, MBQC [17,18] can proceed
by preparing input on one side of the graph. Local projective
measurements throughout the graph then implement quantum
logic operations on the input state. The output is obtained on
the opposing side of the graph. It was shown that properly de-
signed sequences of measurements [17,18] on graph states are
equivalent to circuit-based quantum algorithms, e.g., quantum
simulation subroutines [20].

Fault-tolerant MBQC on a two-dimensional cluster state,
an example of a graph state with translational invariance, is
possible if the probability of an error in resource state prepa-
ration and measurement is kept below the threshold [21]

εT = 0.0075. (1)

The implementation of MBQC error correction discussed in
Ref. [21] requires large cluster states. Experimental methods
to efficiently create and characterize large graph states are
therefore critical to implementing MBQC.

Characterization of large-scale quantum states such
as graph states remains challenging. Conventional order
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parameters used in solids, e.g., magnetization, are insuffi-
cient. Our central aim is to define practical order parameters
from the perspective of information theory. We define com-
putational order parameters as the fidelities to implement
measurement-based quantum logic operations in the Clifford
group. The order parameters define the efficacy to compute
with the graph state. The MBQC Clifford operations rely on
n measurements on N vertices of a graph state. They can
be made global such that n = N . Finite-size scaling of these
order parameters establishes the domain size over which graph
states can effectively be used in MBQC provided we define
order parameter thresholds. These order parameters can be
used to characterize N-atom graph states with n = N global
measurements such that their scaling offers a benchmarking
tool.

We consider benchmarking of graph states of neutral atoms
in optical tweezer arrays as an application because these
systems [22,23] are rapidly scaling up in size [24]. Recent
experiments [25] constructed and benchmarked cluster states
with atoms in an optical tweezer array operating in a digital
mode [23]. Here, pseudospin states were encoded into hy-
perfine states of Rydberg atoms. Rydberg atoms interact via
the van der Waals interaction at long distances [22,23]. To
avoid crosstalk induced by long-range tails of the interaction,
the atoms were coherently shuttled far from other atoms to
entangle them pairwise into a cluster state. The 12-atom clus-
ter state chain was benchmarked by measuring a three-atom
stabilizer expectation value [25].

We demonstrate construction and benchmarking of large
graph states on a Rydberg atom quantum analog simulator,
QuEra’s Aquila [26], as depicted in Fig. 1. Aquila operates
under the following analog conditions [26]: (1) The locations
of up to 256 87Rb atoms are defined in the plane at the start of
a run and held in place with optical tweezers for the entirety of
the run, (2) pulsing ground-to-Rydberg transitions act globally
on all atoms at once, (3) pairs of atoms in excited Rydberg
states interact with a van der Waals interaction during the
entire run, and (4) measurements of ground and Rydberg
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FIG. 1. Left: Schematic of atoms trapped in optical tweezers in
an example pattern, a square lattice array. Pairs of atomic hyperfine
states within each atom define pseudospins. The lines connecting
each atom depict the nearest-neighbor component to the van der
Waals interaction. The rectangular dashed line shows a domain as
a subset of atoms within the larger array. Right: Schematic of a
usable domain abstracted as an ideal graph state. Vertices are spin
states |+〉, and the lines depict entanglement with the CZ gate. The
arrows show the information flow in computational order parameters
defining domain size.

state populations are recorded globally for all atoms at the
end of the run. These analog conditions have the advantage
of parallel entanglement using an always-on interaction but
exclude many features of digital Rydberg-based devices, e.g.,
local control of one- and two-atom gates [22,23]. Reference
[26] recorded device parameters, local error benchmarks, and
other details of the Aquila device.

We test our order parameters on Aquila. Active correction
of weak errors would, in principle, imply a uniform finite-size
scaling of computational order, and therefore computational
domains of arbitrary size. But as error probabilities increase
above threshold, we expect a transition to a regime with ex-
ponential decay of computational order scaling. To see this,
consider one measurement per vertex where the probability
of an uncorrelated error in a single measurement at a vertex
is εM . Nonlocal fidelities derived from n measurements, and
therefore computational order, will decrease as ∼(1 − εM )n

as we grow the number of measurements and vertices. We
parametrize the error probability in the Aquila device with
similar scaling functions for computational order parameters.
Our scaling analysis indicates that errors limit domain sizes
to be more than an order of magnitude smaller than those
needed for thresholds implied by Eq. (1). Our domain-based
benchmarks complement other recently implemented neutral
atom benchmarking tools [25,27–29].

The paper is organized as follows. Section II discusses the
model of atoms in the Aquila device and presents the method
to create and characterize graph states. In Sec. II A we discuss
the Rydberg atom quantum analog simulator Hamiltonian.
Here, we show how the always-on van der Waals interaction
between atoms can be used to create graph states using par-
allel entanglement. We also quantify unitary errors inherent
to the always-on protocol. In Sec. II B we discus how to
characterize graph states with stabilizer and string correlation
functions. In Sec. II C we discuss measurement-based logic
operations in the Clifford group as computational order pa-
rameters. Section III presents results from the Aquila device.
In Sec. III A we create two-particle entangled states on Aquila
and test fidelity. In Secs. III B and III C we create graph states

on Aquila and characterize them to estimate computational
domain sizes. Section III D discusses error sources. We sum-
marize in Sec. IV.

II. MODEL AND METHODS

A. Hamiltonian and always-on interaction

We define the model and wave function of Rydberg atoms
trapped in optical tweezer arrays. Once N atomic locations
are fixed in the plane by optical tweezers, the time-dependent
Hamiltonian is [23,26]

Ĥ (t ) = Ĥ0(t ) + V̂

Ĥ0(t ) = �(t )

2

N∑
i=1

[
eiφ(t )|gi〉〈ri| + e−iφ(t )|ri〉〈gi|

]

V̂ =
N∑

i< j

V (di j )|ri〉|r j〉〈r j |〈ri|,

where |gi〉 (|ri〉) denotes the ground (excited Rydberg) state
of the ith atom. The location of each atom defines graph
vertices in the real space plane. V (di j ) = C6/d6

i j are the inter-
atom interaction strengths where, for the Aquila device, C6 =
5420503 µm6rad/µs and di j is the planar interatom separation.
For each graph we use uniform distances, di, j = d , except at
certain input vertices discussed in Sec. II C. The Rabi drive
amplitude �(t ) and the phase φ(t ) can be pulsed during the
run. We set h̄ = 1.

The atomic states define a pseudospin. Ĥ can be writ-
ten in terms of the usual Pauli matrices at atom i, σ̂ i =
(σ̂ x

i , σ̂
y
i , σ̂ z

i ), using σ̂ z
i = 1 − 2|ri〉〈ri| and σ̂ x

i = |gi〉〈ri| +
|ri〉〈gi|. The eigenbasis of σ̂ x

i is then |±i〉 ≡ (|gi〉 ± |ri〉)/
√

2.
Note that the van der Waals interaction between two
atoms evolves as exp [−iV̂ t] to become a controlled-phase
operation:

CPHASE jk (θ ) ≡ e−iθ |r j 〉|rk〉〈rk |〈r j |,

where θ = tV (djk ) for atoms j and k. This operation becomes
a CZ operation between pseudospins at times that are odd
multiples of π/V (d jk ), e.g., when we have CPHASE jk (π ), as
depicted in Fig. 2.

To see the role of an always-on interaction, we construct
the wave function in the Schrödinger picture. The exact many-
body wave function evolves under the pulse profiles of �(t )
and φ(t ) as [26,30]

|ψ (t )〉 = ÛĤ0
(t )ÛV̂ (t )

N∏
i=1

|gi〉 (2)

ÛĤ0
(t ) = T exp

[
−i

∫ t

0
Ĥ0(τ )dτ

]
(3)

ÛV̂ (t ) = T exp

[
−i

∫ t

0
Û †

Ĥ0
(τ )V̂ (τ )Û

Ĥ0
(τ )dτ

]
, (4)

where T denotes time ordering. For V̂ = 0, properly designed
pulse profiles �(t ) and φ(t ) can be used to simultaneously
rotate all atoms in pseudospin space. But for V̂ �= 0, we must
consider the simultaneous evolution of the single-atom control
fields along with the interaction, because Ĥ0 and V̂ do not
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FIG. 2. Schematic of time scales in the always-on interaction
protocol for creation of graph states with the controlled phase inter-
action between atoms. The solid line plots the real part of the phase in
the interaction matrix as a function of time. The slow interaction is a
controlled phase operation between the atom pairs that approximates
the two-spin identity gate Î at times that are even multiples of T/2
and the CZ gate at odd multiples, where T = 2π/V (d ). The bars are
schematics labeling times for short pulsing stages of duration δt . The
preparation stage uses a global Rabi-drive pulse to simultaneously
rotate all atoms from |gi〉 into the state |+i〉. The measurement stage
similarly rotates all atoms and then measures {|gi〉, |ri〉} populations.
The inset shows the matrix for two-particle interaction time evolu-
tion, exp [−iV̂ t], in the basis {|g1〉|g2〉, |g1〉|r2〉, |r1〉|g2〉, |r1〉|r2〉}.

commute in general. We will see below that the Schrödinger
picture wave function conveniently separates the roles of Ĥ0

and V̂ , whereas the separation is harder to see in the more con-
ventional interaction picture wave function, ÛV̂ (t )

∏N
i=1 |gi〉.

We now discuss the always-on interaction as a route to
create graph state edges with Rydberg atom arrays and esti-
mate the impact of noncommutativity of Ĥ0 and V̂ . Figure 2
depicts subsequent rounds of preparation and measurement to
create graph states and execute MBQC measurement proto-
cols. Ideally, preparation of

∏
i |+i〉 allows the interaction to

drive evolution into graph states for times at odd multiple of
T/2. For infinitely narrow pulses and short-ranged interaction,
this protocol leads to ideal graph states and can be efficiently
scaled because it uses only global pulses. For example, after
the first measurement stage we expect a graph state:∏

〈 j,k〉∈E
CPHASE j,k (π )

∏
i

|+i〉, (5)

where 〈 j, k〉 indicates atom pairs defining graph edges E .
Figures 3(a)–3(d) depict example vertex-edge combinations
we build on Aquila.

Perturbations arise due to finite pulse widths and long-
range parts of the interaction. These perturbations are known
unitaries that can be incorporated into a definition of a
weighted graph state [1]. Alternatively, known local unitary
errors can be corrected with pulse engineering [31,32] and
perturbations due to the long-range interaction can be re-
moved with additional pulsing [33]. Here, we instead take
these perturbations to be graph-state preparation errors and
quantify their impact.

We quantify the perturbation to the desired graph state
caused by nonzero pulse widths evolving along with the
interaction. Consider the first preparation stage, 0 � t �
δt , depicted schematically by the first vertical bar in

FIG. 3. Schematics of example graph states created on Aquila.
Each circle represents an atom prepared in the |+〉 state. Solid black
lines depict entanglement with the always-on interaction approxima-
tion to the two-atom CZ operation. The shaded rectangles enclose
atoms used to measure example strings Sn defining nonlocal order
parameters, Eq. (8). Atoms covered by Sn are shaded in red. In (d),
the dotted line about the center ic encloses five atoms defining an
example of one stabilizer operator that we measure to find 〈Ŝic 〉.

Fig. 2. Assume for simplicity that Ĥ0(t ) is a square pulse
during the preparation stage. To create a graph state we
seek to first prepare

∏
i |+i〉 using just single-atom rotations:

ÛĤ0
(δt )

∏N
i=1 |gi〉. Ideally, interactions should entangle the

state only after single-atom rotations are applied. But, the
interaction perturbs the first preparation stage because it is
always on. To approximate the role of interactions, consider
the first-order Dyson series expansion for the propagator:

ÛV̂ (δt ) = Î − i
∫ δt

0
eiĤ0τV̂ e−iĤ0τ dτ + O([δtV (d )]2). (6)

Substitution into Eq. (2) shows that the second term in
Eq. (6) induces a preparation-stage correction (a unitary error)
due to the always-on interaction, i.e., it causes deviations
from ÛĤ0

(δt )
∏N

i=1 |gi〉. Note that the correction to Î scales
as δtV (d ) in the wave function and therefore vanishes lin-
early for δt → 0. As mentioned above, pulse engineering
[31,32,34] can, in principle, push the error to higher order in
δt . But, as we will see quantitatively, the linear perturbation
has a small effect on Aquila compared to other perturbations
because we are able to choose single-atom pulse widths such
that δt/T is below 0.25 on Aquila. A similar analysis applies
to short pulses in the measurement stage for times near T/2.
We can therefore accurately characterize the weak unitary
deviations of ÛV̂ from Î (CZ) during the preparation (measure-
ment) stages. In the remainder of this work we consider only
one preparation and one measurement stage.

B. Stabilizer and string correlators in graph states

We now discuss the characterization of graph states as
depicted in Figs. 3(a)–3(d) using expectation values of sta-
bilizer and string correlation functions. Measurement-based
benchmarking can be implemented by testing the fidelity of
local stabilizer operators and nonlocal string correlators de-
fined by stabilizer products. Products of stabilizer operators
bound MBQC computational order because MBQC protocols
are defined from combinations of stabilizer operator products.
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Graph states are eigenstates of stabilizer operators defined
by [1]

Ŝi = σ̂ x
i

∏
j∈N

σ̂ z
j , (7)

where the product runs over the connections to vertices in the
neighborhood of i, j ∈ N , to define graph edges. We may
test the stabilizer average given by N−1

s

∑Ns
i=1 Ŝi, where Ns is

the number of stabilizer operators fitting within the graph.
The dotted line in Fig. 3(d) encircles five vertices defining
one example stabilizer operator. Since graph states are unique
eigenstates of Ŝi with eigenvalue +1, we expect to obtain unity
on an ideal graph state. N−1

s

∑Ns
i=1 Ŝi therefore serves as an

example graph-state fidelity measure.
We can also use Ŝi to construct nonlocal string correlators

that can be implemented with global pulses and measurements
to reveal scaling for bounds of computational order. Ideal
graph states are also eigenstates of products of Ŝi defining
nonlocal symmetries, e.g.,

∏
j∈Sn

σ̂ x
j , where Sn denotes cer-

tain strings of atoms containing n measurements with one
measurement per atom in the string. Figure 3 depicts example
strings by rectangular loops passing though included atoms.
One can show that the eigenvalue of these example string
operators is +1 for ideal graph states since all basis states con-
tributing amplitude to the many-body wave function preserve
parity of the string symmetry.

We define the expectation value of string symmetries as
nonlocal order parameters obtained from n measurements:

�n ≡
〈
P̂+
Sn

[ ∏
j∈Sn

σ̂ x
j

]
P̂+
Sn

〉
, (8)

where P̂+
Sn

are projectors onto basis states preserving the +1

string parity. P̂+
Sn

defines a post selection protocol to set a
normalization consistent with conventional fidelity measures:
�n = 1 for an ideal graph state and �n = 1/2 for a product
state randomized by errors. We implement the projectors by
selecting the measurement outcomes that preserve +1 parity.
This, without loss of generality, excludes the other half of
all possible outcomes, i.e., −1 parity outcomes. For example,
in Fig. 3(a), the following string outcomes corresponding to
amplitude in the two-spin wave function are kept: |+〉|+〉 and
|−〉|−〉. Outcomes corresponding to |+〉|−〉 and |−〉|+〉 are
rejected.

We can estimate scaling of �n with n using a classical
single-atom error model. Let εL be the probability that an error
causes a measurement of a single-atom state |±〉 to flip to |∓〉
anywhere along the length of Sn. Note that �n only changes
with an odd number of flips in the eigenbasis of σ̂ x. The
probability of flipping none or any even number of outcomes
along the string follows from a binomial distribution:

Pe(n) =
km∑

k=0

n!

(2k)!(n − 2k)!
ε2k

L (1 − εL )n−2k

= 1

2
[1 + (1 − 2εL )n], (9)

where km = n/2 [km = (n + 1)/2] for n even [odd]. Pe(n) = 1
for εL = 0. For εL > 0, Pe(n) decays exponentially to 1/2 as n

(a)
(d)

(b)

(c)

FIG. 4. Measurements on the graphs in (a)–(c) define nonlocal
computational order parameters based on MBQC quantum logic op-
erations [18]. (a) Chain graph of atoms where global measurements
along the pseudospin-x eigenbasis teleport a quantum state from I
to O to execute a logical identity operation. (b) The measurements
on this graph take input states at I1 and I2 and performs logical
controlled-NOT to yield outputs at O1 and O2. (c) The same as (b) but
for a logical SWAP operation. To prepare input states in (a)–(c), the in-
put atoms are translated by �d . (d) The red arrow depicts the impact
of translation by �d , measurements, and always-on interaction that
takes the input |+〉 state at I and transforms it so that the third atom
is rotated by an angle γ on the Bloch sphere about the unit vector
n = (1, 0, 1)/

√
2. The state at the third atom becomes the input for

the rest of the graph.

increases. We take Eq. (9) as an approximate error model for
measurements of string correlators of graph states on Aquila
that quantifies exponential scaling with a single fitting param-
eter εL.

C. Computational order parameters

We now turn to nonlocal order parameters defined by
measurement-based quantum logic operations in the Clifford
group. The order parameters rely on global measurements
and, by construction, imply the efficacy to compute with the
graph state. Since these operations can be scaled in size (larger
graphs produce the same logical operation), their fidelities can
be used to estimate the scaling with N and n.

We first review the measurement-based protocol to im-
plement a logical identity operation [18,34–36]. Figure 4(a)
depicts a chain graph that, upon global measurement, executes
logical identity by teleporting the state encoded at input, I
(at i = 1), to output, O (at i = N), where vertices are labeled
i = 1, 2, ..., N , from left to right. To see this, first consider an
ideal chain-graph state with vertices i = 2, 3, ..., N :

|ψc〉 =
N−1∏
j=2

CPHASE j, j+1(π )
N∏

i=2

|+i〉, (10)

where we excluded the leftmost vertex at i = 1. We then
encode information in the leftmost vertex: |ψI〉. Entangling
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|ψI〉 with the rest of the graph leads to the state

|ψe〉 = CPHASE1,2(π )|ψI〉|ψc〉, (11)

which is now an N-vertex chain-graph state with encoded
information. Measurements on i = 1, 2, ..., N − 1 move in-
formation in |ψI〉 from left to right along the graph. One can
show [18] that the output state encodes information at i = N
which is, up to a known unitary, the same as the input state:

|ψO〉 = Û� Î|ψI〉, (12)

where Î denotes the logical measurement-based identity oper-
ation. Û� = (σ̂ z )s1+s3+..(σ̂ x )s2+s4+.. is a byproduct unitary that
feeds forward measurement outcomes along the chain graph.
si = 0, 1 are the measurement outcomes from a projective x
measurement at vertex i.

Equation (12) defines an example measurement-based log-
ical operation in the Clifford group. It implies that ideal
graph-state chains allow measurements to teleport informa-
tion along the chain. Equation (12) arises from the underlying
every-other vertex symmetry,

∏
i σ̂

x
2i+1, in one-dimensional

graphs and tests a necessary condition for computational
power [13]. Also, the expected output in Eq. (12) does not
depend on N for an ideal graph state. The fidelity to implement
Eq. (12) can therefore be used to benchmark imperfect graph
states of any size. Furthermore, only global measurements
are needed. Other measurement-based logic operations in the
Clifford group can be used to benchmark graph states in a
similar fashion. Figures 4(b) and 4(c) depict graphs that, upon
global measurement, execute logical controlled-NOT and SWAP

operations, respectively, by pushing information from inputs
to outputs [18].

It is not possible to directly tune the state of selected input
atoms using local fields when operating under the constraints
of the Aquila device discussed in Sec. I. We now introduce
a method to use graph geometry to effectively tune input
states |ψI〉 without local fields. We consider construction of a
chain-graph state of atomic pseudospins using the always-on
interaction. All atoms are first globally prepared in the |+〉
state. Entangling atoms i = 2 to N with the two-atom CZ

operation approximates |ψc〉. But, to encode information at
the left side of the chain-graph state we entangle the |+1〉 state
with a controlled phase operation instead of CZ. To achieve
this with the always-on interaction between Rydberg atoms
we translate the i = 1 atom as depicted in Fig. 4(a). The
resulting encoded wave function is

|ψ̃e〉 = CPHASE1,2[TV (d + �d )]|+1〉|ψc〉. (13)

Here, translation by �d encodes information that can be tele-
ported from the left to the right side of the chain-graph state.

To derive the output state from |ψ̃e〉, consider just the first
three atoms: i = 1, 2, 3. It is straightforward to show that after
using measurement to trace out the first two atoms, the state
at i = 3 becomes our new input state for the rest of the graph:

|ψ̃I〉 = e−iγ n·σ̂/2|+3〉, (14)

i.e., a state rotated about the unit vector n = (1, 0, 1)/
√

2 by
an angle γ defined by

tan
(γ

2

)
=

√
2 tan

[
T

2
{V (d + �d ) − V (d )}

]
. (15)

Figure 4(d) depicts the impact of increasing �d . The remain-
ing measurements along the chain-graph state then teleport
|ψ̃I〉 from left to right along the graph to yield the output state

|ψ̃O〉 = Û ′
� Î|ψ̃I〉, (16)

where Û ′
� is a modified byproduct unitary (see Appendix D).

Equation (16) shows that the information encoded in the left
side of the graph can be teleported to the right side of the
graph.

The above protocol combines graph geometry, the always-
on interaction, and measurements to program input states.
Figures 4(b) and 4(c) depict intentional translation of one
input atom for other graphs, where the first three atoms are
similarly used to create input states for the rest of the graph.
These graphs depict translation of just one atom, but more
sophisticated input geometries are possible. In general, our
method implies that weighted graph states, instead of local
spin rotations, can be used to define input information for
unweighted graph states.

We can use the translation operation to build an order pa-
rameter with the chain graph in Fig. 4(a). The x measurements
of the last (output) atom offer a nonlocal computational order
parameter with n = N :

QN (γ ) = Tr[M̂xρ̂OM̂†
x], (17)

where M̂x denotes measurement along the pseudospin x di-
rection of the output atom and ρ̂O is the density matrix of the
output atom. In the ideal case (i.e., in the absence of noise,
long-range components to the interaction, and pulse widths)
we expect projective x measurements to move the rotated
state |ψ̃I〉 to the output atom at O so that QN (γ ) becomes
q(γ ) ≡ |〈+|e−iγ n·σ̂/2|+〉|2 = (3 + cos[γ ])/4. Differences be-
tween the device results and the function q(γ ) serve as
nonlocal graph-state benchmarks.

III. IMPLEMENTATION ON AQUILA

A. Two-particle entangled states

We first demonstrate the creation of two-atom superposi-
tions to test the always-on approach. The pulse sequence used
to create the state is shown in Appendix A. For d = 12.3 µm
the pulse sequence and always-on interaction approximates a
Bell pair: |B〉 = (|g1〉|g2〉 + |r1〉|r2〉)/

√
2. We find the overlap

between |B〉 and the exact wave function, Eq. (2), to be 0.99,
showing that here the correction term discussed in Sec. II A is
small.

We also test the implementation of other two-particle en-
tangled states on Aquila. The squares in Fig. 5 plot a fidelity
defined as the overlap of the exact wave function, Eq. (2), and
the Aquila device. The overlaps demonstrate the high accu-
racy of the always-on protocol. The error bars are computed
using the delete-1 jackknife resampling method to obtain the
standard error. We choose enough shots to ensure convergence
(Appendix B).

Measurements on the Aquila device have an ∼8% mea-
surement bias of the |r〉 state [26], which we have checked
with 1000 single-atom shots. This is the largest source of
error. We correct for measurement bias using the stochastic T -
matrix method [37–39] described in Appendix C (remaining
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FIG. 5. Fidelity of the two-atom state plotted as a function of
interatom distance. Squares plot the overlap of Aquila data with the
exact wave function, Eq. (2), using 100 shots. The circles plot the
same but for corrected data that account for known [26] measurement
bias (see Appendix C). The Bell state is expected at d = 12.3 µm.
The solid line is a guide to the eye.

sources of error will be discussed in Sec. III D). The circles in
Fig. 5 plot the fidelity using measurement-corrected data. We
find that the two-particle entangled states are created to within
an overlap of ∼0.975 after accounting for finite pulse widths
and measurement bias.

B. Estimates of stabilizer and string correlators on Aquila

We use Aquila to construct the graph states shown in Fig. 3
and benchmark them using the stabilizer and string correla-
tors. We use the pulse sequence discussed in Appendix A.
We first measure the stabilizer sum, N−1

s

∑Ns
i=1 Ŝi, in the

pseudospin-z eigenbasis using 1000 shots. For N = 36, we
find the stabilizer average to be 0.985(6), which is consistent
with preparation of a graph state. An average near unity is a
necessary but not sufficient demonstration of computational
order with graph states. The measurements used here are
global and cannot be used with Ŝi to distinguish between
graph states and product states (a combination of local x and z
measurements are needed [40]). Also, Ŝi is a local (five-atom)
operator that does not scale with N or n.

We also used Aquila to infer �n for various strings. The
circles in Fig. 6 show how the order parameter decreases with
increasing string length. The solid line in Fig. 6 shows a stan-
dard fit with Eq. (9) yielding εL = 0.12(1). We have therefore
parametrized the exponential decrease in string correlations
in these graph states. The threshold �n > 1/2 establishes that
fewer than ∼9 measurements on nine atoms can be used to
distinguish a graph state from a randomized product state.
These results therefore provide an upper bound on the domain
size across which MBQC can be performed due to errors.

C. Estimates of computational order parameters on Aquila

We now use our protocol to estimate computational order
parameters of states engineered on Aquila. We build graph
states with various shapes and sizes. To test computational
power we benchmark the states with the computational order
parameters discussed in Sec. II C.

We first create the chain graph state, Fig. 4(a). While
two-qubit fidelities are high, we must benchmark the compu-
tational power of the many-body wave function as system size

0 2 4 6 8 10
String length, n

0

0.25

0.5

0.75

1

Θ
n

FIG. 6. The circles plot estimates of string order, Eq. (8), as
a function of string length taken with 1000 shots on Aquila after
creating graph states. The data are corrected for measurement bias
(Appendix C). Graphs with up to 36 atoms were used and example
strings are plotted in Fig. 3. The solid line shows a single parameter
fit using Eq. (9) to find εL = 0.12(1). The horizontal dashed line plots
the threshold for a randomized product state.

is scaled. We use QN (γ ) [see Eq. (17)] and compare with the
ideal case, q(γ ).

Figure 7 shows measurement results along with results
from numerical simulation and q(γ ). The horizontal shift
between q(γ ) and the numerical simulation result shows the
impact of finite pulse widths. The overall trend in the measure-
ments shows evidence for teleportation of the rotated input
state across the entire chain graph.

We now turn to scaling estimates of the teleportation fi-
delity QN (0) with N . We expect QN (0) = 1 for no error and
QN (0) = 1/2 for large error. As in Sec. II B, we consider an
uncorrelated measurement error model to construct a scaling
function. We assume that measurement errors change val-
ues of si in the byproduct operator. Applying a byproduct
operator with incorrect si to |±i〉 will only cause an er-
ror if si is changed an odd number of times on atoms i =
1, 3, 5, ..., N , for N odd. We therefore see that an odd number
of measurement errors must occur on the nO ≡ (N + 1)/2
atoms (at every other atom) to cause an error, consistent
with the every-other vertex symmetry,

∏
i σ̂

x
2i+1. This mo-

tivates a scaling fidelity Pe(nO) that parametrizes the total
probability for only an even number of measurement errors
to occur on nO atoms. Appendix E discusses an alternative
scaling function based on amplitude damping in a trajectory
model [41].

Teleportation fidelity, and therefore QN (0), has a threshold.
A teleportation fidelity above 2/3 guarantees teleportation
across a quantum channel [34,42–44]. A fidelity below 2/3
leaves no guarantee that the graph contains a quantum chan-
nel. We use this threshold to define domain size.

Figure 8 shows the scaling in measurement-based tele-
portation we obtain from the Aquila device. The triangles
show a theoretical expectation for QN (0) that incorporate
the errors due to the finite pulse width and the long-range
part of the interaction using the exact wave function. The
squares show the raw data from Aquila and the circles show
the data corrected for measurement bias. The solid lines
show single parameter fits with Pe(nO). A standard fit to the
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FIG. 7. Example results for teleportation along chain graphs with
three and five atoms on the top and bottom, respectively. The x axis
is the rotation angle implemented by translating the first atom in
the chain graph by �d [see Figs. 4(a) and 4(d)]. The red dashed
line shows the ideal case, q(γ ) = (3 + cos[γ ])/4, expected for in-
finitely narrow pulses, only nearest-neighbor interaction, and no
other sources of error. The solid green line shows results from a
numerical simulation that includes errors from finite pulse widths.
The circles are results from the Aquila device with 1000 shots,
corrected for measurement bias (Appendix C).

FIG. 8. The teleportation fidelity along the chain graph as a
function of the number of atoms. The triangular data points are a
theoretical prediction using the exact wave function, Eq. (2), that
includes errors due to the finite pulse widths (see Appendix A for
the pulse shapes) and long-range parts of the interaction. The squares
are raw data from Aquila and the circles plot data corrected for mea-
surement bias. The solid lines are single parameter fits with Pe(nO) to
obtain εL . The horizontal dashed line depicts the 2/3 threshold below
which we cannot guarantee teleportation along a quantum channel.

corrected data yields εL = 0.090(9), consistent with the string
error probability obtained in Sec. II B and the error model
in Appendix E. The corrected data fall below 2/3 for chain
graphs with N � 9. This is also consistent with results from
Sec. II B showing that string lengths n � 9 had a saturated
string order parameter. We therefore conclude that our imple-
mentation of graph states on Aquila support computational
domains smaller than ∼9 atoms and measurements. These
domain sizes imply that we can also demonstrate the MBQC
controlled-NOT operation. We were able to demonstrate the
MBQC controlled-NOT operation [see Fig. 4(b)] to within
an accuracy of 68(2)% using 1000 shots after correcting for
measurement bias.

Figure 4(c) depicts the minimal graph needed to imple-
ment the measurement-based logical SWAP operation where
input states are pushed by measurement, from left to right,
to eventually swap at the output. The six central vertices in
the SWAP operation can be scaled up to rectangular arrays
of arbitrary size. This makes the MBQC SWAP operation the
perfect candidate order parameter to test two-dimensional
domain size scaling. The graph shown in Fig. 4(c) is
too large to implement given the current error budget on
Aquila.

D. Error budget on Aquila

Several different error sources on Aquila impact the com-
putational order parameters. The scaling estimate of εL in
Fig. 8 can be thought of as an aggregate parametrization of
many error sources. We interpret the accumulation of error us-
ing the known hierarchy of errors on Aquila [26]. The largest
single source of error is the measurement bias, which we
mostly account for by using measurement-corrected Aquila
data to find εL = 0.090(9). Error also arises from (unitary)
perturbations from the finite pulse width and the long-range
part of the interactions. These errors are included in the esti-
mate of error in εL = 0.026 in Fig. 8. We conclude that the
difference between the corrected and theoretical fits, �εL =
0.064(9), can be understood as due to remaining sources of
error.

Fluctuations in positions of the atoms due to thermal
motion and tweezer location errors: δd ≈ 0.25 µm [26], are
another possible source of error. Modeling the fluctuations as
fast harmonic oscillations in each planar direction, the inter-
action during the pulse experiences an averaged perturbation
of ∼36C6δd/d7 which we have checked changes εL by less
than 0.01. We conclude that atom location errors are not a
dominant contributor to �εL.

The largest contributions to �εL are most likely due to
an accumulation of single-atom decoherence effects. Single-
atom decoherence has been characterized by T ∗

2 Ramsey
measurements where it was found [26] that |g〉-to-|g〉 tran-
sitions driven by conventional Ramsey pulses have an error
probability of ∼0.07 after t = 2 µs. (Possible sources include
detuning from laser and Doppler effects, as well as the hy-
bridization and decay with the intermediate state [26]). This
error probability is consistent with our estimate of �εL =
0.064(9). We therefore conclude that single-atom decoher-
ence effects are the remaining dominant sources of error in
our scaling estimate of εL.
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IV. DISCUSSION AND OUTLOOK

Nonlocal order parameters based on stabilizers and MBQC
logic operations in the Clifford group can characterize graph
states of any size. These order parameters test the viability
of graph-state entanglement and measurements to execute
measurement-based logic operations. Finite-size scaling of
the order parameters define the error-limited domain size over
which graph states can be used for computation provided we
define order parameter thresholds. We imposed a threshold to
string order to distinguish it from a classical string, �n > 1/2,
and a bound for guaranteed teleportation along a quantum
channel, QN (0) > 2/3.

We demonstrated graph-state construction on QuEra’s
Aquila device. An always-on interaction enables parallel
entanglement. Two types of unitary perturbations cause de-
viations from ideal graph states. First, the noncommutativity
of Rabi-drive pulses and the van der Waals interaction leads
to unitary perturbations quantified with a Dyson series expan-
sion. Second, long-range components to the interaction also
lead to perturbations. We interpreted these quantifiable pertur-
bations as state preparation errors. They are relatively small
and can be corrected with pulse engineering using modified
control fields, e.g., refocusing schemes [31,32,34] and Floquet
methods [33]. Alternatively, these intrinsic perturbations can
be kept as useful [4] features in defining weighted graph
states [1].

Scaling of computational order parameters tested the accu-
mulation of errors. Unitary errors arose from the always-on
approach. Other error sources included measurement errors
and single-atom decoherence effects. The ideal operating
regime for the always-on approach is one where T is much
longer than pulse durations but much shorter than decoher-
ence times. We found that errors limit computational order to
domains containing fewer than ∼9 measurements on as many
atoms on Aquila using both the string order and the telepor-
tation thresholds to define domain size. Errors therefore limit
the graph state domain size for MBQC to be less than nine
vertices.

We can compare the domain sizes found here with an ideal
case. Assuming only measurement errors such that εM � 1,
we set Pe(nO) to 2/3 to find domain sizes of ∼ ln[3]/εM

vertices. The error probability threshold given by Eq. (1)
thus leads to domains of 145 vertices. Computational do-
mains of at least 145 vertices must therefore be embedded
inside larger graph states to correct measurement errors. We
therefore conclude that domains size found on Aquila are
more than an order of magnitude smaller than the mini-
mum needed to implement active error correction on a graph
state.

Quantum graph states are ideally constructed from parallel
application of entangling gates. We showed that Aquila allows
parallel entangling gates using the always-on Rydberg interac-
tion. But this analog mode of operating currently has limited
coherence. Significant improvements in scaling of computa-
tional order can be obtained by implementing high-accuracy
features of neutral atom digital quantum computing, e.g.,
rapid or high-fidelity measurements implemented in optical
lattices [45] and those demonstrated in recent Rydberg atom
tweezer arrays [22–25,27,28,46–59].

FIG. 9. Pulse sequence used to create two-particle entangled
states. Atoms begin in |g〉. In the absence of interaction or other
perturbations, the ideal preparation (measurement) stage rotates both
atoms around the pseudospin x axis by π/2 (−5π/4). The always-on
interaction perturbs the otherwise ideal pulses. The interaction even-
tually approximates the CZ operation after 2 µs. Measurements are
performed at the end. For these parameters, the final state approxi-
mates a Bell pair state |B〉 when atoms are separated by d = 12.3 µm.
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APPENDIX A: PULSE PROFILES

This section presents the pulse profiles used to create quan-
tum states on the Aquila device. Figure 9 shows the circuit
used to construct two-atom Bell pairs with the always-on
interaction. The preparation stage is in the first 0.2 µs and
the measurement stage is in the last 0.5 µs. Several pulse
shapes were tested. Triangular pulse shapes for �(t ) yielded
the highest fidelity under the constraint of narrow pulse
widths.

Figure 10 shows the pulse sequence to create chain
graph states. Here, the always-on interaction simultaneously
entangles all atoms. The preparation stage is in the first
0.2 µs and the measurement stage is in the last 0.2 µs.
All other graph states are created with this pulse sequence
as well.

APPENDIX B: ERROR BARS AND SHOT NUMBER

This section describes how the shot number on Aquila was
selected. The number of shots required to achieve sufficiently
small error bars increases with n. The two-atom data presented
in Fig. 5 required only 100 shots to achieve convergence
within tolerances set by small error bars, but for larger graphs
we increased the shot number.

Figure 11 shows an example convergence check for data
taken on Aquila with N = 5 and n = 5 using the pulse profile
from Appendix A. Here, we see no statistically significant
deviation for large numbers of shots and that 1000 shots are
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FIG. 10. The pulse sequence used to create graph states where
the preparation (measurement) stage rotates all atoms around the
pseudospin-y axis by π/2 (−π/2). The always-on interaction ap-
proximates the CZ operation between nearest neighbors with d =
12.3 µm in the graph after 2 µs. Measurements are performed at the
end.

more than sufficient for convergence to within small error
bars. The main text presents averages using enough shots to
ensure convergence.

200 400 600 800 1000
Number of shots
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FIG. 11. An example convergence check plotting the estimate of
Q5(0) [see Eq. (17)] obtained from Aquila (squares) as a function
of the number of shots used in computing averages. The horizontal
dotted line shows the average of raw data obtained with 1000 shots,
0.752, used in the main text. The circles plot the measurement cor-
rected averages. The error bars for the corrected data are very close
to the error bars shown for the raw data and have been omitted for
clarity.

FIG. 12. Example data for two atoms prepared to create a
Bell state using the always-on interaction with the pulse protocol
discussed in Appendix A with 100 shots and d = 12.3 µm. The
histograms plot the number of outcomes. The corrected data plot
mcorr and show an improvement over the raw data from Aquila.
The numerical simulation includes corrections due to the finite pulse
width during the always-on interaction.

APPENDIX C: MITIGATION OF MEASUREMENT BIAS

This section describes an error mitigation protocol for
uncorrelated classical measurement error. In this section we
assume n = N . On the Aquila processor, the largest error
source is a measurement bias where a fraction εM ≈ 0.08
of measurements of the state |g〉 are incorrect and should
be |r〉 [26]. We correct these measurement errors using the
T -matrix method [37–39]. The left-stochastic error matrix T
maps ideal measurements of |g〉 and |r〉 to noisy output via
mmeas = Tmcorr, where mcorr and mmeas are vectors containing
normalized measurement counts for each outcome for the
corrected and measured set, respectively. By inverting this
matrix, we correct measured data to account for measurement
bias using mcorr = T−1mmeas. Data labeled “corrected” plot
results using mcorr.

For uncorrelated classical measurement error, the single-
atom error generalizes to N-atom error. For a single atom
at i = 1, mmeas has two entries: the number of counts for
outcomes |g〉 and |r〉. For one atom, the correction matrix has
2 × 2 elements and is given by

T1 ≡
[

1 εM

0 1 − εM

]
. (C1)

For n independent measurements (one per atom) on atoms
i = 1, ..., N , T has 2n × 2n elements given by the tensor prod-
uct of single-atom matrices. T is the matrix used to correct
measurement bias discussed in the main text. Figures 12 and
13 show improvements in example outcomes.

APPENDIX D: PROTOCOL FOR POSTPROCESSING
MEASUREMENTS

The graphs depicted in Figs. 4(a)–4(c) yield outputs that
are the results of logic operations on input states after mea-
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TABLE I. Protocol for processing measurements in the first three
atoms in a chain graph where the first atom is intentionally translated
by �d (see Fig. 4). The first column lists the four possible outcomes
of measurements in the pseudospin eigenbasis of σ̂ x of the first two
atoms. The second column lists the unitary that impacts the third
atom due to the projective measurements on atoms 1 and 2. The
third column shows what data to discard so that the pseudospin
state of the third atom is rotated by an angle γ on the Bloch
sphere.

Outcome Operation Choice

10 Î Discard
11 Î Discard
01 exp[−iγ n · σ̂/2] Keep
00 exp[−iγ n · σ̂/2] Keep

surements in the pseudospin eigenbasis of σ̂ x. A feed-forward
of the measurement results of each atom is needed to interpret
the output(s). The output of measurements for each atom
is recorded and used offline in a byproduct unitary applied
to the state(s) measured at the output(s). These byproduct
operators are derived for cluster states in Ref. [18]. For the
identity operation in the chain graph [�d = 0 in Fig. 4(a)]
the byproduct unitary is Û� = (σ̂ z )s1+s3+..(σ̂ x )s2+s4+.., where
si = 0, 1 are the measurement outcomes of the ith atom. The
following discusses the protocol defining Û ′

� in Eq. (16).
To rotate the input state using distorted graphs with �d �=

0 [Fig. 4(d)], we must construct a new feed-forward protocol
for Û ′

� . Consider three atoms where the first is a distance
d + �d from the second but atoms 2 and 3 are separated
by d such that the interaction pulse time approximates a CZ

gate between atoms 2 and 3. Measuring atoms 1 and 2 in
the eigenbasis of σ̂ x leads to four possible outcomes, listed
in the first column of Table I. By starting with the eigenstate
corresponding to the three-atom perturbed graph state it is
straightforward to show that a partial trace of the projective
measurements performed on the first two atoms leads to a

FIG. 13. The same as Fig. 12 but for the three-atom chain-graph
state using the pulse sequence shown in Fig. 10 with 1000 shots.

FIG. 14. The symbols plot the same as Fig. 8. The solid lines are
single parameter fits with Eq. (E1) to obtain ε.

rotated output state at atom 3 only if outcomes 01 or 00 are
obtained on the first two atoms. Outcomes 10 and 11 have no
impact. The second column in Table I lists the effective oper-
ation enacted on |+3〉 by the measurement process. The data
shown in Fig. 7 only shows results where the first two atoms
have outcomes 01 or 00. This choice has the effect of rotating
the state of the third atom for use as an input state to the re-
maining part of the graph, where we then use the conventional
cluster state byproduct operators, (σ̂ z )s3+s5+..(σ̂ x )s4+s6+.., for
postprocessing.

APPENDIX E: TRAJECTORY MODEL FOR
TELEPORTATION FIDELITY SCALING

In this section we consider an alternative fidelity model to
fit teleportation scaling data discussed in Sec. III C. We rely
on a quantum trajectory model [41] to study the impact of
noise on the scaling of fidelity of the quantum state teleported
along the chain graph. We define the fidelity FN as the overlap
of the initial state with the output state. As measurements
move the initial state along the chain graph, noise perturbs the
state. Each step can be modeled as a move along a trajectory
randomized by noise. The resulting teleportation fidelity along
an N atom chain graph, assuming amplitude damping noise,
is given by [41]

FN = 1
2 (1 + e−εN ), (E1)

where ε is the probability that the state of a single atom
decays. Note that for ε = εL, FN and Pe(N/2) both become
1 − εN/2 + O(ε2) for low error probability.

Figure 14 plots the same as Fig. 8 but using a standard fit
with Eq. (E1). Here, we see that the extracted error probability
for the corrected data, ε = 0.12(1), is near the value shown in
Fig. 8, εL = 0.090(9). The comparison in this section shows
that exponential decay fidelities based on either dominate
measurement errors or amplitude damping errors yield similar
scaling parametrizations.
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