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A topological quantum number, the Witten index, characterizes supersymmetric models by probing for
zero energy modes and the possibility of supersymmetry breaking. We propose an averaging method to
infer the Witten index in quantum analog simulators. Motivated by recent work on Rydberg atoms trapped
in optical tweezer arrays, we consider a related supersymmetric XXZ spin model. We show how to infer the
Witten index from open-system averaging and numerically demonstrate its topological robustness in this
model. Our Letter defines a route for quantum analog simulators to directly identify many-body topological
physics.
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Introduction—Theories with supersymmetry (SUSY)
were first constructed to generalize relativistic quantum
field theories to help address issues within the standard
model of particle physics [1,2]. SUSY methods were
then applied to make important contributions to the
study of nonrelativistic quantum systems, e.g., SUSY
breaking mechanisms [3–6]. In particular, N ¼ 2 SUSY
Hamiltonians can be written as Ĥ ¼ Q̂†Q̂þ Q̂Q̂†, where
Q̂ and Q̂† are nilpotent, non-Hermitian supercharges. Ĥ
comes with an operator F̂ defined by the commutators:
½F̂; Q̂� ¼ −Q̂ and ½F̂; Q̂†� ¼ Q̂†. Such models have impor-
tant properties [4]: all energy eigenvalues satisfy E ≥ 0 and
all E > 0 states have pairwise degenerate SUSY partners
sorted by the even or odd parity of F̂ eigenvalues. SUSY is
unbroken when Ĥ has at least one E ¼ 0 state, otherwise it
is spontaneously broken. For supercharges constructed
from nonlocal symmetries, the existence of zero-energy
states has crucial implications for underlying topological
physics.
ForN ¼ 2 SUSY, there are only two topological indices

based on F̂: Tr½ð−1ÞF̂� [4] and Tr½F̂ð−1ÞF̂� [7]. We focus on
the regularized Witten index [4]:

W ¼ Tr
�ð−1ÞF̂ expð−β0ĤÞ�; ð1Þ

which was designed as a mathematical probe of sponta-
neous breaking of SUSY, where β0 ≥ 0 is a cutoff para-
meter. W is a spectral topological [8] index (equivalent to
the Euler characteristic [6]). W identifies E ¼ 0 states
since the trace over E > 0 states vanishes for any β0,
leaving W to be nonzero only if there are E ¼ 0 state(s).
Furthermore, finite-sized system trends in W persist to the

thermodynamic limit, thus demonstrating its utility for
finite-size simulation [4] compatible with existing technol-
ogy. In addition, W is well defined in strongly correlated
SUSY models, making it an intrinsically useful probe of
quantummany-body models which are otherwise nontrivial
to characterize.
The Witten index can be indirectly related to known

models of quantum matter. For instance, W is related to
observables in noninteracting models of two-dimensional
Pauli paramagnets [6,9] (where F̂ is magnetization) and
translationally invariant Majorana fermions (where F̂ is
particle number) [10]. Exact SUSY is also known to exist in
certain strongly correlated XXZ spin chains [11,12] (where
F̂ is a combination of magnetization and chain length), as
discussed below. Additionally, SUSY is studied in Rabi
models in quantum optics [13], where W is related to the
parity of excitations, and in Bose-Fermi mixtures [14].
Computationally, determining W lies in the hardest

complexity class, number P complete [15]. With limited
analytical techniques for quantum many-body systems,
analog simulation would provide a promising alternative
route to study W. However, despite its broad applicability,
both in high-energy and condensed matter systems, W
remains a mathematical tool unrelated to an observable
obtained from a physical averaging process and lacks a
general protocol connecting it to experiment.
The disconnect betweenW and experiments has become

more pressing with the advent of atomic, molecular, and
optical (AMO) quantum analog simulators [16–21].
Recently, ion trap experiments have implemented a non-
interacting SUSY model [22] and it has been demonstrated
that Rydberg atoms trapped in optical lattices can probe
kink dynamics of a SUSY model of interacting fermions
[23], as well as the emergent SUSY at critical points
[24–26]. SUSY-based cooling with neutral atoms in optical*Contact author: hsable@vt.edu
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tweezers has also been proposed [27]. In particular, atoms
in optical tweezer arrays show immense potential for
quantum simulation, with recent experiments demonstrat-
ing arrays with up to 6100 atoms [28] and hold times on the
order of hours [29,30]. Furthermore, atomic levels defining
pseudospins allow these arrays to effectively simulate a
large class of many-body spin models [31–40].
Here, we propose a general method for quantum analog

simulation of many-body SUSY physics. We address the
issue of experimentally detecting the signatures of W by
defining a normalized Witten index, eW, using an average
with an engineered energy density, σ̂. If σ̂ samples SUSY
partners in an unbiased manner, it reveals key aspects ofW
while directly connecting to physical averaging. We apply
our proposed method to many-body SUSY in an XXZ spin
model [12] as a test bed. We show that Rydberg atoms
in tweezer arrays are surprisingly relevant for quantum
analog simulation of this SUSY model with ongoing
experiments [31–40].
Probing nonlocal quantities at (or near) integrable points,

e.g., W in SUSY models, makes achieving closed-system
thermalization challenging [41]. We therefore adopt an
open-system framework motivated by quantum collisional
models [42–46] to test the observability of eW using
numerical simulations. This open-system averaging proto-
col should, for any SUSY theory, be grand canonical with
respect to fluctuations in F̂, ensuring sampling of both
SUSY partners for an unbiased evaluation of eW. As can be
seen from the example SUSY models discussed, in general,
F̂ depends on particle number and/or system size, and
calculating eW involves grand canonical averaging (GCA)
over varying system sizes or particle number, which is
nontrivial for analog simulators as these are nearly isolated
systems. Consequently, we introduce an experimentally
suitable method of approximating GCA by sampling over
fixed-size canonical averages. This approximation works at
low temperatures as the size-changing system-reservoir
interactions can be neglected. This approach is helpful
for GCA with closed AMO simulators such as Rydberg
atoms [19], neutral atoms in optical lattices [47] and ion
traps [21]. We numerically demonstrate that eW displays
remarkable topological robustness. Our method sets the
stage for quantum analog simulators to quantitatively study
many-body topological effects in SUSY models and study
conditions under which SUSY breaks.
Normalized Witten index—We propose a counterpart to

Eq. (1), applicable to quantum simulation of any SUSY
model Ĥ. If F̂ is an observable, we define

eW ¼ Tr
�ð−1ÞF̂σ̂�; ð2Þ

where σ̂ is a normalized distribution with weights σ, such
that (i) σ̂ yields weight at E ¼ 0 and (ii) σ̂ has equal
sampling probability of some E > 0 SUSY partners. A
general distribution over system eigenstates can bias one

degenerate partner over another [48], necessitating (ii). An
energy distribution meeting these conditions can be engi-
neered by the system exchanging energy with a reservoir
through repeated interactions. As a convenient example, we
consider dynamics that drive σ̂ to the thermal distribution,
expð−βĤÞ=Z, where β is the inverse temperature of a
reservoir and Z is the partition function. However, thermal-
ization is not a requirement for σ̂, and any steady state
distribution meeting the above conditions would work.
Once F̂ is identified and its eigenvalues observed,

averaging its parity ð−1ÞF̂ using σ̂ yields eW. Counting this
parity naturally excludes excited states in SUSY models
since they cancel in eW. But the presence of an asymmetry in
counts will indicate the presence of one or more zero-energy
modes and reflects in eW, as shown in Fig. 1(a). Figures 1(b)
and 1(c) show schematics of two different averaging pro-
tocols for engineering σ̂, as described below.
SUSY XXZ model—To demonstrate our method we

consider the XXZ Hamiltonian of an L-site spin chain [12]:

ĤXXZ ¼
XL−1
i¼1

h
J
�
Ŝþi Ŝ

−
iþ1 þ H:c:

�þ ΔŜzi Ŝ
z
iþ1

i
−h

�
Ŝz1 þ ŜzL

�þ ð3L − 1Þ=4; ð3Þ

where Ŝþi ðŜ−i Þ are the spin 1=2 raising (lowering) operators
and Ŝzi is the z component of the spin at site i. We consider

FIG. 1. (a) A schematic histogram of measurements of the
parity of F̂ used to build eW, generic to any SUSY model.
(b) GCA: The system consists of a generic spin chain of variable
length coupled to a bath at inverse temperature β, with color
gradient from blue to red for increasing energies. The interaction
with the bath changes the length and energy of the chain. One
such spin chain, of size L0, is shown. (c) Quasigrand canonical
averaging (QGCA): Spin chains of different sizes, each interact-
ing individually with ancillae drawn from a thermal ensemble,
schematically shown by a histogram representing the probability
distribution over the chain’s excitation energies depicted by
arrows of colors consistent with (b). At each interaction, an
ancilla corresponds to one of these energies.
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open boundaries such that edge sites experience the energy
shift h. The last term is an energy cost to add sites and
serves as a chemical potential. The Hamiltonian in Eq. (3)
exhibits SUSY at ðJ;Δ; hÞ ¼ ð−1; 1; 1=2Þ [11,12].
Equation (3) is an excellent approximation to recent

experiments realizing the XXZmodel using Rydberg atoms
with resonant dipole-dipole interactions trapped in optical
tweezer arrays [31,32,34,37,39]. Typical spin-spin inter-
action energy scales are ∼1–100ℏ × kHz. A differential
van der Waals shift between interacting Rydberg atoms
leads to an intrinsic edge bias which can be modeled as
an edge magnetic field h [33,37], allowing for the
physical realization of Eq. (3) with existing Rydberg
technologies [19,31,32,34–37,39,52].
Figure 2 illustrates the SUSY spectra of HXXZ. For this

model,

F̂ ¼
�
L −

XL
i¼1

Ŝzi

�
=2: ð4Þ

The eigenvalues of F̂ are the number of down spins, nd.
Degenerate SUSY eigenstates correspond to chains of
different L and have an even or odd nd. The nonlocal
supercharges for this model take a state with quantum
numbers L and nd to one with Lþ 1 and nd − 1 thus
motivating the conserved quantum number [12]:

N ≡ Lþ nd þ 1: ð5Þ

Using N, one finds two types of sectors: N ¼ 3j and
N ≠ 3j, for any integer j. In general, the spectrum has only
one E ¼ 0 state for every N ≠ 3j, and no E ¼ 0 state when
N ¼ 3j. This model therefore has unbroken SUSY and
W ¼ ð−1ÞbN=3c [12]. Consequently, determining W for

finite sized systems provides information about the thermo-
dynamic limit [4]. This property makes eW particularly
accessible with existing quantum simulation technology as
very large system sizes are not required.
Open system dynamics—We consider an open system

framework that generates the target distribution σ̂ through
a discretized time evolution. The physical intuition for
this approach comes from collisional models where open
system dynamics is modeled as a series of discrete
interactions between the system and ancillae forming a
reservoir [42–45,49,50].
Recent work on ancilla atoms for midcircuit measure-

ments on Rydberg-based qubits [53–61] can be leveraged
to create reservoirs for many-body quantum analog sim-
ulation [62,63]. These setups enable independent driving of
ancilla qubits that can be adapted to simulate open system
dynamics. In our Letter, the ancilla-system interactions are
approximated using a Monte Carlo Metropolis method
[46,51], where every time step corresponds to creating or
annihilating an excitation of energy resonant with the
energy gaps of Eq. (3). This approximation holds provided
the scattering time between the reservoir and system, τ,
occurs much faster than system dynamics, i.e., τ ≪ jℏ=Jj.
We employ two averaging protocols, one that is ideal and
one that is approximate but experimentally relevant.
Our first protocol is GCA, shown in Fig. 1(b), where the

system-reservoir interactions change both E and L. While
excitations that vary the size of the chain are difficult to
realize experimentally, this method serves to provide an
ideal reference case. It yields the distribution σ̂ with
weights σðEÞ, dependent only on E, thereby satisfying
condition (ii).
Our second approach is QGCA, which approximates the

length-changing system-reservoir interactions but is more
experimentally accessible. We consider a set of spin chains
of different L, each interacting with a dissipative environ-
ment composed of ancillae, as shown in Fig. 1(c). The
ancillae energies are engineered such that the system-
ancilla interactions induce transitions among the many-
body energy eigenstates of the spin chain, driving each
chain towards its canonical thermal state. We average over
the canonical distributions for different length chains in the
ensemble. This approach is quasigrand canonical, as
variations in L are not generated by the interaction with
the bath.
One recently proposed scheme to produce canonical

thermalization dynamics uses damped, driven ancillae
weakly coupled to the spin system [63]. The ancillae
energy spacing is swept across the system’s many-body
spectrum, avoiding fine-tuning the ancilla spacing to each
gap. At most, L ancillae are required for thermalization, but
less may be required if the system-ancilla couplings
produce ergodic dynamics [63].
Estimating eW with QGCA is a good approximation to

GCA, provided that the reservoir temperature is below the

(a) (b)

FIG. 2. Energy of Eq. (3) versus length at the SUSY point for
fixed N. Panel (a) shows the N ¼ 9 case with no E ¼ 0 state, and
thus W ¼ 0. Panel (b) shows the case with the E ¼ 0 mode
present (star) for N ¼ 10 and thereforeW ≠ 0. The lowest SUSY
partners with opposite parities determined by nd are encircled.
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system energy gap to the ground state. Since the canonical
partition functions for all the system sizes approach unity at
low temperatures [48], the degenerate eigenstates are
sampled with equal probability. Note that sampling over
the eigenstates of individual chains itself leads to the
length-dependent weights σðE;LÞ, violating (ii). How-
ever, at low temperatures, eW computed using σðE;LÞ,
when summed over different L, is in excellent agreement
with the estimate of eW computed using σðEÞ. This
approximation breaks down as the temperature approaches
the energy gap [48] resulting in a distribution that does not
equally sample SUSY partners. This method of approxi-
mating the GCA with the QGCA is general, provided
temperature is low enough that the spectrum below it is
nearly identical across system sizes [48].
Dynamics and estimates of eW—We numerically compare

steady state estimates of eW using both GCA and QGCA.
Figure 3(a) plots the dynamics of eW for different N sectors
using GCA. For N ¼ 3j, the energy spectrum has no E ¼ 0

eigenstates, and hence W ¼ eW ¼ 0 [Fig. 2(a)]. Our sim-
ulations yield this expected result in the steady-state
regime. For N ≠ 3j, we also find that eW reduces to W ¼
ð−1ÞbN=3c at long times (dashed lines). See Ref. [48] for
lower N values.
Figure 3(b) shows the same as (a) but with QGCA and

we see both results converge to the same value. The E ¼ 0
mode in the spectrum of every chain in the ensemble makes
the partition functions of different system sizes equal at low
temperatures. However, if the temperature is increased
above the energy gap, considerable differences between
the two approaches arise [48]. To maintain the accuracy of
the QGCA, we require that the temperature decreases as
system size increases [48]. However, since eW for this
model does not scale with system size, a small-scale

simulation not requiring such low temperatures is sufficient
to determine eW, once the ð−1ÞbN=3c pattern emerges.
We find that, at temperatures below the gap, the Witten

index can be inferred from QGCA. The QGCA technique
physically corresponds to the steady-state measurements of
nd on separate spin chains (of different L), and tabulating
the outcomes of the parity as shown in Fig. 1(a). These
measurement results can then be combined to find eW.
Note that the eW extracted from a distribution at high
temperature, respecting both (i) and (ii), is equivalent to the
one extracted under QGCA at low temperature, up to the
normalization Z.
Implementing our protocol in an experiment requires

careful consideration of the timescales. In Rydberg plat-
forms, the XXZ model is engineered through external
driving. For instance, fast driving fields are needed to
establish a rotating frame in Ref. [33] or Floquet pulses in
Ref. [39]. We assume that these driving fields set the
shortest time scale ≲J−1. These fast-driving fields must be
interleaved with system-reservoir interactions that, as we
find, take a suitably long time to implement thermalization,
∼102J−1. Finally, we assume that external sources of
decoherence of the many-body quantum state occur on
the longest timescales.
Topological protection—We now demonstrate topologi-

cal protection of eW. We use GCA for the results in this
section (See Ref. [48] for results using QGCA). Such
protection implies that quantum simulators can study
SUSY in the XXZ model even in the presence of imperfec-
tions in the Hamiltonian parameters about the SUSY point.
Figure 4 depicts j eW − eWSUSYj as Δ is varied across the

SUSY point. For the N ¼ 3j case, away from the SUSY
point, eW is nonzero due to degeneracy breaking. In Fig. 4(I)
we find a nonvanishing slope in the linear dependence of
j eW − eWSUSYj onΔ. To see this, we expand j eW − eWSUSYj up
to first order in Δ − 1:

j eW − eWSUSYj ¼ cNβjΔ − 1j; ð6Þ

where cN is a numerical factor proportional to the slope of
the degeneracy splitting δN with Δ. To see the splitting we
compare part of the spectrum at (away from) the SUSY
point in Fig. 4(a) [Fig. 4(b)]. See Ref. [48] for discussion
over finite size effects and degeneracy splitting.
Figure 4(II) plots the case N ≠ 3j where the zero

energy mode leads to topological protection of eW. We
find j eW − eWSUSYj to be suppressed by orders of magnitude
compared to the N ¼ 3j case, implying robustness. To
illustrate this case, the energy spectrum at [Fig. 4(c)] and
away [Fig. 4(d)] from the SUSY point is shown.
Figure 4(d) shows the zero energy mode shifted to a

nonzero value. However, at low temperatures, this non-
degenerate mode has nearly a unity probability, and eW
remains insensitive to the breaking of the degeneracy of

(a) (b)

FIG. 3. eW as a function of iterations n for different N sectors at
β ¼ 5. Each iteration can be interpreted as a time step of duration
Oð1=JÞ in the XXZ model. The steady-state values agree with the
equilibrium Gibbs distribution values depicted by dashed lines.
Note that N ¼ 9 (blue) and N ¼ 12 (magenta) cases average to
zero. The largest absolute error in the steady-state values is of the
orderOð10−3Þ in (a) andOð10−2Þ in (b). The results are generated
by averaging over 50 000 Monte Carlo runs [48].
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higher energy modes. The first order expansion is

j eW − eWSUSYj ¼ cNβ expð−βE1ÞjΔ − 1j; ð7Þ

where E1 is the lowest E > 0 state in the SUSY spec-
trum [48]. Comparing Eqs. (6) and (7), we see that the
factor expð−βE1Þ is responsible for the vanishing slope and
thus the topological protection, thereby explaining the
negligible variation in eW at low temperatures.
Our numerical results of j eW − eWSUSYj are in good

agreement with the analytical results in Eqs. (6) and (7)
[48]. A similar topological protection of eW manifests when
J is varied [48]. But we find that topological protection
breaks down for temperatures near the gap, as is expected
from Eq. (7) [48]. This topological protection demonstrates
that the SUSY is robust against fluctuations provided they
are smaller than the gap.
Summary and outlook—Symmetries encoded in super-

charges can connect to observables, F̂, which, when

processed with appropriate averaging protocols, reveals
SUSY. We proposed a normalized Witten index as an
observable and have constructed a corresponding averaging
protocol. We studied the protocol in an XXZ spin model
relevant for ongoing experiments with Rydberg atom
arrays. Through our open-system numerical simulations
we have demonstrated observability of the normalized
Witten index and topological protection arising from zero
energy modes.
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