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Hybrid quantum-gap-estimation algorithm using a filtered time series
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Quantum simulation advantage over classical memory limitations would allow compact quantum circuits to
yield insight into intractable quantum many-body problems, but the interrelated obstacles of large circuit depth
in quantum time evolution and noise seem to rule out unbiased quantum simulation in the near term. We prove
that classical postprocessing, i.e., long-time filtering of an offline time series, exponentially improves the circuit
depth needed for quantum time evolution. We apply the filtering method to the construction of a hybrid quantum-
classical algorithm to estimate energy gap, an important observable not governed by the variational theorem. We
demonstrate, within an operating range of filtering, the success of the algorithm in a proof-of-concept simulation
for finite-size scaling of a minimal spin model. Our findings set the stage for unbiased quantum simulation to
offer memory advantage in the near term.
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I. INTRODUCTION

Quantum simulation not only offers the potential to speed
up solutions to otherwise intractable quantum many-body
problems but can also yield significant memory advantages
in comparison to classical algorithms [1–3]. Unbiased (exact)
classical methods, such as exact diagonalization applied to
a time-independent Hamiltonian matrix H , can, in princi-
ple, be used to perform finite-size extrapolation of important
observables to benchmark approximations, compare with ex-
periment, or map out phase diagrams. On the other hand,
the exponential increase in Hilbert-space size of quantum
many-body problems severely limits accessible system sizes
(i.e., particle or orbital numbers) on classical machines due
to memory constraints. The same exponential Hilbert-space
increase can be leveraged as a memory advantage [4] by unbi-
ased quantum simulation to compete with classical algorithms
on appropriately chosen models [5]. The considerable mem-
ory advantage of quantum devices suggests that finite-size
quantum simulation could, even in the near term, outperform
classical machines in unbiased calculations.

The quantum-phase-estimation (QPE) [2,3,6] family of
algorithms yields unbiased estimates of various quantities,
including energy eigenvalues [7–14] and energy gaps [15–19].
QPE conventionally relies on the Trotter-Suzuki decompo-
sition [20,21] to implement the time propagator e−iHt with
quantum circuits. Unfortunately, the circuit depth needed
to implement time evolution is known to scale rather pro-
hibitively for a speedup advantage [22–26], thus casting doubt
on prospects for compact circuit design with QPE. Further-
more, uncorrected noise in large-depth QPE-based circuits
will erode coherence.

*wrlee@murrayau.com

The interrelated obstacles of large circuit depth and noise
led to efforts to develop alternative approaches to QPE. Vari-
ational quantum eigensolvers (VQEs) [24,27,28] turned out
to yield noise-tolerant, but biased, estimates of ground-state
energy levels. A VQE requires only shallow quantum circuits
but has sustaining issues, e.g., the Barren plateaus that plague
the cost-function landscape in scale up [29]. Another approach
starts from the assumption of large numbers of fault-tolerant
qubits while designing improvements to the scaling of circuit
depth. Such “top-down” approaches have made considerable
progress (see Ref. [30] for a review) but, nonetheless, rely on
assumptions of high qubit overhead to implement active error
correction even on just one single-qubit noise channel [31].
On the other hand, QPE can be revisited from the perspec-
tive of hybrid quantum-classical circuits designed for scaling
up small noisy quantum devices (“bottom-up approach”) for
memory advantage (as opposed to speedup advantage). In this
approach, as in the case of VQEs, classical postprocessing
is essential, but has more focus on unbiased estimates of
solutions [11–14].

In this work, we propose a hybrid quantum-gap-estimation
(QGE) algorithm using a filtered time series, built from quan-
tum circuits and postprocessed using the classical Fourier
transform to return energy gaps. The hybrid QGE algorithm
has useful features. First, the quantum circuit remains com-
pact by avoiding calls to ancilla qubits, quantum Fourier
transforms, and quantum state tomography. Second, the so-
lution provides an unbiased estimate of energy gaps beyond
the rigorous applicability of the variational theorem. Last,
the filter in postprocessing is used to maximize simulation
performance within the operating range.

Time-series filters, allowing nonunitary evolution of quan-
tum systems, have been implemented in different contexts
such as ground-state energy estimation using the approx-
imate cumulative distribution function [11,12] and hybrid
dynamical mean-field theory (DMFT) with an impurity solver
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processed online [32–34]. To our knowledge, however, the
role of the filter in gap estimation has not been explored yet.
In this work, we show that the filter exponentially improves
circuit depth at long times. We demonstrate the performance
boost of the hybrid QGE algorithm with time-series filters
in proof-of-concept simulations. The noise resilience of the
algorithm will be discussed in a separate work [35].

This paper is outlined as follows. In Sec. II, we derive
the formula for Trotter truncation error in association with a
time-series filter and reveal the impact on the upper bound
of (Trotter) circuit depth. In Sec. III, we describe the hybrid
QGE algorithm. In Sec. IV, we demonstrate the simulation
results for the gap of a minimal spin model and the gap-based
phase diagram using finite-size extrapolation. We conclude in
Sec. V.

II. FILTERED QUANTUM TIME EVOLUTION

A. Trotter truncation error with filtering

QPE-based algorithms leverage the enlarged Hilbert space
on quantum devices for evaluation of the time propaga-
tor. But intractable Hamiltonians with noncommuting terms,
e.g., H = H1 + H2, where [H1, H2] �= 0, are nontrivial to
time evolve. Exact time evolution is described by the time
propagator Uexact (t ) = e−iHt . Hereafter, we set h̄ = 1. The
Trotter-Suzuki formula offers various levels of approximation,
set by the order p, to Uexact (t ) [20,21]:

U (p)
M (t ) = [U (p)(tM )]M, (1)

where tM = t/M, M ∈ N, and a single sequence of unitaries
is defined by

U (1)(t ) = e−iH1t e−iH2t , (2)

U (2)(t ) = e−iH1t/2e−iH2t e−iH1t/2, (3)

U (2q)(t ) = [
U (2q−2)

(
κ2qt

)]2
U (2q−2)

[(
1 − 4κ2q

)
t
]

× [
U (2q−2)(κ2qt

)]2
, (4)

with κ2q = (4 − 41/(2q−1))−1 for q � 2. Equations (1)–(4)
yield precise results once the Trotter depth M exceeds a cer-
tain cutoff Mc. The p = 1 formula is especially fit to run on
resource-limited noisy quantum devices. Progress in estimat-
ing Trotter truncation error [22,23,36–38] allows us to prove
significant improvements in the required cutoff of M.

In this section, we prove that long-time filtering of the time
propagator leads to substantial improvement in Trotter depth.
To start, we take H → H + �(t ), where �(t ) defines the
self-energy describing energy relaxation to the environment.
Here, we choose a minimal model [39,40]: �(t ) = −i�(t )I/2,
where �(t ) > 0 is a user-defined control function to select
specific time bins and I is the identity matrix.

We apply the method in Ref. [23] to derive, in the presence
of filtering, the leading correction to Uexact (t ) by Trotter trun-
cation error and thereby the upper bound of M. We consider
the first-order inhomogeneous differential equation for U (t ):

d

dt
U (t ) + iH(t )U (t ) = R(t ), (5)

where H(t ) and R(t ) are continuous operator-valued func-
tions of t ∈ R. The solution, using variation of parameters,
reads

U (t ) = Te−i
∫ t

0 dτH(τ )U (0)

+
∫ t

0
dτ1Te−i

∫ t
τ1

dτ2H(τ2 )R(τ1), (6)

where T is the time-ordering operator. To proceed further
with R(t ), we can refer back to Eq. (5). For the applica-
tion to our problem, we take U (t ) → e− ∫ t

0 dτ�(τ )/2U (p)
M (t ) and

H(t ) → H − i�(t )I/2 and factor out the term e− ∫ t
0 dτ�(τ )/2

from both sides of Eq. (6). The equation for U (p)
M (t ) is then

arranged into the form

U (p)
M (t ) = Uexact (t ) + δU (p)

M (t ), (7)

where the correction term is given by

δU (p)
M (t ) =

∫ t

0
dτUexact (t − τ )

[
�

(p)
M (τ ) + �

(p)
M (τ )

]
, (8)

with two functions defined in the expansion form:

�
(p)
M (t ) = 1

M

M−1∑
l=0

[U (p)(tM )]l

{(
d

dtM
+ iH

)
U (p)(tM )

}

× [U (p)(tM )]M−l−1, (9)

�
(p)
M (t ) =

{
iH − 1

M

M−1∑
l=0

[U (p)(tM )]l iH[U (p)(tM )]−l

}

× [U (p)(tM )]M . (10)

Equation (9) gives the leading correction to Uexact (t ). To pro-
ceed, it is convenient to define the adjoint derivative, adAB =
[A, B], along with the related identities exadA B = exABe−xA and
dn

dxn exadA B = exadA adn
AB, where A and B are matrices and x is a

scalar. For p = 1, we find(
d

dtM
+ iH

)
U (1)(tM ) = e−iH1tMV (1)(tM )e−iH2tM , (11)

where we define

V (1)(tM ) = (etM adiH1 − 1)iH2. (12)

Since Eq. (12) satisfies the order condition O(tM ), it can be
represented in the integral form of the Taylor remainder:

V (1)(tM ) =
∫ tM

0
dτeτadiH1 adiH1 iH2. (13)

Similarly, the result for p = 2 reads(
d

dtM
+ iH

)
U (2)(tM ) = e−iH1tM/2V (2)(tM )

× e−iH2tM e−iH1tM/2, (14)

where we define

V (2)(tM ) = −(etM ad−iH2 − 1)iH1/2

+ (etM adiH1/2 − 1)iH2. (15)
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Under the order condition O(t2
M ), Eq. (15) is recast as

V (2)(tM ) =
∫ tM

0
dτ

∫ τ

0
dτ ′( − eτ ′ad−iH2 ad2

−iH2
iH1/2

+ eτ ′adiH1/2 ad2
iH1/2iH2

)
. (16)

For p � 4, however, complexity increases. At p = 4, Eq. (4),
for example, has a sequence of 11 unitaries. Here, for our
purpose, we just refer to the result in Ref. [23]. Last, we
note that Eq. (10) can be safely ignored because it gives the
subleading correction to Uexact (t ).

In the context of quantum simulation, we consider the trace
distance between the exact and Trotterized output states on
quantum circuits. In our setup, the output states are repre-
sented in the density-matrix form:

ρexact (t ) = U †
I Uexact (t )UIρ0U

†
I U †

exact (t )UI, (17)

ρ
(p)
M (t ) = U †

I U (p)
M (t )UIρ0U

†
I

[
U (p)

M (t )
]†

UI, (18)

where UI acts on input registers ρ0 for initial-state preparation.
We plug Eq. (7) in Eq. (18) to find the expansion:

ρ
(p)
M (t ) = ρexact (t ) + δρ

(p)
M (t ) + O

[(
δρ

(p)
M

)2]
, (19)

where the correction term is given by

δρ
(p)
M (t ) = U †

I δU (p)
M (t )UIρ0U

†
I [Uexact (t )]†UI

+ U †
I Uexact (t )UIρ0U

†
I

[
δU (p)

M (t )
]†

UI. (20)

In the presence of filtering, we take ρ(t ) → F (t )ρ(t ) and set
Trotter truncation error to ε

(p)
T ≡ ||F (t )[ρ (p)

M (t ) − ρexact (t )]||,
where ||A|| is the spectral norm, i.e., the largest singular value
of matrix A. F (t ) defines the filter:

F (t ) = e− ∫ t
0 dτ�(τ ), (21)

which is exemplified by the Lorentzian filter, FL(t ) = e−ηt

for �(t ) = η, and the Gaussian filter, FG(t ) = e−σ 2t2/2 for
�(t ) = σ 2t , where η = σ

√
2 ln 2. To estimate the bound

of ε
(p)
T , we use the properties of the spectral norm:

||cA|| = |c|||A||, ||AB|| � ||A|| ||B||, ||A + B|| � ||A|| + ||B||,
and ||eiA|| = 1 if A = A†, where A and B are matrices
and c is a scalar. The multiple integrals are then simpli-
fied. For example,

∫ t
0 dτ

∫ τM

0 dτ ′ = t2/(2M ) for p = 1, and∫ t
0 dτ

∫ τM

0 dτ ′ ∫ τ ′

0 dτ ′′ = t3/(6M2) for p = 2. The result is
summarized by

ε
(p)
T � C(p) t p+1F (t )

M p
, (22)

where the prefactors are defined by

C(1) = ||[H1, H2]||, (23)

C(2) =
∑

γ∈{1,2}
c(2)
γ ||[Hγ , [H1, H2]]||, (24)

C(4) =
∑

γ ,λ,μ∈{1,2}
c(4)
γ λ,μ||[Hγ , [Hλ, [Hμ, [H1, H2]]]]||, (25)

with numerical constants c(2)
1 = 0.083, c(2)

2 = 0.167,
c(4)

111 = 0.0094, c(4)
112 = 0.0114, c(4)

121 = 0.0092, c(4)
122 = 0.0148,

c(4)
211 = c(4)

212 = 0.0194, c(4)
221 = 0.0346, and c(4)

222 = 0.0568. We

note that, at small times, the upper bound in Eq. (22) scales
in a different polynomial order of t for each choice of p. F (t )
can be used to control the long-time behavior of the bound
such that overall suppression is achieved. The role of F (t ) can
be addressed more clearly in Fourier space (see Sec. III C).

Finally, as a consequence of Eq. (22), we find that the
total depth for Trotter circuits is bounded above by the cutoff
D(p)

c = N (p)
g M (p)

c , where N (p)
g counts unitary gates per Trot-

ter iteration and M (p)
c is the Trotter depth cutoff for a fixed

ε
(p)
T = ε

(p)
T,c:

M (p)
c [F (t )] =

(
C(p)

ε
(p)
T,c

)1/p

t1+1/p[F (t )]1/p. (26)

This is one of our central results because it allows us to choose
F (t ) to relax otherwise stringent conditions on circuit depth
in QPE-based simulation.

B. Example: One-dimensional transverse-field Ising model

To estimate M (p)
c , and therefore D(p)

c , we consider the
transverse-field Ising model (TFIM) in one dimension:

H1 = −J
N−2∑
j=0

σ z
j σ

z
j+1, H2 = −h

N−1∑
j=0

σ x
j , (27)

where σα , with α ∈ {x, y, z}, are the Pauli matrices; N is
the number of spins at sites j ∈ [0, N − 1]; J is the Ising
coupling; and h is the magnetic field. The TFIM has a
paramagnetic ground state (for J/h < 1) separated from a
ferromagnetic state (for J/h > 1) by a quantum critical point
(at J/h = 1) [41]. Straightforward calculations using Eq. (27)
yield the explicit forms of the commutators in Eqs. (23)–(25)
and the bounds of the spectral norms. See Appendix A for
details.

FIG. 1. (a) Plot of the upper bound of total circuit depth Dc

(= Trotter depth cutoff × gate counts per iteration) versus time
for the TFIM (N = 103) with different choices for the Trotteriza-
tion order p ∈ {1, 2, 4} and the filter F ∈ {FL,FG}, showing that
η (= σ

√
2 ln 2) exponentially suppresses the bound over a long time.

Other parameters are set to J/h = 0.4 and εT,c = 10−2. The vertical
axis is a log scale. (b) Plot of Dc versus N for a fixed ht = 6. Both
axes are log scales.
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FIG. 2. Flowchart for the hybrid QGE algorithm.

Figure 1 demonstrates the impact of the filter function on
the upper bound of the total circuit depth Dc for the TFIM.
Here, we count N (1)

g = N , N (2)
g = 2N − 1, and N (4)

g = 6N − 1
(for uncompressed circuits) and use two types of filters, FL

and FG, for comparison. Without filtering (η = 0), the model
shows a prohibitive Trotter scaling that appears to prevent
QPE simulation on quantum devices. In Fig. 1(a), for spin
counts N = 103, the top black solid curve (p = 1) exceeds,
for example, Dc ∼ 107 for ht > 6, which is improved to Dc ∼
104(103) for p = 2(4). Figure 1(b) shows that |D(p)

c − D(p′ �=p)
c |

is reduced for smaller N . In the presence of filtering (η > 0),
however, long-time evolution is truncated, and Dc is signif-
icantly improved (colored solid curves for FL and colored
dashed curves for FG), thus suggesting a route to considerable
improvements in QPE-based algorithms. Note that filtering is
more effective for smaller p [see Eq. (26)], allowing D(p)

c >

D(p′ )
c for p < p′ in a long time. Last, Dc is only a bound. In

practice, total circuit depth relies on the choice of H , F , and
the algorithm.

III. HYBRID QUANTUM-GAP-ESTIMATION ALGORITHM

A. Overview

We now construct a hybrid QGE algorithm and demon-
strate the impact of filtering on time evolution. The algorithm
flowchart is depicted in Fig. 2. We start with an input state |ψI〉
that overlaps with an exact state |ψexact〉 of interest, perform
Trotter time evolution, and then read out in the same basis as
the input state. The output state oscillates in time at frequen-
cies of the exact energy gaps for any input state satisfying
〈ψI|ψexact〉 �= 0. A classical fast Fourier transform of a time
series, after being filtered, reveals exact energy gaps within
the window 2η set by the filter. In the following we provide
details for the quantum process and postprocess.

B. Quantum process (online)

In a quantum processor, each run is iterated over discrete
time tn = nδt , where n ∈ [0, L − 1] for L Fourier sampling
points. Figure 3 shows the quantum circuit implementation for
our example, the TFIM, in a single run. The circuit proceeds
in three steps. First, input qubits are prepared in quantum
registers to build the initial state: |ψI〉 = UI

∏N−1
j=0 |0〉z

j . For our
purpose, the product-state unitary is a minimal choice (here,
entanglement is not essential):

UI(�θ ) =
N−1∏
j=0

Ry
j (θ j ), (28)

FIG. 3. Quantum circuit of the hybrid QGE algorithm for a
many-body Hamiltonian H . (i) Input preparation: N qubits are pre-
pared (and reset) in the quantum registers (q0, q1, . . . , qN−1) and
rotated by the unitary UI to create the initial state. (ii) Trotter time
evolution of the order p by the unitary U (p)

M (tn). (iii) Measurement:
Output qubits are rotated back to compensate UI, and z-basis mea-
surements are carried out to return time-series data (of size L) to the
classical register, c.

where Rα
j (θ ) = exp(−i θ

2 σα
j ) and �θ = (θ0, θ1, . . . , θN−1) is a

free parameter that can be chosen to emphasize different gaps.
Second, |ψI〉 is time evolved by applying a sequence of uni-
taries determined by H and p ∈ {1, 2, 4}:

U (1)
M (tn) =

⎡
⎣∏

�j2
Rzz

j1, j1+1

(χn

M

)
Rx

j2

(φn

M

)⎤
⎦

M

,

U (2)
M (tn) =

⎡
⎣∏

�j3
Rzz

j1, j1+1

( χn

2M

)
Rx

j2

(φn

M

)
Rzz

j3, j3+1

( χn

2M

)⎤
⎦

M

,

U (4)
M (tn) =

[ ∏
�j11

Rzz
j1, j1+1

(
κ4χn

2M

)
Rx

j2

(
κ4φn

M

)
Rzz

j3, j3+1

(
κ4χn

M

)

× Rx
j4

(
κ4φn

M

)
Rzz

j5, j5+1

(
(1 − 3κ4)χn

2M

)

× Rx
j6

( (1 − 4κ4)φn

M

)
Rzz

j7, j7+1

( (1 − 3κ4)χn

2M

)

× Rx
j8

(
κ4φn

M

)
Rzz

j9, j9+1

(κ4χn

M

)

× Rx
j10

(κ4φn

M

)
Rzz

j11, j11+1

(κ4χn

2M

)]M

, (29)

where
∏

�jm = ∏
j1

∏
j2

· · ·∏ jm
, Rzz

j, j+1(θ )= exp(−i θ
2 σ z

j σ z
j+1),

χn = −2Jtn, φn = −2htn, and κ4 = (4 − 3
√

4)−1 ≈ 0.414. M
repetitions are applied until Trotter error (alternatively, spec-
tral sum or gap-estimation error; see Sec. IV A) is reduced
below a tolerance. In the last online step, output qubits are
rotated back to the input-state basis and measured. Here,
quantum state tomography [42] or ancilla qubits [7,17] are not
involved, thus saving computational resources.
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C. Postprocess (offline)

The time-evolved output state obtained from the quantum
circuit is processed offline. In the first offline step, we build
time-series data {(tn,P (p)

n )}L−1
n=0 , in which measurement out-

comes in the z basis are encoded:

P (p)
n = Tr

[
ρ0ρ

(p)
�θ (tn)

]
. (30)

Here, we define the density matrices ρ0 = ∏N−1
j=0 |0〉z

j〈0|zj
for the input registers and ρ

(p)
�θ (tn) = U (p)

M,�θ (tn)ρ0[U (p)

M,�θ (tn)]†

for the output with the similarity transform U (p)

M,�θ (tn) =
[UI(�θ )]† U (p)

M (tn)UI(�θ ). Next, Eq. (30) is filtered by Fn =
F (tn) and fed into the classical subroutine for a discrete
Fourier transform (DFT), which yields a (many-body) spectral
function:

A(p)(ωm) = δt

2π
Re

∑
s=±

L−1∑
n=0

eiωmtsnFnP (p)
sn , (31)

where we define discrete frequencies ωm = mδω, conjugate to
tn, in units of δt and δω, satisfying δωδt = 2π/L, and m, n ∈
[0, L − 1]. The s = + (−) terms in Eq. (31) describe causal
(anticausal) processes. In practice, a fast Fourier transform is
widely adopted to improve computational complexity of the
original DFT, O(N2) to O(N log N ) [43].

To reveal key features of Eq. (31), we consider the
continuum limit (L → ∞):

A(p)(ω) = 1

2π

∑
s=±

∫ ∞

−∞
dt cos(ωt )�(st )F (st )P (p)(t ), (32)

where �(t ) is the step function and P (p)(t ) = Tr[ρ0ρ
(p)
�θ (t )] =

|〈ψI|U (p)
M (t )|ψI〉|2 ∈ R, which is distinguished from the form

〈ψI|U (p)
M (t )|ψI〉 ∈ C for eigenvalue estimation [44]. Equa-

tion (32) can be recast further in the convolution form,

A(p)(ω) =
∫ ∞

−∞
dω̃F̃ (ω̃)A(p)

0 (ω − ω̃), (33)

where F̃ represents the filter in Fourier space,

F̃ (ω) = 1

π

∫ ∞

0
dt cos(ωt )F (t ), (34)

and A(p)
0 (ω) ≡ A(p)(ω)|F=1 (without filtering). Two features

of Eq. (33) are addressed below.
First, peak centers in A(p)

0 return exact energy gaps for all
choices of H and |ψI〉. To show this, ignoring Trotter error for
M > Mc, we approximate U (p)

M (t ) ≈ e−iHt . We then expand
|ψI〉 = ∑

u cu|u〉, where eigenstates |u〉 satisfy H |u〉 = Eu|u〉
with eigenenergies Eu, and plug it in A(p)

0 to derive the spectral
representation (hereafter, we drop the superscript p):

A0(ω) =
∑
u,v

|cu|2|cv|2δ(ω − �u,v ), (35)

where we define the Dirac delta function δ(ω) = 1
2π

∫
dteiωt

and exact energy gaps �u,v = Eu − Ev . For estimation of a
target, say, �u,v , the condition of |cu||cv| �= 0 is generally de-
manded. Without loss of generality, we can drop the redundant
sum over u � v to focus on the partial sum over u > v.

Second, Eq. (33) converts δ functions in Eq. (35) into the
line shapes set by Eq. (34):

A(ω) =
∑
u,v

|cu|2|cv|2F̃ (ω − �u,v ). (36)

For the choice of FL(t ) = e−ηt , F̃ (ω) describes a Lorentzian
line shape: F̃L(ω) = 1

π

η

ω2+η2 . For FG(t ) = e−σ 2t2/2, it turns

out to be a Gaussian line shape: F̃G(ω) = 1√
2πσ

e− ω2

2σ2 . Here,
the broadening 2η defines the full width at half maximum
of the line shape and has a connection to σ : η = σ

√
2 ln 2.

It has an operating range designed to maximize simulation
performance: 2η is bounded below by Trotter error εT and
above by peak-to-peak separations to hold spectral resolutions
in gap estimation. See Sec. IV B for further discussion.

The last offline step establishes a consistent gap-estimation
protocol for Eq. (31). We need to start with an initial guess of
the energy gap �0, e.g., mean field or perturbative. Here, we
use perturbation theory for the TFIM with open boundaries:
�0/h = 2[1 − (1 − 1/N )J/h] (see Appendix B). (We focus
on the lowest gap but can find any gap by adjusting the initial
guess.) We then search for the peak center in the range �0 −
δ�/2 � ω � �0 + δ�/2 to find the unbiased estimate of �.
Here, the search window δ� is initially set to 2η. If � is not
within the range, we restart with a new choice of either δ� or
�0. This process is iterated until a solution is found.

IV. RESULTS

So far, we have proposed a hybrid QGE algorithm us-
ing a filtered time series, thereby requiring shallow circuits.
In this section, we demonstrate proof-of-concept simulation
results using the TFIM with small size N ∈ {2, 3, 4, 5} as
a benchmark model [45]. The results are compared for dif-
ferent choices of the filter F and Trotterization order p.
Here, studying noise-induced error in quantum processes is
beyond our scope. To demonstrate the algorithm, we discuss
our implementation case: gaps of the TFIM and the gap-
based paramagnetic phase diagram determined by finite-size
extrapolation.

A. Convergence boost of QGE from filtering

The central assertion in Sec. II was that filtering Trotter
time evolution at long times effectively lowers the upper
bound of circuit depth for a fixed Trotter truncation error.
Here, we numerically confirm that the filtering method can
be leveraged to boost the convergence of the hybrid QGE
algorithm.

Figure 4 shows simulation results for N = 4 and J/h = 0.4
for different choices of p ∈ {1, 4} and F ∈ {FL,FG}. Input
orientations are fixed here but, later on, will be tuned for
further investigation. The top panels indicate that increasing
η gives better convergence of A to the exact form with D.
The plots with D � D̃c, where D̃c is the empirical bound
of the circuit depth, feature satellite peaks (apart from the
main peak) which are governed by the Floquet stroboscopic
dynamics [47]. If the satellite peaks are separated within the
resolution limit 2η, they are smoothed out, thereby leaving
only the main peak behind. The black open arrow highlights

052403-5



WOO-RAM LEE, RYAN SCOTT, AND V. W. SCAROLA PHYSICAL REVIEW A 109, 052403 (2024)

FIG. 4. Simulation results demonstrating the convergence boost of QGE by filtering. The results are compared for different choices of the
Trotterization order, (a)–(d) p = 1 and (e)–(h) 4; the broadening, (a) and (e) η/h = 0.02 and (b) and (f) 0.3; and the filter F ∈ {FL,FG}. The
top panels show the spectral function A versus frequency ω for the TFIM with N = 4 and J/h = 0.4. Colored solid (dashed) curves are the
results for F = FL (FG). All cases show convergence to the exact form (top black curve) for increasing circuit depth D. The upper bound of
D is effectively reduced by increasing η. The black vertical dotted line refers to the exact gap �exact . The tilted black open arrow shows how A
evolves as η increases for (a) and (b) D = 140 and (e) and (f) 230. The bottom panels indicate (c) and (g) gap-estimate error εgap and (d) and (h)
spectral line-shape error εspect (solid symbols), bounded above by εbound (open symbols), as a function of D for different choices of F and η. In
all simulations, 1024 measurement shots were used, and other parameters are θ j = 0.27π (uniform over sites), δω = η/4, and L = 2�7h/δω�
[46], where �x� is the ceiling function of x.

D = 140 (230) for p = 1(4), allowing a direct comparison
between the plots with various η but fixed D.

Either choice of p or F can change the characteristics
of convergence while the overall trends hold. To show this
clearly, we measure different types of errors from the data and
compare them. First, we define the gap-estimate error:

εgap = |� − �exact|
�exact

, (37)

where � is a gap estimate obtained using the protocol outlined
in Sec. III C and �exact is the exact gap as a reference for a
small-size system. Figures 4(c) and 4(g) show the evolution
of εgap with D. For each choice of (F , η), we can estimate the
circuit depth cutoff D̃c where εgap reaches the lower bound.
Plateaus arise since the frequency resolution is limited by 2η.
We find that D̃c decreases for larger η, with an extra shift
depending on the choice of F : D̃c,G < D̃c,L. Such a distinction
occurs because the Gaussian line shape is more concentrated
at the center than the Lorentzian case, efficiently suppressing
interference with neighbor peaks. Meanwhile, the effect of
higher p is not as impressive as we might expect. Comparing
the p = 4 data with p = 1 data, for example, D̃c is slightly
lower (higher) for η/h = 0.02 (0.3). In fact, this is nothing
but what Fig. 1 implies: For η → 0, p = 4 outperforms p = 1
in the entire time domain, while that is not the case for large η

since p = 1 improves more than p = 4 at long times.

Another useful measure is the spectral line-shape error
(as a square root of the measure known as the coefficient of
determination in statistics [48]):

εspect =
√∑L−1

m=0[A(ωm) − Aexact (ωm)]2∑L−1
m=0[A(ωm) − Aav]2

, (38)

where Aav = 1
L

∑L−1
m=0 A(ωm). Since Eq. (37) measures error

only in the main peak center, error may accidentally be re-
duced when satellite peaks dwell around the main peak for
small D. Equation (38), by contrast, accumulates errors in
the spectral line shape over the entire frequency domain and
therefore provides a more consistent measure. Figures 4(d)
and 4(h) show the counterpart to Figs. 4(c) and 4(g) for dif-
ferent choices of (p,F , η). The overall trend of εspect matches
that of εgap, but without plateaus since the resolution of εspect

is not affected by η.
Last, it is useful to derive the upper bound of Eq. (38). A

starting point is the Trotter truncation error ||F (tn)[ρM (tn) −
ρexact (tn)]|| with the upper bound [Eq. (22)]. Since the spectral
norm || · || plays a key role in deriving the upper bound, we
define Â(ωm) by replacing Tr[·] in Eq. (31) with || · ||. Then
the upper bound of Eq. (38) has the form

εbound =
√∑L−1

m=0[Â(ωm) − Âexact (ωm)]2∑L−1
m=0[Â(ωm) − Âav]2

, (39)
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FIG. 5. Simulation results demonstrating the operating range of filtering. The results are compared for different choices of the broadening,
(a) η/h = 0.02, (b) 0.1, (c) 0.2, and (d) 0.3, and the filter F ∈ {FL,FG}, but with Trotterization set to the order p = 1. The top and middle
panels show the spectral function A versus frequency ω for the TFIM with N = 4 and J/h = 0.4 but different F . Here, circuit depth D is set to
(a) 40 000, (b) 1400, (c) 400, and (d) 140 (satisfying the spectral line-shape error εspect < 10−3), and A’s are sampled with uniformly selected
input orientations θl/π = l/50 and l ∈ [0, 24] (irrespective of sites). For each θl , starting with the initial guess for the energy gap �0 (black
vertical dotted line), we search for the peak center close to �0 within the window [�0 − δ�/2, �0 + δ�/2] by progressively increasing δ�

(gray shading). The bottom panels show the gap-estimate error εgap and the peak height Agap = A(ω = �) as a function of θ for both FL and
FG. Red shading indicates the unfavored zone where we set εgap � 10−2. Other parameters are the same as in Fig. 4.

where Â(ωm) = Âexact (ωm) + δÂ(ωm), with{
Âexact

δÂ

}
= δt

2π
Re

∑
s=±

L−1∑
n=0

eiωmtsnFn

{
1

C(p)t p+1
sn /M p

}
, (40)

and Âav = 1
L

∑L−1
m=0 Â(ωm). Open symbols in Figs. 4(d) and

4(h) represent Eq. (39), revealing a trend similar to the solid
symbols, but with overestimation in the whole range of circuit
depth.

B. Operating range of filtering

We just showed that the filtering method can be leveraged
to improve the convergence of the hybrid QGE algorithm but
only with the input unitary UI(�θ ) fixed to a certain form. In
fact, UI(�θ ) provides a control knob that allows further investi-
gation of our algorithm. Importantly, the filter has an operating
range designed to maximize simulation performance. Specifi-
cally, η in the filter is bounded above by spectral resolution set
by the algorithm and model. Tuning �θ in UI(�θ ) can impact the
resolution by changing relative peak heights. Here, we map
out the spectral functions with different ratios of peak heights
for different choices of �θ to numerically confirm the upper
bound of η.

Figure 5 shows simulation results for N = 4 and J/h = 0.4
for different choices of η/h ∈ {0.02, 0.1, 0.2, 0.3}. Here, we
use p = 1 Trotterization. The top and middle panels, assuming
θ j = θ , i.e., uniform input orientation over sites j, indicate

that tuning θ ∈ [0, π/2] emphasizes different peaks in A for
the choice of FL (top) and FG (middle). The gap is estimated
starting with an initial guess �0 (indicated by an arrow) and
progressively increasing the search window δ� (gray shad-
ing). The bottom panel shows the gap-estimate error εgap as a
function of θ . According to Eq. (35), a gap estimate without
filtering is invariant under any choice of θ . This is exemplified
by Fig. 5(a), where 2η is far below peak-to-peak resolution
and thus εgap is constant over θ . Meanwhile, filtering broadens
each peak by 2η [see Eq. (36)], thus allowing an overlap
between neighbor peaks. The tail of neighbor peaks gener-
ally forms a slanted background that shifts the peak center
of interest here. Figures 5(b)–5(d), in contrast to Fig. 5(a),
reveal a nonuniform modification of εgap over θ , growing
for increasing η. Specifically, the modification actively arises
in the regime of θ close to zero, where the neighbor peak
centered at ω/h ≈ 1.845 grows and eventually dominates the
main peak. For larger η, a minor peak is buried more easily
under the background, thus shifting the peak center from one
location to another and lifting εgap. The choice of F also
affects the above argument since it sets the background in a
different form. In Fig. 5(d), for example, FG more effectively
decreases εgap than FL for θ � 0.2π , while the reverse is true
for θ < 0.2π . As mentioned before, this is attributed to the
fact that the Gaussian line shape is more concentrated at the
center than that in the Lorentzian case. Appendix C describes
a toy model to support our argument on peak-center shift.
Last, the plots for Agap, estimated at ω = �, show that one can
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FIG. 6. Stages of construction for the gap-based phase diagram of a quantum paramagnet. In the hybrid QGE simulation, we fix the
Trotterization order p = 1, the filter F = FG, and the broadening η/h = 0.3. Each column shows progress on convergence for increasing
Trotter depth, (a) M = 5, (b) 10, (c) 15, and (d) 35. The top panels show finite-size scaling of the energy gap for the TFIM. Open symbols
indicate the samples of gap estimates {�N,J/h} for N = 2–5 and J/h = 0.2 (red), 0.4 (blue), 0.6 (green), and 0.8 (orange). Vertical fence symbols
set error bounds [� − η,� + η] around �. Solid symbols are an extrapolation to N → ∞ by linear regression (dotted lines). Colored shading
shows the confidence bands with a 95% confidence level. The bottom panels show the gap-based phase diagram of a quantum paramagnet
(J < h). Solid symbols are the extrapolated data points at N → ∞ (obtained from the top panels). Gray shading shows the interpolation of the
confidence band edges (at N → ∞) for different J/h. The black dashed line indicates the exact gap �

(N→∞)
exact . Other parameters are the same as

in Fig. 4.

safely avoid the unfavored zone in θ [red shading in Figs. 5(c)
and 5(d)] by maximizing the peak height. As discussed later,
this condition can serve as a protocol to construct a phase
diagram.

C. Finite-size scaling of a quantum paramagnetic gap

Previously, we demonstrated the performance of the hy-
brid QGE algorithm using shallow quantum circuits in the
filtering method and discussed its validity. Our algorithm
can be combined with postprocesses to calculate important
physical quantities such as a (gap-based) phase diagram. As
a benchmark, we construct the phase diagram of a quantum
paramagnet (J < h) and compare the simulation result with
the exact solution. Here, we focus on the case with p = 1,
F = FG, and η/h = 0.3.

Construction is organized into three stages. First, from the
simulation, we obtain the sample of gap estimates {�N,J/h} for
N ∈ {2, 3, 4, 5} and J/h ∈ {0.2, 0.4, 0.6, 0.8}. For η compara-
ble to the spectral resolution [see Figs. 5(c) and 5(d)], we need
a protocol for addressing the range of θ where εgap stays mini-
mal. As discussed before, a sufficient condition is to maximize
the height of a target peak. Open symbols in the top panels of
Fig. 6 indicate data sampled in the above manner. Next, for
each choice of J/h, we use linear regression to extrapolate
the data for N ∈ {2, 3, 4, 5} to N → ∞ (solid symbols). The
result is accompanied by confidence bands (colored shading)
that represent misalignment of data points. In the last stage,
the extrapolated data are rearranged to construct the phase
diagram of a quantum paramagnet. The bottom panels in
Fig. 6 show the results. Here, the black dashed lines compare
with the exact gap �

(N→∞)
exact = 2|h − J| (see Appendix B).

Finally, we confirm convergence of the phase diagram
for increasing Trotter depth M. The columns in Fig. 6 are
arranged in ascending order of M [in the same way as in
Fig. 4(b)]. For small M, � is off from �exact, and confidence
bands are comparable to or exceed error bounds 2η (depend-
ing on the choice of J/h), while, for increasing M, they safely
move inside 2η and eventually converge to �exact.

V. CONCLUSION

We developed a hybrid QGE algorithm using a filtered time
series. We found, using the filter, exponential improvement of
circuit depth at long times and mapped out the role of various
input states to reveal the operating range of filtering. We
finally showed how our protocol can be used. We constructed
the gap-based paramagnetic phase diagram for a minimal spin
model, which demonstrates how a quantum device can offer
memory advantage in finite-size extrapolation of energy gaps.

Further improvements by, e.g., Cartan decomposition [49]
and Bayesian methods [16,17,50] could allow applications
to many-body models requiring more gates to implement
time evolution. Our approach can also be applied to hybrid
DMFT algorithms [32–34], in which speedup and noise re-
silience were recently observed [34], and a recent proposal
for a measurement-based hybrid algorithm for eigenvalue
estimation [51].
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APPENDIX A: EXPLICIT FORMS OF EQS. (23)–(25)
FOR THE TFIM

Here, using Eq. (27) for the TFIM, we explicitly calculate
the spectral norms in Eqs. (23)–(25). The commutators of H1

and H2 of interest can be successively derived as follows:

[H1, H2] = 2iJh
N−2∑
j=0

(
σ

y
j σ

z
j+1 + σ z

j σ
y
j+1

)
, (A1)

[H1, [H1, H2]] = −8J2h

⎡
⎣N−1∑

j=0

σ x
j +

N−3∑
j=0

σ z
j σ

x
j+1σ

z
j+2

⎤
⎦, (A2)

[H2, [H1, H2]] = −8Jh2
N−2∑
j=0

(
σ

y
j σ

y
j+1 − σ z

j σ
z
j+1

)
, (A3)

[H1, [H1, [H2, [H1, H2]]]] = [H1, [H2, [H1, [H1, H2]]]]

= −64J3h2

⎡
⎣N−2∑

j=0

σ
y
j σ

y
j+1 −

N−4∑
j=0

σ z
j σ

x
j+1σ

x
j+2σ

z
j+3

⎤
⎦, (A4)

[H2, [H1, [H2, [H1, H2]]]] = [H2, [H2, [H1, [H1, H2]]]]

= 64J2h3
N−3∑
j=0

(
σ

y
j σ

x
j+1σ

y
j+2 − σ z

j σ
x
j+1σ

z
j+2

)
. (A5)

All others are connected with Eqs. (A2) and (A3):

[Hγ , [H1, [H1, [H1, H2]]]] = 8J2[Hγ , [H1, H2]], (A6)

[Hγ , [H2, [H2, [H1, H2]]]] = 16h2[Hγ , [H1, H2]], (A7)

where γ ∈ {1, 2}. In the above derivation, we used the iden-
tities [AB,C] = A[B,C] + [A,C]B for matrices A, B, and C,
[σα, σ β ] = 2iεαβγ σ γ , and {σα, σ β} = 2δαβI , with δαβ being
the Kronecker delta, εαβγ being the Levi-Civita symbol, and
α, β, γ ∈ {x, y, z}. For the spectral norms of Eqs. (A1)–(A7),
we apply the properties ||cA|| = |c|||A||, ||AB|| � ||A|| ||B||,
||A + B|| � ||A|| + ||B||, and ||eiA|| = 1 if A = A†, where A
and B are matrices and c is a scalar. It turns out that the upper
bounds of the commutators are summarized as

||[H̃1, H̃2]|| � 4(N − 1), (A8)

||[H̃γ , [H̃1, H̃2]]|| � 16(N − 1), (A9)

||[H̃γ , [H̃λ, [H̃λ̄, [H̃1, H̃2]]]]|| � 128(N − 2), (A10)

||[H̃γ , [H̃λ, [H̃λ, [H̃1, H̃2]]]]|| � 128λ(N − 1), (A11)

where H̃1 = H1/|J|, H̃2 = H2/|h|, γ , λ ∈ {1, 2}, and λ̄ = 1(2)
if λ = 2(1). Equations (A8)–(A11) allow the derivation of the
upper bounds of Eqs. (23)–(25) and therefore Eq. (22).

FIG. 7. Energy spectrum of the TFIM for N = 2–5 as a function
of φ[= cot−1(J/h)]. Here, we have a ferromagnet (paramagnet) at
φ = 0 (π/2), and the red arrow indicates the lowest energy gap of
the quantum paramagnet (π/4 < φ � π/2).

APPENDIX B: REFERENCE FORMULAS
FOR THE ENERGY GAP OF THE TFIM

Here, we derive the reference formulas for the energy
gap of the TFIM using (1) perturbation theory and (2) exact
methods.

1. Initial guess of the energy gap

Figure 7 shows the energy spectrum of the TFIM for N =
2–5, where the lowest energy gap of interest is indicated by
the red arrow. In the hybrid QGE algorithm, gap estimation
generally requires an initial guess for the energy gap. For
this purpose, we consider a generally applicable procedure:
perturbation expansion [41]. In our case, we perturb in powers
of J/h to find the approximate energy gap of the quantum
paramagnet. For the TFIM with N spins, a spin flip from
the paramagnetic ground state

∏N
j=1 |0〉z

j requires excitation
energy 2h − 2J for N − 2 bulk spins and 2h − J for two
boundary spins. Averaging excitation energies over all spins
yields an approximate formula for the energy gap:

�0/h = [(N − 2)(2h − 2J ) + 2(2h − J )]/(Nh)

= 2[1 − (1 − 1/N )J/h], (B1)

which is reduced to the case with periodic boundaries [41],

�0/h|N→∞ = 2(1 − J/h). (B2)

This expression for �0 shows how we derived the initial guess
for the gap and also establishes that perturbative methods can,
in other models, be used to define the guess.

2. Exact energy gap

The TFIM is tractable in the limit N → ∞. An exact
solution provides a reference to compare with the simu-
lation result. Using the Jordan-Wigner transformation [52],
σ x

j = 1 − 2c†
j c j and σ z

j = −∏
k< j (1 − 2c†

kck )(c j + c†
j ), the

TFIM is mapped to the Kitaev model describing a p-wave
superconductor:

HK = −w

N−1∑
j=1

(c†
j c j+1 + c†

j c
†
j+1 + H.c.) − μ

N∑
j=1

δn j, (B3)

where w(= J ) is the hopping or pairing energy, μ(= −2h)
is the chemical potential, and δnj = c†

j c j − 1/2. Assuming
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FIG. 8. (a) Spectral function for two peaks separated by δ/�0 =
0.6 with different choices of the broadening η but fixed relative
height λ = 0.5. Here, all plots are normalized, and the vertical
black dotted lines indicate the reference to the peak centers at
ω = �0, �0 + δ for η → 0. (b) Peak-center shift |�′

0 − �0|/�0 as a
function of η for different choices of λ and the filter F ∈ {FL,FG}.

periodic boundaries, HK can be diagonalized by the Bogoli-
ubov transformation [41]. The result yields the exact form of
the upper and lower energy bands:

E±
k = ±

√
J2 + h2 − 2Jh cos(ka), (B4)

where k is momentum and a is the lattice constant. The lowest
energy gap between two bands is therefore given by the energy
difference at k = 0:

�
(N→∞)
exact = E+

k=0 − E−
k=0 = 2|h − J|, (B5)

consistent with Eq. (B2) in the paramagnetic regime (J < h).

APPENDIX C: TOY MODEL FOR PEAK-CENTER SHIFT

Here, we describe a toy model for peak-center shift to
support the argument in Sec. IV B. In general, peak centers
are subject to shifting when the separation between peaks is
comparable to the broadening of each peak. To show this, we
model the spectral function for two peaks separated by δ:

A(ω) ∝ A0(ω − �0) + λA0(ω − �0 − δ), (C1)

where we set

A0(ω) =
⎧⎨
⎩

1
π

η

ω2+η2 , Lorentzian,

1√
2πσ

e− ω2

2σ2 , Gaussian,
(C2)

describing an isolated Lorentzian (Gaussian) peak associated
with the filter FL(G); η = σ

√
2 ln 2; and λ controls the second

peak height. Figure 8(a) shows how much the original line
shape is modified when two peaks overlap in the tail for
different choices of η but fixed λ. In Fig. 8(b), we focus on
the first peak at ω = �0 and measure the peak-center shift
|�′

0 − �0|/�0 as a function of η for different choices of λ.
The result implies that (1) the peak-center shift is enhanced
for increasing η, (2) it is enhanced (suppressed) for increasing
(decreasing) symmetry between peaks, and (3) FL(G) induces
a larger shift than FG(L) for 2η/δ � (�) 0.85.
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