
PHYSICAL REVIEW A 111, 022421 (2025)

Noise-resilient and resource-efficient hybrid algorithm for robust quantum gap estimation
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We present a hybrid quantum algorithm for estimating gaps in many-body energy spectra, supported by
an analytic proof of its inherent resilience to state preparation and measurement errors, as well as midcircuit
multiqubit depolarizing noise. Our analysis extends to a broader class of Markovian noise, employing error
mitigation strategies that optimize the utilization of quantum resources. By integrating trial-state optimization
and classical signal processing into the algorithm, we amplify the signal peak corresponding to the exact target
gap beyond the error threshold, thereby significantly reducing gap estimate errors. The algorithm’s robustness
is demonstrated through noisy simulations on the Qiskit Aer simulator and demonstrations on IBM Quantum
processors. These results underscore the potential to enable accurate quantum simulations on near-term noisy
quantum devices without resource-intensive error correction.
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I. INTRODUCTION

Quantum simulation is widely regarded as one of the
most promising applications of quantum computing. The
exponential scaling of Hilbert space with system size ren-
ders simulating many-body models on classical computers
intractable beyond limited system sizes. Quantum-phase-
estimation (QPE) algorithms [1–4] enable quantum computers
to estimate important physical quantities in quantum many-
body models, such as energy eigenvalues [4–11] and gaps
[12–16]. In this context, quantum computers are believed
to offer two distinct advantages over classical counterparts.
Along with their well-known advantages in computational
time and circuit depth, quantum computers offer a signifi-
cant memory advantage by inherently encoding exponentially
large Hilbert spaces within their hardware, effectively ad-
dressing the memory wall problem associated with classical
random-access memory [17].

A primary goal of many-body quantum simulation is
determining low-energy eigenstates which have widespread
practical values in condensed-matter physics [18–20], quan-
tum chemistry [21–25], and materials science [26] due to the
relevance of a ground state in determining material proper-
ties, reaction rates, and emergence of exotic quantum phases
such as superconductors. In general, preparing a many-body
ground state on a quantum computer is an NP-hard problem
for classical Hamiltonians [27] and a QMA-hard problem for
general quantum Hamiltonians [28–30]. Moreover, the choice
of initial states significantly impacts the performance of quan-
tum simulation algorithms and must be carefully considered
when benchmarking these algorithms.

Currently available quantum computers are noisy and lim-
ited in both qubit counts (circuit width) and gate operations
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(circuit depth) which pose significant challenges for con-
clusive demonstrations of quantum advantage in quantum
simulation [31–35]. The circuit width and depth required
for accurate phase estimation can be effectively reduced by
employing ancilla-free variational algorithms [36–39]. In cer-
tain tasks, such as quantum compiling, hybrid variational
algorithms have demonstrated resilience to noise, with opti-
mal variational parameters remaining largely unaffected [40].
These approaches, however, offer only biased solution esti-
mates based on the variational theorem and are not inherently
guaranteed to tolerate noise [41]. For unbiased (exact) sim-
ulation, certain algorithms, such as robust phase estimation
[42] and quantum complex exponential least squares [10,11],
have demonstrated numerical robustness against specific types
of errors [15,43,44]. Moreover, a recent study demonstrated
that once a good approximation to a quantum state in the
low-energy Hilbert space is identified, Hamiltonian simula-
tion remains in the same subspace even in the presence of
noise [45].

Another promising avenue for reducing circuit width and
depth is the use of hybrid quantum algorithms in conjunc-
tion with classical postprocessing [6,8,16,46,47]. In our prior
work [48], we introduced a hybrid quantum-gap-estimation
(QGE) algorithm that integrates quantum time evolution with
classical signal processing to estimate the gaps in many-body
energy spectra within a tolerance. In this approach, an offline
time series is constructed using a noiseless ancilla-free quan-
tum circuit and filtered to achieve an exponential reduction
in circuit depth, albeit at the cost of spectral resolution. The
filter’s operating range is determined by mapping the orien-
tations of the input qubits. This approach is highly effective
for models with large spectral gaps but may face challenges
in efficiently resolving small gaps in, e.g., models of spin
glasses [49].

In this paper, we uniquely integrate trial-state optimization
and classical signal processing into the hybrid QGE algorithm
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FIG. 1. Schematic illustrating the key features of the spectral
function A, as a function of frequency ω, typically generated by
the hybrid QGE algorithm. Characteristics include signal peaks (set
against a flat baseline) corresponding to the exact gaps �exact,i (i =
1, 2). When the number of Trotter steps M is below the cutoff
Mc, additional satellite peaks appear due to Trotter truncation error.
The blue curve represents the noiseless result, while the green and
red curves depict global suppression under circuit-level depolariz-
ing noise with noise probability p (defined as the joint probability
of noise affecting individual circuits) below and above the error
threshold pc. The horizontal dotted line denotes the device-specific
detection threshold Ath, influenced by factors such as the measure-
ment shot count in the quantum process and machine precision in the
postprocess.

to enhance performance on noisy quantum computers while
optimizing the utilization of quantum resources. A central as-
pect of this work is demonstrating that the algorithm achieves
a high level of noise resilience—either inherently or through
error mitigation strategies—enabling precise gap estimation
for quantum many-body models. This is accomplished by
iteratively updating the trial states to improve error thresh-
olds. Figure 1 illustrates a typical output from our algorithm,
influenced by midcircuit multiqubit depolarizing noise. The
output presents a spectral function with signal peaks modeled
as Lorentzian shapes at the corresponding energy gaps and
smaller satellite peaks exhibiting inverse Lorentzian shapes in
the presence of Trotter truncation error. Depolarizing noise
uniformly suppresses both the signal and satellite peaks. The
detection threshold (indicated by the horizontal dotted line) is
primarily determined by the measurement shot count during
the quantum process. To ensure that a signal peak remains
detectable above this threshold, a sufficient number of shots
must be taken, or the noise probability must be low enough to
capture the true distribution, rather than being dominated by
the maximally mixed state caused by depolarizing noise.

Numerical verification of our results is performed by run-
ning the algorithm on a minimal spin model using the Qiskit
Aer simulator with an integrated noise model. Additionally,
demonstrations on IBM Quantum processors, subject to re-
alistic noise sources, offer further validation of our findings.
This work paves the way for substantial scaling of systems,
enabling unbiased quantum simulations of systems that ex-
ceed classical memory limitations on noisy intermediate-scale
quantum computers [50]. Establishing a robust foundation for
demonstrating quantum advantage in quantum simulation, it
sets the stage for transformative advancements in the field.

This paper is organized as follows: In Sec. II, we present an
overview of the key components of the hybrid QGE algorithm,
along with postprocessing techniques. In Sec. III, we establish

the theoretical basis for the algorithm’s resilience to various
types of noise and explore error mitigation strategies utiliz-
ing classical signal processing. In Sec. IV, we numerically
validate our findings through simulations of a minimal spin
model, comparing the results across different approaches. We
conclude in Sec. V.

II. HYBRID QUANTUM-GAP-ESTIMATION ALGORITHM

In this section, we present the hybrid QGE algorithm with
a loop for trial-state optimization, as illustrated in Fig. 2(a).
Further details are provided below.

A. Quantum process

In the quantum process [Fig. 2(b)], each run is iterated
over discrete time tn = nδt , where n ∈ [0, L − 1], for Fourier
sampling in the postprocess. For a single run, N qubits are
prepared or reset in the quantum registers, (q0, q1, . . . , qN−1),
and rotated by the unitary UI (�θ ) to create a trial state with
adjustable parameters �θ for optimization. Next, the trial state
is time evolved by the first-order Trotterized unitary (higher
orders can also be applied) [51,52]:

UM (tn) = (e−iH1tn/Me−iH2tn/M )M, (1)

with Trotter depth M, which is a compact implementation of
the exact time propagator e−iHtn for a quantum many-body
model H = H1 + H2 with [H1, H2] �= 0. Last, the output state
is rotated back to compensate using UI (�θ ) and measured on

FIG. 2. (a) Flowchart for the QGE algorithm with a loop for
trial-state optimization. (b) Quantum circuit for (i) initialization of
input registers to a trial state, (ii) (Trotterized) time evolution, (iii)
measurement. Here, unitary gates are influenced by noise. (iv) A time
series of propagators is constructed from measurement outcomes and
postprocessed for (v) time-series filtering followed by a FFT, (vi) gap
estimation from baseline-corrected signals, and (vii) trial-state opti-
mization for enhancing signals. The loop iterates until convergence
criteria are met.
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the same circuit to return the diagonal components of the time
propagator to the classical register, c. The z-basis measure-
ment outcomes are represented by:

Pn = Tr[ρ0ρM,�θ (tn)], (2)

where the density matrix is defined as ρ0 = ∏N−1
j=0 |0〉z

j〈0|zj for
the input registers and

ρM,�θ (tn) = [UI (�θ )]†UM (tn)UI (�θ )ρ0[UI (�θ )]†

× [UM (tn)]†UI (�θ ), (3)

for the output state, respectively. Our measurement protocol is
similar to ancilla-free variational circuits [53] but differs from
the original QPE circuits [1–3] and Hadamard test circuits [4],
both of which use controlled measurements via ancilla qubits.

B. Postprocess

The output states are postprocessed to construct time-series
data, {(tn,Pn)}L−1

n=0 . The time series is filtered by the function
Fn = F (tn), satisfying F (tn → ∞) → 0, to improve the per-
formance of Fourier sampling and Trotterization [48], and fed
into the classical subroutine for a fast Fourier transform (FFT)
[54] that reduces the computational complexity of the discrete
Fourier transform (DFT), O(L2) to O(L log L). In our context,
FFT is promoted from DFT yielding a spectral function:

A(ωm) = δt

2π
Re

∑
s=±

L−1∑
n=0

eiωmtsnFnPsn, (4)

where we define discrete frequencies ωm = mδω, conjugate
to tn, in units of δt and δω satisfying δωδt = 2π/L, m, n ∈
[0, L − 1], and s counts the contributions from causal and
anticausal processes. Hereafter, we drop discrete indices from
tn and ωm for convenience.

We can interpret Eq. (4) in the continuum limit (L → ∞).
It is convenient to recast Eq. (4) in the convolution form:

A(ω) =
∫ ∞

−∞
dω̃F̃ (ω̃)A0(ω − ω̃), (5)

A0(ω) = 1

2π

∫ ∞

−∞
dt cos(ωt )P (t ), (6)

where the filter is defined in Fourier space: F̃ (ω) =
1
π

∫ ∞
0 dt cos(ωt )F (t ). In this work, we consider two specific

examples with a Lorentzian line shape F̃L(ω) = 1
π

η

ω2+η2 for

FL(t ) = e−ηt and a Gaussian line shape F̃G(ω) = 1√
2πσ

e− ω2

2σ2

for FG(t ) = e−σ 2t2/2, where 2η defines the full width at
half maximum of the line shape and has a connection
to σ : η = σ

√
2 ln 2. To proceed, we, for clarity, ignore

Trotter truncation error until later to approximate UM (t ) ≈
e−iHt and expand the input wave function in terms of
eigenstates: |ψI〉 = UI (�θ )

∏N−1
j=0 |0〉z

j = ∑
u cu|u〉 with |u〉 sat-

isfying H |u〉 = Eu|u〉. Substituting Eqs. (2) and (3) into
Eqs. (5) and (6), we find that the spectral function can be
expressed in Lehmann representation:

A(ω) =
∑
u,u′

wuu′F̃ (ω − �uu′ ), (7)

yielding multiple signal peaks returning exact gaps �uu′ =
Eu − Eu′ at their centers in association with the spectral weight
wuu′ = |cu|2|cu′ |2. Crucially, exact gaps are returned for any
initial state with nonzero overlap with the exact state of inter-
est, consistent with the Gell-Mann and Low theorem [55].

Equation (4) and its resulting expression, Eq. (7), establish
a mapping between the energy gaps in H and the frequencies
of the time propagator Pn. To target a specific gap, an initial
estimate can be obtained using classical methods, with the
actual gap determined by locating the signal peak closest to
this estimate. Although time-series filtering offers advantages,
it can introduce errors in gap estimation by distorting the base-
line of the signal peak. To address this, baseline correction can
be applied using the fitting methods discussed later.

Finally, the trial-state parameters are updated by a classical
optimizer to enhance the target signal peak. This approach
is distinct from ground-state energy minimization typically
employed in variational algorithms. The optimization process
proceeds until it meets convergence criteria within a tolerance.

III. NOISE RESILIENCE

In this section, we analyze the noise resilience of the hy-
brid QGE algorithm under state preparation and measurement
(SPAM) errors and midcircuit noise. We begin by proving
the resilience to SPAM errors, then extend the analysis to a
depolarizing-only noise model, and finally broaden the scope
to include Markovian noise, accounting for nondepolarizing
noise. The key findings are summarized in Fig. 3(a).

A. SPAM errors

We first prove that our algorithm is resilient to SPAM
errors. Starting with the output state, Eq. (3), in the absence
of errors, we can model state preparation errors by replacing
the unitary UI (�θ ) with an alternative form U ′

I (�θ ′). Similarly,

FIG. 3. (a) Block diagram illustrating the noise types to which
each component of a quantum circuit [Fig. 2(b)] is resilient. The
orange shaded area represents resilience to SPAM errors (as analyt-
ically demonstrated). The purple shaded area indicates resilience to
depolarizing noise (as analytically demonstrated) or Markovian noise
(as supported by numerical evidence). The category of Markovian
noise encompasses all possible types of multiqubit depolarizing,
bit/phase flips, as well as decoherence and dephasing channels.
(b) Block diagram of a general noisy Trotterized circuit with the
binary sequence of unitary/noise maps, (Uν, �ν ) for ν ∈ [1, D].
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measurement errors can be accounted by replacing the in-
verse unitary [UI (�θ )]†, applied at the end of the circuit, with
[U ′′

I (�θ ′′)]†. As a result, the output state affected by SPAM
errors reads as:

ρ̃M,�θ ′,�θ ′′ (t ) = [U ′′
I (�θ ′′)]†UM (t )U ′

I (�θ ′)ρ0[U ′
I (�θ ′)]†

× [UM (t )]†U ′′
I (�θ ′′). (8)

Following the approach used to derive Eq. (7), we per-
form an eigenstate expansion: U ′

I (�θ ′)
∏N−1

j=0 |0〉z
j = ∑

u c′
u|u〉

and U ′′
I (�θ ′′)

∏N−1
j=0 |0〉z

j = ∑
u c′′

u |u〉, where c′
u �= c′′

u in general.
Plugging Eq. (8) into Eq. (4), we find the noisy spectral
function:

ÃSPAM(ω) =
∑
u,u′

w̃uu′F̃ (ω − �uu′ ), (9)

where the spectral weight is modified as w̃uu′ = Re
[(c′′

u )∗c′
u (c′

u′ )∗c′′
u′ ].

We conclude that the sole impact of SPAM errors in Eq. (9)
is a modification of the spectral weights, while the peak loca-
tions remain unchanged. SPAM errors alone do not produce
erroneous satellite peaks or cause shifts in signal peaks (as
long as they are well separated, typically by more than 2η).
This confirms that the hybrid QGE algorithm is inherently re-
silient to SPAM errors. Moreover, any peak suppression due to
SPAM errors can be mitigated through trial-state optimization,
as discussed in Sec. IV.

B. Depolarizing noise

Next, we prove that the hybrid QGE algorithm returns
exact energy gaps in the presence of multiqubit depolarizing
noise. The proof relies on the fact that e−iHt applied to an
arbitrary initial state oscillates in time at frequencies match-
ing the exact gaps of H [48]. To begin with, we consider a full
circuit-level noise model that allows arbitrary types of noise
to arise at any stage in the quantum processes [see Fig. 3(b)].
Ignoring temporal correlations (memory) between processes

FIG. 4. (a) Branching diagram showing all contributions to the
noisy output density matrix ρ̃D arising from �ν for the midcircuit
multiqubit depolarizing channel [Eq. (11)]. In each block, corre-
sponding to Fig. 3(b), the black arrow indicates unitary evolution,
and the blue (or red) arrow describes an idle process (or nonunitary
evolution) with the probability p(ν )

0 (or p(ν )
1 ). The associated weights

for available branches are listed in the right panel. (b) Branching
diagram for the equivalent block diagram to Fig. 3(b) with the noise
map �gd for global depolarizing channel [Eq. (12)].

at different stages, thus maintaining the Markovianity of the
processes [56], the noisy output state of a quantum circuit with
total depth D can be described by the density matrix:

ρ̃D = (�D ◦ UD ◦ · · · ◦ �2 ◦ U2 ◦ �1 ◦ U1)(ρ0), (10)

where, for ν ∈ [1, D], the unitary map Uν evolves ρ to UνρU †
ν

with the unitary Uν for either initialization or time evolution,
and the (completely positive trace preserving) noise map �ν

describes the nonunitary evolution of a quantum state by a
certain type of noise channel.

For the N-qubit depolarizing channel, a compact analytic
result can be derived. Since all branches of quantum processes
cooperate to form a maximally mixed state [57], the noise map
is significantly simplified into:

�ν (ρ) = p(ν)
0 


(ν)
0 (ρ) + p(ν)

1 

(ν)
1 (ρ), (11)

where we define 

(ν)
0 (ρ) = ρ, 


(ν)
1 (ρ) = Id/d , Id =

diag(1, 1, . . . , 1) of size d = 2N , and p(ν)
1 is the depolarizing

probability at stage ν, which satisfies p(ν)
0 + p(ν)

1 = 1.
Leveraging the structure of Eq. (11), we can count all
contributions to Eq. (10) with the associated weights
[Fig. 4(a)]. We then recast Eq. (10) into the equivalent
form [Fig. 4(b)]:

ρ̃D = (�gd ◦ UD ◦ · · · ◦ U2 ◦ U1)(ρ0)

= (1 − pgd )(UD ◦ · · · ◦ U2 ◦ U1)(ρ0) + pgdId/d, (12)

where �gd defines the noise map for global depolarizing chan-
nel with the probability pgd = 1 − ∏D

ν=1(1 − p(ν)
1 ). For the

specific setup in Fig. 2(b), we can rearrange: UD · · ·U2U1 =
[UI (�θ )]†UM (t )UI (�θ ). Note that Eq. (12) has been consid-
ered in various contexts including robust data encoding for
quantum classifiers [58], error mitigation strategies [59,60],
and Grover’s algorithm [61]. Plugging Eq. (12) in Eq. (4)
along with Eq. (2) and expanding UM (t ) to first order in M−1,
we derive the noisy spectral function:

Ãgd(ω) = (1 − pgd )[A(ω) + M−1δA(ω) + O(M−2)]

+ pgdF̃ (ω)/d. (13)

In the noiseless part, the leading term A [Eq. (7)] represents
the signal peaks, while the subleading term M−1δA (see
Appendix A), arising from Trotter truncation error, accounts
for the satellite peaks. The last term reflects the impact of the
global depolarizing channel.

Equation (13) presents one of the main results in this paper
and demonstrates the algorithm’s inherent resilience to depo-
larizing noise. We note several important observations.

1. Background formation

The last term in Eq. (13), along with the term for u = u′
in Eq. (7), introduces a redundant peak at ω = 0, which de-
fines the lower bound of the target window for QGE. This
peak serves as a background, characterized by a broadening
parameter η and a scaled height of 1 − (1 − 1/d )pgd.

2. Baseline correction

Both the signal and satellite peaks are exponentially sup-
pressed as D increases such that 1 − pgd ≈ e−Dpdp for pdp =

022421-4
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p(ν)
1 � 1. Assuming that Dpdp is bounded, this issue can be

addressed by correcting the baseline distorted by the back-
ground using standard fitting methods. Here Lorentzian or
Gaussian fitting works if the redundant peak is well separated
from surrounding peaks, typically by more than 2η.

3. Trotter depth’s robustness to depolarizing noise

The baseline-corrected signal peaks yield exact gaps at
their centers if the satellite peaks in δA are sufficiently sup-
pressed for M � Mc. The Trotter depth cutoff, Mc, for a fixed
tolerance εT,c, is given by [48]:

Mc = ||[H1, H2]||
εT,c

t2F (t ), (14)

where Mc improves exponentially with increasing η, albeit at
the expense of reduced spectral resolution. A key finding is
that Mc remains unaffected by pgd due to the commutativity
of the Hamiltonian with the depolarizing noise map �gd.

4. Targeting a signal peak

To focus on a specific gap within the target window, it is
crucial to distinguish the target signal peak from surrounding
peaks. Different configurations of UI (�θ ) can amplify specific
peak heights, as represented by cu = 〈u|UI (�θ )

∏N−1
j=0 |0〉z

j in
Eq. (7). To demonstrate the advantage of quantum simulation
using our algorithm, trial-state optimization must enhance the
signal peak height, making it observable for circuit widths
(or qubit counts) that are otherwise infeasible for classical
machines due to memory constraints.

5. Practical relevance

Although our noise resilience argument focuses on depo-
larizing noise, it has significant practical relevance for several
reasons. First, the depolarizing-only noise model has been
experimentally validated for trapped-ion quantum computers,
indicating that depolarizing noise is a dominant error source in
these systems [62,63]. Second, other types of noise, including
coherent noise channels, can be converted into incoherent
depolarizing noise by applying random single-qubit gates, a
technique known as twirling [64–68].

C. Markovian noise

Until now, we have focused on SPAM errors and depo-
larizing noise to demonstrate the algorithm’s inherent noise
resilience and explored how to address other noise types
within the same framework. In fact, the noise resilience argu-
ment can be extended to include Markovian noise, accounting
for nondepolarizing noise, while it is generally challenging.
In our approach, we construct an equivalent noisy quantum
circuit [in the same spirit as Eq. (12)] and develop an error
mitigation method solely based on classical signal processing
techniques.

We start by considering a setup where all midcircuit layers
are subject to both depolarizing and nondepolarizing chan-
nels. In particular, for transmon-based quantum computers,
nondepolarizing channels include bit/phase flips during state
preparation and measurement, as well as decoherence and
dephasing caused by interactions with the environment [69].

It is convenient to introduce the general noise map describing
all types of Markovian noise [70]:

�ν (ρ) =
d+1∑
kν=0

p(ν)
kν



(ν)
kν

(ρ), (15)

where the maps for d + 2 branches (d = 2N ) are defined as



(ν)
0 (ρ) = ρ, and



(ν)
kν�1(ρ) = 1

d − 1

d−1∑
qν=1

K (ν)
kνqν

ρ
[
K (ν)

kνqν

]†
, (16)

with the (normalized) Kraus operators Kq =∑d−1
l=0 e2π iql/d |ψq〉〈ψq| built from the basis state {|ψq〉}

and p(ν)
kν

is the noise probability satisfying
∑d+1

kν=0 p(ν)
kν

= 1. It
appears that addressing Eq. (10) becomes challenging when
[Uν,�ν ′ ] �= 0.

To properly address the issue of noncommuting maps,
we tackle the problem by constructing an equivalent noisy
quantum circuit to Eq. (10), i.e., by successively swapping
Uν and �ν ′ via Pauli propagation and pushing all �ν’s to the
circuit end (see Appendix B). Plugging the result in Eq. (4), in
conjuction with Eq. (2), and expanding UM (t ) to the first order
in M−1, we can derive the noisy spectral function:

Ãgp(ω) = p�0[A(ω) + M−1δA(ω) + O(M−2)]

+
∑
�k �=�0

p�k
[
Ã(�k)

gp (ω) + M−1δÃ(�k)
gp (ω) + O(M−2)

]
,

(17)

where the noiseless terms, A and δA, are defined in the
same ways as in Eq. (13), but with the adjusted probability
p�0 = ∏D

ν=1 p(ν)
0 , and Ã(�k)

gp is the leading correction term by

noise channels with the probability p�k = ∏D
ν=1 p(ν)

kν
, satisfying∑

�k p�k = 1, for the choice of �k = (k1, k2, . . . , kD):

Ã(�k)
gp (ω) =

∑
u,u′

∑
r1,r′

1

∑
r2,r′

2

w̃
(�k)
uu′r1r′

1r2r′
2
F̃

(
ω − �uu′ − δ�r1r′

1r2r′
2

)
,

(18)

describing satellite peaks with centers shifted from �uu′ by

δ�r1r′
1r2r′

2
= 2M−1[(r1 − r′

1)h1 + (r2 − r′
2)h2], (19)

and the associated spectral weights:

w̃
(�k)
uu′r1r′

1r2r′
2
= 1

(d − 1)D

∑
�q

Re
{[

c̃(�k �q)
ur1r2

]∗
cuc∗

u′ c̃
(�k �q)
u′r′

1r′
2

}
. (20)

In the above expression, c̃(�k �q)
ur1r2 is defined in Appendix C,

and r1,2, r′
1,2 denote the Fourier modes in the double se-

ries expansion of K̃ (t ). The subleading term M−1δÃ(�k)
gp (see

Appendix C) describes Trotter truncation error for each choice
of noise channel �k �= �0.

Equations (17)–(20) provide a foundation for further ex-
ploration of noise resilience in a more general setting. In
contrast to the depolarizing case, the corrections by non-
depolarizing noise are not simply formulated, making it
challenging to derive insights from the studies on individual
noise channels. In our approach, we focus on Eq. (18), along
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with Eqs. (19) and (20), which captures the leading behav-
ior of noise-induced satellite peaks. Several key observations
emerge as follows.

1. Background formation

In the nondepolarizing case, a complex interplay ex-
ists between the satellite peak shift δ� and Trotter depth
M. The M−1 dependence in Eq. (19) indicates that noise-
induced satellite peaks are distributed across the frequency
domain with relatively small peak-to-peak separations for
M � Mc. For max{|h1|, |h2|} � Mη, however, individual
satellite peaks lose their resolution, merging into a slowly
varying background. For each choice of �k, this noise-induced
background serves as a potential error source in gap esti-
mation, particularly when it varies rapidly around the target
signal peak, causing drift from the exact gap.

2. Cumulative effect of noise channels

Background formation can be fully characterized by ac-
counting for all noise channels. The height of each satellite
peak is suppressed by p�k , which becomes exponentially small
for large M, assuming the probability of each individual noise
channel, pkν

, is low. This presents a challenge since the di-
minishing height of individual peaks could be difficult to
track. However, the cumulative effect can still become sig-
nificant due to the large number of terms in the summation
(∼2ND � M) in Eq. (17). Consequently, it is reasonable to
establish a threshold value for p�k , above which the cumula-

tive contribution of
∑

�k �=�0 p�kÃ(�k)
gp (ω) leads to a noise-induced

background that overwhelms the signal peaks arising from
p�0A(ω). The specific threshold value depends on the structure
of the quantum circuit, the types of noise channels acting on
it, and the degree to which the noise maps commute with the
unitary maps comprising the circuit.

3. Breakdown of positive definiteness

Unlike the noiseless case [Eq. (7)], the noise correction
[Eq. (18)] is not guaranteed to be positive definite. This occurs
because the spectral weight [Eq. (20)] is not bounded below
by zero, highlighting the impact of nondepolarizing noise.
Additionally, combinations of r1,2 and r′

1,2 that lead to large
shifts in Eq. (19) are generally disfavored, as peaks centered
at higher frequencies have diminishing spectral weights in
finite-size systems.

4. Interplay with Trotter truncation error

The subleading term, M−1δÃ(�k)
gp , arises from Trotter trun-

cation error under nondepolarizing noise and is suppressed
for M � Mc relative to the leading term with the same in-
dex �k. This suppression mirrors the behavior observed in the
noiseless case.

5. Baseline correction

To restore signal peaks to original locations and improve
the algorithm’s robustness to noise, effective background re-
moval is crucial. Building on advancements in classical data
processing for spectroscopy [71], we propose an error mit-

igation strategy that leverages exclusively classical signal
processing techniques. Notably, this approach avoids any ad-
ditional overhead associated with qubits or gate operations,
offering a distinct advantage over conventional methods [72].
Specifically, we choose the asymmetric least-squares (ALS)
fitting method for baseline correction of noisy spectral data
[73], along with other variations [74–77]. See Appendix D for
further details.

IV. NUMERICAL RESULTS

In this section, we present numerical demonstrations of the
algorithm’s procedure, along with its robustness to noise and
scalability, using a minimal spin model.

A. Simulation setup

For clarity in demonstrating our algorithm, we choose the
transverse-field Ising model (TFIM) in one dimension with
open boundaries:

H1 = −J
N−2∑
j=0

σ z
j σ

z
j+1, H2 = −h

N−1∑
j=0

σ x
j , (21)

where (σ x, σ y, σ z ) are the Pauli matrices, j indexes spins at
sites j ∈ [0, N − 1], J is the Ising coupling, and h is the mag-
netic field. For quantum circuit implementation [Fig. 2(b)],
the Trotterized time-evolution unitary is specified by:

UM (t ) =
[

N−2∏
j=0

Rzz
j, j+1

(−2Jt

M

) N−1∏
j′=0

Rx
j′

(−2ht

M

)]M

, (22)

where we define one and two-qubit rotations as R
α j

j (φ) =
exp(−i φ

2 σ
α j

j ), R
α jα j+1

j, j+1 (φ) = exp(−i φ

2 σ
α j

j σ
α j+1

j+1 ), respectively.
Meanwhile, the trial-state unitary is chosen in the form:

UI (�θ ) =
N−1∏
j=0

Ry
j (θ ), (23)

with a single parameter θ . Our choice of UI (�θ ) scales linearly
with N , unlike typical variational ansatzes [53], as its role is
restricted to signal enhancement via optimization.

In our simulations, the primary goal is to estimate the
first gap �exact ≡ E2 − E1 in the quantum paramagnetic
regime (J < h) of a small TFIM (N < 10) (while other
gaps can be estimated in a similar way), demonstrating
the algorithm’s procedure and noise resilience. The simula-
tions are conducted using different approaches: Qiskit Aer
simulator without/with a noise model, calibrated from the
IBM Quantum backend, ibm_sherbrooke, and real-device
demonstrations on the same backend. See Appendix E
for the Qiskit code overview and Appendix F for the
backend calibration data. All simulation results in this sec-
tion and Appendix G are generated using the Lorentzian
filter FL, which can be compared with the Gaussian filter FG

(see Appendix H).

B. Algorithm’s robustness to noise

The spectral function, which is central to our simulations,
reveals multiple signal peaks returning gaps at their centers.
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FIG. 5. Simulation results demonstrating the trial-state optimization process in QGE using different approaches: (a) Qiskit Aer simulator
without a noise model, (b) Qiskit Aer simulator with a noise model calibrated from the IBM Quantum backend, ibm_sherbrooke, and (c) real-
device demonstration on the same backend. Top panels: Spectral function A versus ω for the TFIM of N = 5, J/h = 0.4 and the filter F = FL

with η/h = 0.3, shown at the first (dashed curve), intermediate (dot-dashed curve), and last (solid curve) iteration steps. The bare gap �bare

is estimated by locating the signal peak closest to the initial gap �0 (black dotted vertical line). By setting the target window �0 − η � ω �
�0 + η (shaded in gray) and correcting the baseline of the spectral function (see Appendix G for technical details), the corrected gap �corr is
estimated in the same way as �bare. Middle and bottom panels: Progress of the input orientation (red filled circles), the cost function (defined
as the normalized inverse height of the target signal peak at ω = �corr) (green filled squares), and the gap estimate error |� − �exact|/�exact for
� = �bare (blue open circles) and � = �corr (cross markers), respectively, as a function of the iteration step. Here a variant of Brent’s method
is employed for single-variable bounded optimization with tolerance 10−6. The iterations are terminated early for demonstration purposes. In
all simulations, 1024 measurement shots are commonly used with the parameters: M = 15, δω = η/4, and L = 2�5h/δω�, where �x� is the
ceiling function of x.

To extract the information on a target gap from the spectral
function, a systematic procedure is required, as outlined in
Sec. II B. The top panels in Fig. 5 illustrate the spectral func-
tion’s line shape for N = 5 and J/h = 0.4, along with selected
values of θ corresponding to intermediate steps of trial-state
optimization. For η/h = 0.3, a small Trotter depth of M = 15
is sufficient [48]. To estimate the first gap, we start with an
initial guess, �0/h = 2[1 − (1 − 1/N )J/h], derived by per-
turbation theory for a quantum paramagnet [78]. Ideally, the
bare gap �bare is estimated by locating the signal peak closest
to �0. In practice, however, as the target peak shifts from the
exact gap due to baseline distortion from various error sources
discussed in Sec. III, a robust strategy is needed to accu-
rately restore the peak location. By setting the target window
�0 − η � ω � �0 + η, baseline distortion can be corrected
using classical signal processing techniques. As before, the
corrected gap �corr is estimated by locating the signal peak
closest to �0. See Appendix G for further technical details
and extended data.

If θ is suboptimal for any reason, then the effectiveness of
the algorithm may be compromised, potentially causing the
target signal peak to fall below the device-specific detection
threshold. To improve the algorithm’s robustness, θ can be uti-
lized as an optimization variable for the trial state. Following
baseline correction, we define the cost function as the inverse

height of the target signal peak, which is minimized through
trial-state optimization. The middle and bottom panels illus-
trate the progress of θ , the cost function, and the gap estimate
error |� − �exact|/�exact for � ∈ {�bare,�corr} as a function
of the iteration step. In the noiseless results, we observe that
as the iterations progress, the target signal peak converges
more closely to ω = �exact, while its relative height increases
compared to the redundant peak at ω = 0. Furthermore, base-
line correction reduces the gap estimate error to below 1%.
In both the noisy simulation and real-device demonstration,
trial-state optimization proves highly effective. Remarkably,
baseline correction allows us to achieve a gap estimate error
comparable to the noiseless case, highlighting the algorithm’s
robustness across various noise channels.

C. Algorithm’s robustness to scalability

Our numerical simulations thus far have focused on a spe-
cific parameter setting with a small circuit depth M = 15 and
width N = 5. To further benchmark the algorithm, it is crucial
to investigate its robustness as the system scales. Here we
focus on data for real-device demonstrations (see Appendix G
for extended data). Figure 6 illustrates how the gap estimate
error |� − �exact|/�exact evolves with increasing M. Each
panel corresponds to distinct parameter setting for N and J/h.
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FIG. 6. Demonstrating the scalability and robustness of the hybrid QGE algorithm. Each panel displays the gap estimate error |� −
�exact| /�exact as a function of the Trotter circuit depth M for different parameter settings: (N, J/h) = (a) (5,0.4), (b) (7,0.5), and (c) (9,0.6).
Red symbols represent real-device demonstrations for � ∈ {�bare, �corr}, while the blue plus marker denotes the reference data obtained from
noiseless simulations, as specified in the legend. Here the vertical axis uses a logarithmic scale, the input orientation is set to the unoptimized
value θ = 0.3π , and other parameter settings are the same as in Fig. 5.

The red open circle represents the gap estimate error for
� = �bare (before baseline correction), highlighting that the
algorithm struggles to converge as M and N increase under
realistic noise. In the Markovian noise model, which includes
nondepolarizing channels [Eq. (15)], this behavior is primarily
attributed to the term

∑
�k �=�0 p�kÃ(�k)

gp in Eq. (17), along with
its subleading corrections. As discussed in Sec. III C, this
term introduces a background around the target signal peak,
causing the peak to drift away from its exact location. In-
creasing M exacerbates this issue by significantly amplifying
the background [Eq. (19)], which is generally not positive
definite [Eq. (20)]. Furthermore, other factors may come into
play beyond the assumption of Markovianity [56], potentially
invalidating Eq. (10).

The red cross marker highlights the algorithm’s success
after baseline correction, demonstrating a significant reduc-
tion in the gap estimate error to below 1%, consistent with the
reference data from noiseless simulations (blue plus marker).
A few exceptions [red cross markers with errors around 10%
in Fig. 6(c)] can be further improved through trial-state opti-
mization. It is noticeable that residual errors below 1% persist
due to the assumptions of ALS fitting (see Appendix D).
While advanced ALS fitting methods [74–77] or alternative
signal processing techniques [71] may potentially eliminate
these errors, their resolution is deferred to future work.
These findings highlight the potential of our algorithm to
contribute to quantum advantage as the system scales, even
without relying on active error corrections [79].

V. DISCUSSION

We developed a hybrid QGE algorithm that uniquely com-
bines iterative trial-state optimization and classical signal
processing techniques for time-series filtering and baseline
correction of spectral data, enabling unbiased gap estimates
for many-body quantum systems. We analytically demon-
strated that the algorithm is inherently resilient to SPAM
errors and depolarizing noise. Without incurring additional
quantum resources for error mitigation or correction, we
provided numerical evidence of its robustness to arbitrary
Markovian noise channels, through noisy simulations using
the Qiskit Aer simulator and demonstrations on IBM Quan-

tum processors. Our numerical results for a minimal spin
model showed that, even in the presence of noise, trial-state
optimization and classical signal processing significantly en-
hance the signal peak at the target gap, thereby effectively
reducing the gap estimate error.

These results pave the way for numerous future research
directions and applications. For various quantum devices and
many-body models of interest, our algorithm can be tested
to determine the maximally accessible system size Nc, and
suggest strategies for scaling to larger Nc values without ac-
tive error correction. Further analysis could investigate the
effects of realistic non-Markovian noise with memory [56].
Furthermore, the noise-resilient framework of our algorithm
could be extended to estimate additional correlation functions
associated with key physical observables beyond energy gaps
and to support other types of hybrid quantum algorithms in-
corporating time-series analogs. While this is straightforward
for ancilla-free circuits, further investigation is required for
cases involving controlled operations with ancilla qubits.

ACKNOWLEDGMENTS

We thank A. F. Kemper, P. Roushan, P. Alsing, S. Patel, and
D. Koch for their insightful discussions. This research was
supported by the Army Research Office (ARO) under Grant
No. W911NF2210247, and the Air Force Office of Scientific
Research (AFOSR) under Grants No. FA2386-21-1-4081, No.
FA9550-19-1-0272, and No. FA9550-23-1-0034. The authors
acknowledge the Air Force Research Laboratory (AFRL) for
support in providing access to IBM Quantum resources. The
views expressed are those of the authors and do not reflect the
official policy or position of IBM or the IBM Quantum team.

APPENDIX A: DERIVATION OF THE SUBLEADING
TERM IN EQ. (13)

In this Appendix, we derive the subleading term in
Eq. (13) from Eq. (12). We simplify Eq. (12) by rearrang-
ing UD · · ·U2 U1 = [UI (�θ )]†UM (t ) UI (�θ ) and using |ψI〉 =
UI (�θ )

∏N−1
j=0 |0〉z

j for the specific setup in Fig. 2(b). Plugging
the simplified form in Eq. (2), the time propagator takes the

022421-8



NOISE-RESILIENT AND RESOURCE-EFFICIENT HYBRID … PHYSICAL REVIEW A 111, 022421 (2025)

noisy form:

P̃gd = Tr[ρ0ρ̃D] = (1 − pgd )|〈ψI |UM (t )|ψI〉|2 + pgd

d
. (A1)

Notably, in Eq. (A1), Trotterization is entirely independent of
the correction due to depolarizing noise. Thus, we can take the
same approach as the noiseless case to expand the Trotterized
unitary [80]:

UM (t ) = e−iHt +
∫ t

0
dτe−iH (t−τ )R(τ ), (A2)

where R(t ) represents the remainder in the expansion:

R(t ) = − t

M
[H1, H2] + O(t2/M2). (A3)

Using the eigenstate expansion |ψI〉 = ∑
u cu|u〉 with |u〉 sat-

isfying H |u〉 = Eu|u〉, we find the expansion:

〈ψI |UM (t )|ψI〉 =
∑

u

|cu|2e−iEut

+ M−1
∑

u

∞∑
n=2

c̃∗
uncu(−iht )n + O(M−2),

(A4)

|〈ψI |UM (t )|ψI〉|2

=
∑
u,u′

|cu|2|cu′ |2e−i(Eu−Eu′ )t

+ 2M−1
∑
u,u′

∞∑
n=2

|cu|2Re[c̃u′nc∗
u′ (iht )ne−iEut ] + O(M−2),

(A5)

where we define c̃∗
un = 1

n! h
−n

∑
v c∗

vEn−2
v 〈v| [H1, H2] |u〉, with

the energy unit h ∈ {h1, h2} chosen for normalization. In the
derivation, we used the expansion ex = ∑∞

n=0 xn/n!, where
the n = 0, 1 terms cancel due to other contributions.

Following the same approach as in deriving Eq. (7), we
substitute Eqs. (A1) and (A5) into Eqs. (5) and (6) to derive
the noisy spectral function, as given in Eq. (13). In the noise-
less part, the leading term described by Eq. (7) is accompanied
by the subleading term defined as:

δA(ω) =
∑

u

∞∑
n=2

wun

∑
s=±

dnF̃ (ω − sEu)

d (sω/h)n
, (A6)

FIG. 7. The nth order derivative of the filter, dnF̃/dωn (n =
2, 3, 4, 5), as a function of frequency ω. Here F ∈ {FL,FG}, and
all curves are normalized for comparison.

along with the spectral weight wun = |cu|2
∑

u′ Re[c̃∗
u′ncu′ ]. In

the derivation, we used the integral formula:
∫

dt tneiωt =
2π indnδ(ω)/dωn, where δ(x) is the Dirac delta function. No-
tably, while the leading term [Eq. (7)] is positive definite, the
subleading term [Eq. (A6)] is not, as both wun and dnF̃/dωn

(n � 2) generally fail to meet this criterion (see Fig. 7). The
line shape for n = 2 was used to schematize the satellite peaks
in Fig. 1.

APPENDIX B: PROPAGATION OF PAULI
STRINGS ON NOISY CIRCUITS

In the derivation presented in Sec. III C, the propagation of
Pauli strings plays a crucial role in swapping the unitary maps
Uν∈[2,D] and the midcircuit noise maps �ν∈[1,D−1], effectively
shifting all noise maps to the circuit end (see Fig. 8). The
result is formulated as follows:

ρ̃D = (�D ◦ �̃D−1 ◦ · · · ◦ �̃2 ◦ �̃1)(ρD), (B1)

ρD = (UD ◦ · · · ◦ U2 ◦ U1)(ρ0), (B2)

where the noise map �̃ν is modified from Eq. (15). At the
operator level, a similarity transform is employed to give a
rule for swapping the unitary Uν and the Kraus operator K (ν)

kνqν

[in Eq. (16)], which generally do not commute.
Pauli string propagation is exemplified by the TFIM circuit.

Here, without loss of generality, we set Uν ∈ {Rx, Rzz} and
represent K (ν)

kνqν
by Pauli strings. For Uν = Rx, the similarity

transform is nothing but the Rodrigues’s rotation formula:

Rx
j

(
2Jt

M

){
σ

y
j

σ z
j

}
Rx

j

(−2Jt

M

)

=
{

σ
y
j

σ z
j

}
cos

(
2Jt

M

)
+

{
σ z

j

−σ
y
j

}
sin

(
2Jt

M

)
. (B3)

FIG. 8. Construction of an equivalent noisy quantum circuit to
the original [Fig. 3(b)] under general Markovian noise channels.
Using Pauli string propagation, we successively swap the unitary
maps Uν and the noise maps �ν′ for ν, ν ′ ∈ [1, D]. All �ν’s are
pushed to the circuit end to define the modified noise maps �̃ν’s
acting on ρ0.
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This formula can be extended to deal with the case Uν = Rzz.
Some notable results include:

Rzz
j, j+1

(
2Jt

M

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ x
j σ

z
j+1

σ
y
j σ

z
j+1

σ z
j σ

x
j+1

σ z
j σ

y
j+1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Rzz
j, j+1

(−2Jt

M

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ x
j σ

z
j+1

σ
y
j σ

z
j+1

σ z
j σ

x
j+1

σ z
j σ

y
j+1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

cos

(
2Jt

M

)
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
y
j σ

0
j+1

−σ x
j σ

0
j+1

σ 0
j σ

y
j+1

−σ 0
j σ

x
j+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

sin

(
2Jt

M

)
,

(B4)

where σ 0 ≡ I2. Note that, in Eqs. (B3) and (B4), an additional
time dependency is introduced by the propagation of Pauli
strings over the unitary.

APPENDIX C: DERIVATION OF THE SUBLEADING
TERM IN EQ. (17)

In this Appendix, we derive the subleading term in Eq. (17)
from Eqs. (B1) and (B2). We proceed in a similar manner to
Appendix A. In this case, the time propagator takes the noisy
form:

P̃gp = Tr[ρ0ρ̃D] = p�0|〈ψI |UM (t )|ψI〉|2 +
∑
�k �=�0

p�kP�k, (C1)

where the correction due to the noise channel �k is defined as:

P�k = 1

(d − 1)D

∑
�q

|Q�k �q|2, (C2)

Q�k �q = 〈ψI |UI (�θ )K (D)
kDqD

K̃ (D−1)
kD−1qD−1

· · · K̃ (2)
k2q2

K̃ (1)
k1q1

× [UI (�θ )]†UM (t )|ψI〉. (C3)

In contrast to the last term in Eq. (A1), Eqs. (C2) and (C3)
are not simply addressed mainly due to additional time de-
pendency in K̃ (ν)

kνqν
. In general, K̃ (ν)

kνqν
is time periodic with two

distinct periods, πM/|h1| and πM/|h2|, where h1,2 are the
coefficients of Pauli strings in H1,2. Thus we can make double
series expansion:

K̃ (D−1)
kD−1qD−1

(t ) · · · K̃ (2)
k2q2

(t )K̃ (1)
k1q1

(t )

=
∑
r1,r2

K(r1r2 )
kD−1···k2k1;qD−1···q2q1

e−2i(r1h1+r2h2 )t/M, (C4)

where the expansion coefficient K(r1r2 )
kD−1···k2k1;qD−1···q2q1

informs
on the details of noise channels, and both r1, r2 are supposed
to have dependency on �k, �q. To proceed further, we need to
deal with UM (t ), given by Eq. (A2). Substituting into Eq. (C3)
along with Eq. (C4), we find the expansion:

Q�k �q =
∑

u,r1,r2

[
c̃(�k �q)

ur1r2

]∗
cue−i[Eu+2(r1h1+r2h2 )/M]t

+ M−1
∑

u,r1,r2

∞∑
n=2

[
d̃ (�k �q)

ur1r2n

]∗
cu(−iht )n

× e−2i(r1h1+r2h2 )t/M + O(M−2), (C5)

|Q�k �q|2 =
∑
u,u′

∑
r1,r′

1

∑
r2,r′

2

[
c̃(�k �q)

ur1r2

]∗
cuc∗

u′
[
c̃(�k �q)

u′r′
1r′

2

]

× e−i{Eu−Eu′+2M−1[(r1−r′
1 )h1+(r2−r′

2 )h2]}t

+ 2M−1
∑
u,u′

∑
r1,r′

1

∑
r2,r′

2

∞∑
n=2

× Re
{[

c̃(�k �q)
ur1r2

]∗
cuc∗

u′
[
d̃ (�k �q)

u′r′
1r′

2n

]
(iht )n

× e−i{Eu+2M−1[(r1−r′
1 )h1+(r2−r′

2 )h2]}t}
+ O(M−2), (C6)

where the noisy expansion coefficients are defined as:[
c̃(�k �q)

ur1r2

]∗ =
∑

u′
c∗

u′ 〈u′|UI (�θ )K (D)
kDqD

× K(r1r2 )
kD−1···k2k1;qD−1···q2q1

[UI (�θ )]†|u〉, (C7)

[
d̃ (�k �q)

ur1r2n

]∗ = h−n

n!

∑
v

[
c̃(�k �q)
vr1r2

]∗En−2
v 〈v| [H1, H2] |u〉 , (C8)

with the energy unit h ∈ {h1, h2} chosen for normalization.
The remaining task proceeds in the same manner as

Appendix A. Plugging Eqs. (C1), (C2), and (C6) in Eqs. (5)
and (6), we can derive the noisy spectral function, Eq. (17).
The noiseless part (�k = �0) is given by Eqs. (7) and (A6). In
the noisy part (�k �= �0), the leading term described by Eq. (18)
is accompanied by the subleading term defined as:

δÃ(�k)
gp (ω) =

∑
u

∑
r1,r′

1

∑
r2,r′

2

∞∑
n=2

w̃
(�k)
ur1r′

1r2r′
2n

×
∑
s=±

dnF̃
(
ω − sEu − sδ�r1r′

1r2r′
2

)
d (sω/h)n

, (C9)

where δ�r1r′
1r2r′

2
is given by Eq. (19), and the associated spec-

tral weight is modified from Eq. (20):

w̃
(�k)
ur1r′

1r2r′
2n = 1

(d − 1)D

∑
�q

∑
u′

Re
{[

c̃(�k �q)
ur1r2

]∗
cuc∗

u′ d̃
(�k �q)
u′r′

1r′
2n

}
.

(C10)
Notably, Eq. (C9), similarly to Eq. (A6), lacks positive
definiteness.

APPENDIX D: BASELINE CORRECTION
WITH ASYMMETRIC LEAST SQUARES

In this paper, ALS fitting is crucial for baseline correc-
tion in noisy spectral data, enhancing the accuracy of gap
estimation. This section provides a detailed explanation of
the ALS fitting process [73]. See Ref. [74–77] for additional
variations.

We consider a discrete series of the original spectral func-
tion, {Am}L−1

m=0, where Am = A(ωm). Our goal is to determine
the smoothing series {Bm}L−1

m=0, which effectively captures the
baseline of the original series. This is achieved by minimizing
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the penalized least-squares function:

fALS =
∑

m

wm(Am − Bm)2 + λ
∑

m

(DBm)2. (D1)

The first term in Eq. (D1) fits the series with weight:

wm =
{

χ, Am > Bm

1 − χ, Am < Bm
, (D2)

where χ is the asymmetric parameter, typically ranging from
10−3 to 10−1. This range effectively suppresses negative de-
viations while maintaining flexibility in fitting the baseline
beneath the signal peaks. The second term acts as a penalty
for nonsmooth behavior in B. Here D represents the second-
order difference: DBm = (Bm − Bm−1) − (Bm−1 − Bm−2) =
Bm − 2Bm−1 + Bm−2, and λ is the smoothing parameter that
adjusts the balance between two terms, typically ranging from
102 to 109, with flexibility to deviate from this range depend-
ing on data characteristics and desired baseline smoothness.

The minimization problem in Eq. (D1) simplifies to finding
a solution for the system of equations:

(W + λDTD) �B = W �A, (D3)

where we define the matrices W = diag(w0,w1, . . . ,wL−1)
and D such that D �B = D �B for the vector �B =
(B0,B1, . . . , BL−1). As Eq. (D3) interacts with Eq. (D2), the
solution can be obtained iteratively, for example, beginning
with uniform weights as the initial condition. Typically, a few
dozen iterations are sufficient for convergence.

APPENDIX E: QISKIT CODE OVERVIEW

In this Appendix, we outline the code used in the Qiskit
implementation of the hybrid QGE algorithm. The complete
Qiskit code can be assessed [81].

ALGORITHM 1. Pseudocode for the hybrid QGE algorithm.

Initial setup

1: Quantum process: IBM Quantum backend, qubit number (N)
and initial layout, coupling ratio (J/h), Trotter circuit depth
(M), and measurement shots

2: Postprocess: filter (F ), broadening (η), Fourier sampling
number (L), and parameters for fitting and optimization

3: Estimate the initial gap �0 using perturbation theory.
4: Evaluate the exact gap �exact via exact diagonalization.

Main routine � Execute both Fourier sampling and trial-state
optimization in session mode.

1: with SESSION(backend=backend) as session
2: Call OBJECTIVE(θ , session) to evaluate f (θ ).
3: Call MINIMIZE_SCALAR( f (θ ), method=‘bounded’,
4: bounds=[0, π/2], tolerance=10−6, args=(session,))

(Continued.)

Subroutine: OBJECTIVE(θ , session)

1: for s = ±1 do � s = 1(−1): (anti-)causal
2: for n = 0 to L − 1 do � Fourier sampling
3: Call SAMPLER(mode=session).
4: Call CIRCUITS(θ , n, s) to build quantum circuits.
5: Run quantum circuits in session mode.
6: Evaluate the filtered time propagator FnPsn.
7: end for
8: Perform the fast Fourier transform for {FnPsn}L−1

n=0 .
9: end for
10: Evaluate the spectral function {A(ωm )}L−1

m=0 [Eq. (4)].
11: Set the target window ωm ∈ [�0 − η, �0 + η].
12: Search for the bare gap �bare locating the target signal peak

nearest to �0.
13: Evaluate the error |�bare − �exact|/�exact .
14: Call ASLS({A(ωm )}L−1

m=0, λ = 1, χ = 10−2) to evaluate the
baseline correction to A using ALS fitting.

15: Set the target window ωm ∈ [�0 − η, �0 + η].
16: Search for the corrected gap �corr locating the target signal

peak nearest to �0.
17: Evaluate the error |�corr − �exact|/�exact .
18: Evaluate the cost function f (θ ) = [hA(ωm = �corr )]−1.
19: Store results to disk.
20: return f (θ )

Subroutine: CIRCUITS(θ , n, s)

1: Initialize quantum and classical registers.
2: Apply the trial-state unitary UI (θ ) [Eq. (23)].
3: Apply the Trotterized unitary UM (tsn) [Eq. (22)].
4: Apply the inverse trial-state unitary [UI (θ )]†.
5: Measure the output state on the same circuit.
6: return measurement outcomes

Subroutine: ASLS({A(ωm )}L−1
m=0, λ, p)

1: Set the initial weight �w0.
2: for i = 1 to imax do � Iteration

3: Construct the matrix W + λDTD.
4: Find {B(ωm )}L−1

m=0 by solving Eq. (D3).
5: Update the weight �wi using Eq. (D2).
6: if | �wi − �wi−1| < tolerance then
7: Break
8: end if
9: end for
10: return baseline function {B(ωm )}L−1

m=0

Subroutine: MINIMIZE_SCALAR( f (θ ), method=‘bounded’,
bounds, tolerance, args)

1: for i = 1 to imax do � Iteration
2: Evaluate f at the midpoint θi of the current bounds.
3: if i � 2 and | f (θi ) − f (θi−1)| < tolerance then
4: Break
5: end if
6: Evaluate f at two endpoints of the current bounds.
7: Select the sub-interval that returns the lower f .
8: Update the bounds to reflect the selected sub-interval.
9: end for
10: return optimal value of θ that minimizes f
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FIG. 9. Qubit layout for the ibm_sherbrooke processor. For our
simulations, we used linear qubit arrays (highlighted by red boxes):
113-117 (five qubits), 113-119 (seven qubits), and 113-121 (nine
qubits). The color map for each qubit represents, e.g., T1, where
darker shades correspond to the lower bound and lighter shades to
the upper bound.

APPENDIX F: IBM QUANTUM BACKEND
CALIBRATION DATA

In this Appendix, we present details of the ibm_sherbrooke
processor, which was used for both noisy simulations and real-
device demonstrations. The qubit layout is illustrated in Fig. 9,
and calibration data are provided in Table I.

APPENDIX G: SUPPLEMENTARY SIMULATION
DATA FOR FIGS. 5 AND 6

In this Appendix, we provide additional analysis based on
the results in Sec. IV.

1. QGE procedure

Figure 10 illustrates the QGE procedure with the same
parameter settings as in Fig. 5. Here the input orientation θ is
conveniently set to the value obtained at an intermediate step
of trial-state optimization. The top panels show the line shape
of the bare spectral function (blue solid curve). As discussed
in Sec. IV B, the bare gap �bare is estimated by starting with
a perturbative solution for a quantum paramagnet, �0/h =
2[1 − (1 − 1/N )J/h], and identifying the signal peak closest
to �0. The largest redundant peak at ω = 0 serves as a primary
source of lineshape distortion around the target signal peak,
contributing to gap estimate error. As discussed in Sec. III B,
it arises from the u = u′ term in Eq. (7) in the noiseless simu-
lation [panel (a)], and its height is adjusted by a combination
of the (scaled) u = u′ term and the last term in Eq. (13) in the
simulation dominated by depolarizing noise [Fig. 10(b)]. The
red dashed curve demonstrates that the redundant peak can
be removed from the spectral function through curve fitting.
The extent of adjustment varies depending on the degree of
line-shape spreading. After adjustment, the signal peak is
clearly resolved if its height exceeds the device-specific detec-
tion threshold, effectively showcasing the algorithm’s inherent
resilience to depolarizing noise.

The noise resilience argument becomes less robust
when other noise types significantly contribute alongside
depolarizing noise. Evidence for this appears in the
real-device demonstrations in panel (c), where residual
background remains even after removing the redundant peak
at ω = 0. Note that the spectral function becomes negative
in the range ω � 2.4h, indicating a breakdown of positive
definiteness. One possible reason is that the noisy spectral
weight, Eq. (20), is not bounded below from zero, unlike
the noiseless counterpart wnn′ in Eq. (7). As discussed in
Secs. III C and IV B, we take an error mitigation strategy
based entirely on classical signal processing techniques to
effectively remove the residual background and accurately
restore the peak location. Specifically, among the available
methods, we employ ALS fitting (see Appendix D) to correct
the baseline of the spectral function, which has been distorted
by the residual background.

The middle panels in Fig. 10 present the baseline-corrected
results within the target window �0 − η � ω � �0 + η.
This correction is achieved through the careful selection of

TABLE I. Calibration data for the ibm_sherbrooke processor (collected on 10/23/2024). Each column provides data for (a) qubit, (b) T1

(µs), (c) T2 (µs), (d) frequency (GHz), (e) anharmonicity (GHz), (f) readout assignment error (×10−3), (g) probability of |0〉 measurement for
|1〉 preparation (×10−3), (h) probability of |1〉 measurement for |0〉 preparation (×10−3), (i) identity,

√
X , or Pauli-X error (×10−4), and (j)

ECR error (×10−3). Shared parameters across all qubits include readout length = 1216 ns, gate time = 533.3 ns, and Rz error = 0.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

113 315.7 69.70 4.963 −0.30844 5.6 6.2 5.0 2.080 113-114:5.618114 273.6 383.3 4.885 −0.30934 13.6 13.0 14.2 1.598 114-115:8.790115 236.7 158.4 4.743 −0.31098 4.6 6.0 3.2 1.956 115-116:7.296116 275.5 384.7 4.931 −0.30852 9.2 9.0 9.4 1.777 116-117:12.85117 163.8 193.2 4.793 −0.31084 8.4 9.8 7.0 6.601 117-118:5.905118 208.0 227.9 4.737 −0.31214 5.8 8.0 3.6 1.523 118-119:7.019119 234.4 178.4 4.793 −0.31150 5.7 7.4 4.0 6.059 119-120:7.777120 147.9 180.3 4.888 −0.30955 8.1 6.8 9.4 1.981 120-121:5.819121 199.7 21.18 4.848 −0.31085 10.8 9.2 12.4 3.815
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FIG. 10. Simulation results illustrating the QGE procedure using different approaches corresponding to Figs. 5(a)–5(c), respectively. Top
panels: Bare spectral function A (blue solid curve) versus frequency ω for the TFIM of N = 5, J/h = 0.4, and the filter F = FL with the
broadening η/h = 0.3. The input orientation θ is conveniently fixed to the value obtained at the intermediate step of trial-state optimization
(see Fig. 5). The red dashed curve represents the adjusted line shape with the redundant peak at ω = 0 removed by fitting. The blue dot-dashed
vertical line indicates the bare gap estimate �bare, which corresponds to the closest peak to the initial gap �0 (black dotted vertical line) in
the original data. The target window, defined as �0 − η � ω � �0 + η (shaded in gray), is used to apply the ALS fitting method for baseline
correction. Middle panels: Baseline-corrected spectral function (red solid curve). For ALS fitting, the asymmetric and smoothing parameters
are set to χ = 10−2 and λ = 1, respectively. Corrected gap estimate �corr (red double-dot-dashed vertical line) is obtained by estimating the
closest peak position to �0 within the target window. The pink dotted horizontal line marks the threshold for peak height. In (a)–(c), �corr is
improved over �bare and provides better estimate close to the exact gap �exact . Bottom panels: Illustration of the ALS fitting’s operating range
(shaded in pink) by adjusting the smoothing parameter. Red open circles indicate the threshold peak positions, while filled circles highlight the
target signal peak. Other parameter settings are the same as in Fig. 5.

smoothing and asymmetry parameters in the ALS fitting pro-
cess. The corrected gap �corr is estimated in the same manner
as �bare. Notably, across all Figs. 10(a)–10(c), �corr shows
an improvement over �bare, converging toward �exact. The
bottom panels illustrate the operating range of the smooth-
ing parameter (below 104) needed to reliably reproduce our
results, even with moderate variations in the asymmetry pa-
rameter. Here, only the positions of threshold peaks that meet
the height threshold (= mean + k × standard deviation; with
k = 1) are shown. This approach minimizes the risk that our
findings could be attributed to artifacts of the fitting process.

2. Full analysis of scalability and robustness

We present extended data to complement Fig. 6. While
the algorithm’s robustness has been evaluated using baseline-
corrected spectral data, here we focus on the outcomes for
� = �bare, derived from uncorrected spectral data. Figure 11
illustrates that the noiseless simulation results (blue open di-
amonds) consistently show a reduction in Trotter truncation
error as the Trotter depth M increases, indicating convergence.
Notably, achieving convergence requires deeper circuits as
the qubit number N grows. This trend is consistent with

FIG. 11. Extended data corresponding to Fig. 6 under the same settings. Each symbol is defined in the legend.
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FIG. 12. Simulation results demonstrating trial-state optimization in QGE for F = FG. Other settings are the same as in Fig. 5.

the scaling of the Trotter depth cutoff Mc [Eq. (14)], where
||[H1, H2]|| � 4|Jh|(N − 1) for the TFIM [48]. In contrast,
the noisy simulation results (green open squares) fail to con-
verge, with errors increasing at higher M values. As discussed
in Sec. III C, this behavior arises from the cumulative effect of
Markovian noise channels when the noise probability exceeds
the threshold. The real-device demonstrations (red open cir-
cles) exhibit even poorer convergence compared to the noisy
simulations. Nevertheless, all outcomes for � = �corr consis-
tently validate the algorithm’s robustness following baseline
correction.

APPENDIX H: SUPPLEMENTARY SIMULATION
DATA WITH F = FG

In this Appendix, we supplement the simulation data by
applying the Gaussian filter to further validate the algorithm’s
performance. Figures 12–14 correspond to Figs. 5, 10, and
11, respectively. While the overall features remain consistent
across both filters, differences in finer details arise from the
Gaussian line shape’s greater central concentration compared
to the Lorentzian line shape. This characteristic suppresses
interference from moderately or widely separated neighboring
peaks.

FIG. 13. Simulation results illustrating the QGE procedure for F = FG. Other settings are the same as in Fig. 10.
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FIG. 14. Simulation results for demonstrating the scalability and robustness of QGE for F = FG. Other settings are the same as in Fig. 11.
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