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Abstract

The fractional quantum Hall (FQH) effect at the filling factor n ¼ 5/2 was discovered in GaAs heterostructures more than
35 years ago. Various topological orders have been proposed as possible candidates to describe this FQH state. Some of them
possess non-Abelian anyon excitations, an entirely new type of quasiparticle with fascinating properties. If observed,
non-Abelian anyons could offer fundamental building blocks of a topological quantum computer. Nevertheless, the nature
of the FQH state at n ¼ 5/2 is still under debate. In this chapter, we provide an overview of the theoretical background,
numerical results, and experimental measurements pertaining to this special FQH state. Furthermore, we review some recent
developments and their possible interpretations. Possible future directions toward resolving the nature of the 5/2 state are
also discussed.
Key points
• The 5/2 fractional quantum Hall state was discovered more than 35 years ago but the nature of the physics underlying the

state remains under intense debate.

• The exciting possibility of a paired 5/2 state hosting exotic excitations with non-Abelian braid statistics led to considerable
effort to prove their existence.

• Strong numerical and experimental evidence suggests that the 5/2 state arises from pairing between composite fermions but
the precise nature of the topological order defining the paired state remains unsettled.

• We review the culmination of experimental and theoretical studies on the 5/2 state and discuss possible future directions for
further inquiry.
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Notations and acronyms
C Chern number
ECoul ¼ e2=«ℓ0 Coulomb energy
ħvc ¼ eB/mc Cyclotron energy
J ¼P1�i�j�N(zi − zj) Jastrow factor
k ¼ ECoul/ħvc Landau level mixing parameter
f0 ¼ h/e Magnetic flux quantum
ℓ0 ¼ ffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

Magnetic length
PSLL Projection operator to the second electronic Landau level
CFT Conformal field theory
DMRG Density matrix renormalization group
FQH Fractional Quantum Hall
KH Thermal Hall conductance
LL Landau level
N Number of electrons
Q Monopole strength in the spherical geometry
QPC Quantum point contact
S Topological shift
SET Single electron transistor
w Quantum well thickness
zk ¼ xk−iyk Position of k-th electron in the xy-plane
n ¼ rf0/B Landau level filling factor
n Electron filling factor
Introduction

The discovery of the FQH effect in two-dimensional semiconductor heterostructures started a new chapter in condensed matter
physics Tsui et al. (1982). For a recent review on the basic concepts in FQH physics, see Papi�c and Balram (2022). In contrast to the
conventional wisdom from Landau-Ginzburg theory, different quantum Hall states cannot be distinguished by spontaneously
broken symmetries Wen (2004). Furthermore, early theoretical work suggested that the low-energy excitations in a FQH liquid are
neither bosons nor fermions. Instead, they possess fractional charges Laughlin (1983a) and fractional braiding statistics Arovas et al.
(1984), Halperin (1984) [see also the review article by Feldman and Halperin, 2021], which are known as anyons Leinaas and
Myrheim (1977), Wilczek (1982). This special type of excitation turns out to be the basic ingredient in the formulation of
topological order, which provides an effective description of different FQH states and distinguishes them by specifying the sets of
possible anyons the FQH states can support Wen (2004). Note that the existence of fractional statistics has received strong support
from very recent experiments Bartolomei et al. (2020), Nakamura et al. (2020), Kundu et al. (2022).

Many FQH states at different filling factors have been observed in various materials. Nearly all of them have odd denominators.
For a summary of the observed FQH states, readers may refer to the lists in Pan et al. (2008) and Hidalgo (2022). Among them, the
FQH state at filling factor n ¼ 5/2 (dubbed as the 5/2 state below) in GaAs-GaAlAs quantum wells has attracted a tremendous
amount of attention since its discovery Willett et al. (1987). This historical result is shown in Fig. 1. The observation of the 5/2 state
was surprising. It is a FQH state in the second LL (we define the lowest LL as the first LL). Also, it was the first FQH state with an
even-denominator filling factor being observed in a single layer system.

The 5/2 state has been challenging to understand, as compared to other FQH states in the lowest LL which usually have
odd-denominator filling factors. In particular, entirely new topological orders have been proposed as possible candidates to
describe this special FQH state. Interestingly, some of them host non-Abelian anyons which may be useful in topological quantum
computation Das Sarma et al. (2005), Kitaev (2003), Nayak et al. (2008).

Different types of experiments have been proposed and performed to probe the nature of the 5/2 state. Meanwhile, numerical
simulation is another essential tool to study the problem. Evidence from both sources strongly suggests that the 5/2 state possesses
non-Abelian topological order. Nevertheless, which one (or perhaps what combination of topological orders) is actually realized in
real samples is still under considerable debate. A new twist on this 35-year old problem arose thanks to the exciting yet puzzling
results from recent experiments Banerjee et al. (2018), Dutta et al. (2022a, 2022b) that we will discuss below. In order to resolve the
apparent conflict between the recent experimental and existing numerical results, various scenarios have been proposed Asasi and
Mulligan (2020), Feldman (2018), Lian and Wang (2018), Ma and Feldman (2019a), Mross et al. (2018), Simon (2018a), Simon
(2018b), Simon and Rosenow (2020), Wang et al. (2018).

In this chapter, we provide an overview of the theoretical background, numerical studies, and experimental findings pertaining
to the 5/2 state in GaAs heterostructures. Previous review articles on the same topic can be found in Jiang and Wan (2019), Lin et al.
(2014), Peterson (2012), Schreiber and Csáthy (2020), Willett (2013). We will highlight recent developments in the past 5 years
and outline possible future directions. Before diving into the details of the 5/2 state, it is worthwhile to mention that FQH states at



Fig. 1 The first experimental observation of the FQH state at n ¼ 5/2 revealed by plotting both the Hall (rxy) and longitudinal (rxx) resistivity versus perpendicular
magnetic field. The figure is taken from Willett R, Eisenstein JP, Störmer HL, Tsui DC, Gossard AC, and English JH (1987) Observation of an even-denominator
quantum number in the fractional quantum Hall effect. Physical Review Letters 59: 1776–1779. https://doi.org/10.1103/PhysRevLett.59.1776 with permission.

Table 1 Summary of observed half-integer FQH states in different materials.

Material Filling factors References

Monolayer GaAs 5/2, 7/2 Willett et al. (1987), Pan et al. (1999b)
Eisenstein et al. (2002), Liu et al. (2011b)

Bilayer GaAs 1/2 Suen et al. (1992), Eisenstein et al. (1992)
Monolayer ZnO 3/2, 5/2, 7/2, 9/2 Falson et al. (2015, 2018)
Monolayer WSe2 3/2 Shi et al. (2020)
Monolayer graphene –1/2, 1/2 Zibrov et al. (2018)
Bilayer graphene −5/2, −1/2, 3/2, 5/2, 7/2 Ki et al. (2014), Kim et al. (2015)

Zibrov et al. (2017), Li et al. (2017)
Huang et al. (2022)

Note that additional half-integer FQH states have been observed in higher Landau levels in monolayer graphene Kim et al. (2019), which are not listed here.
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different halfinteger filling factors have been observed in GaAs heterostructures and other materials. They are summarized in
Table 1. For a recent review on half-integer FQH states in graphene-based systems, see Apalkov and Charkaborty (2023). Note that
an anomalous quantized plateau at n ¼ 3/2 has been observed in monolayer GaAs systems with gate-defined confined regions
Fu et al. (2019), Hayafuchi et al. (2022), Yan et al. (2022). However, this plateau is believed to emerge from a larger filling factor in
the bulk. Thus, its nature might be very different from a genuine half-integer FQH state.

We note the present chapter is different from (most) other chapters, as it covers a topic that is currently being studied very
actively, and this ongoing research will likely continue for quite some time. We thus do not have the final word, but instead try to
provide some balanced guidance to people who are interested in this subject, in particular those who may want to contribute to it in
the future. An unintended consequence of this is the chapter is considerably longer than (most) other chapters.
Theoretical background

When a two-dimensional electron gas is placed under a strong perpendicular magnetic field, the electron kinetic energy is quantized
into LLs. Consequently, the kinetic energy of electron is quenched, and the energetics is dominated by the strong correlation
between electrons Girvin and Yang (2019). A minimal Hamiltonian for the FQH regime is Laughlin (1983b):

https://doi.org/10.1103/PhysRevLett.59.1776


328 Fractional quantum Hall effect at the filling factor n ¼ 5/2
H ¼ e2

eℓ0
PSLL

X
i<j

1
jzi −zjjPSLL (1)

where PSLL projects the repulsive Coulomb interaction between electrons into a single LL, zj ¼ xj–iyj denotes the complex
coordinates of electrons in the xy-plane (we assume the magnetic field points upward), e is the electron charge, and e is the
dielectric constant of the host semiconductor. Eq. (1) assumes an infinitely thin plane and an infinite LL splitting (no LL mixing).
The former can be easily fixed by including a finite extent of the electron wave function along the perpendicular direction (often
referred to as sub-band wave function) when calculating the effective 2D Coulomb potential, while the latter can be corrected by
modifying the form of the interaction Das Sarma and Pinczuk (1996), Jain (2007). Furthermore, Eq. (1) assumes no electron spin.
If we include the spin degree of freedom we must also include a Zeeman term in Eq. (1). For a detailed discussion on different
energy scales in FQH states in GaAs heterostructures, and the corresponding justification for Eq. (1), interested readers may refer to
Papi�c and Balram (2022).

Eq. (1) contains only a single interaction term. As a result, standard perturbation theory becomes inapplicable in studying FQH
physics, which is solely determined by n (once the interaction is fixed). The seminal work by Jain introduced the theory of composite
fermions which is particularly intuitive in revealing how n controls the physics Jain (1989a).
Theory of composite fermions

In a first approximation, a composite fermion is formed by attaching an even number 2p of magnetic flux quanta to an electron Jain
(2007). Here, we only focus on the situation in which each composite fermion carries two magnetic flux quanta (p ¼ 1). The
number density of electrons in the two-dimensional electron gas satisfies r ¼ nB/f0, where f0 ¼ h/e is the magnetic flux quantum.
Due to flux attachment, the composite fermions experience a reduced effective magnetic field Beff. This is illustrated in Fig. 2. Under
the mean field approximation,

Beff ¼ B −2rf0 ¼ B 1 −2nð Þ: (2)

Since Beff and B are different but the number density of electrons equals that of the composite fermions, the effective filling factor of
composite fermions differ from the filling factor of electrons. Then by analogy to the integer quantum Hall effect, the integer
quantum Hall state of composite fermions filling nCF effective LLs (or the so-called L levels) corresponds to the FQH state of
electrons at n ¼ nCF/(2nCF � 1). Here, the sign � denotes the direction of the residual magnetic field experienced by the composite
fermions. If it is parallel (anti-parallel) to the original field B, then the sign is +(−).

At half filling of the lowest LL, n ¼ 1/2, Eq. (2) predicts that the composite fermions experience a zero average magnetic field.
This supports the absence of a FQH state at n ¼ 1/2 in monolayer GaAs heterostructures. On the other hand, the ground state of
electrons in a half-filled LL is a composite fermion Fermi liquid with a well-defined Fermi surface Halperin et al. (1993), Kalmeyer
and Zhang (1992). Both the existence of composite fermions and the formation of a composite fermion Fermi surface at n ¼ 1/2
have received strong experimental support Goldman et al. (1994), Hossain et al. (2020), Kamburov et al. (2014), Kang et al. (1993),
Smet et al. (1996), Willett et al. (1993, 1999).

A possible starting point for studying FQH states at n > 1 is to simply focus on the partially filled LL(s). The above would then
suggest that at n ¼ 5/2 ¼ 2 + 1/2 there would exist a gapless state and no FQH. But then how can we understand the presence of an
energy gap to support the observed Hall plateau at n ¼ 5/2? Previous approaches such as the hierarchical construction Haldane
(1983), Halperin (1984) cannot directly explain gapped FQH states at even-denominator filling factors.

Wave function construction is central to the composite fermion ansatz and can be used to make progress. The microscopic flux
attachment process defining the composite fermion wave function at total magnetic field B from an effective field at Beff is given by
Jain (1989a):
Fig. 2 Illustration of composite fermions (CFs). Left panel: Electrons in an external magnetic field B. Right panel: Composite fermions formed by attaching two
magnetic flux quanta to each electron. The effective magnetic field experienced by the composite fermions is Beff, which is different from B. The number of arrows
indicates the number of magnetic flux quanta in the system.
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CB ¼ J2pcBeff (3)

whereCB is an ansatz state of Eq. (1), J2p is a Jastrow factor attaching an even number of vortices (2p) to each electron, and cBeff is a
fermionic wave function at an effective field Beff that results from projection into a single LL Jain and Kamilla (1997). In the
symmetric gauge we have, for N particles:

J ¼
YN
i<j

zi −zj
� �

(4)

where we see that J vanishes if two particles occupy the same location. J implements vortex attachment Read (1989, 1994,
1996) which can be approximated by flux attachment in effective theories. Here we have used the terms vortex and flux
attachment interchangeably with the understanding that they are not exactly equivalent Murthy and Shankar (2003), Jain
(2007).

CB describes a large class of possible ansatz ground states because we are free to choose cBeff. In the simplest setting
we assume that cBeff describes weakly interacting fermions. For example, Eq. (3) reduces to the Laughlin wave function at
n ¼ 1/(2p + 1) Laughlin (1983a) if we set cBeff to be an integer filled state of composite fermions at effective filling of nCF ¼ 1
Jain (1989a, 2007). We therefore see that the Laughlin states form a subset of states within the composite fermion wave
function formalism.

A large class of states at half filling are also captured by CB. The composite fermion Fermi liquid Halperin et al. (1993) arises
when we assume a filled Fermi sea at zero effective field (nCF ! 1) Rezayi and Read (1994) for cBeff. Here we have a gapless state
that accurately captures the essential physics of the half-filled lowest LL Jain (2007). But in the following we discuss gapped
examples of cBeff. relevant for even filling, specifically paired states, that yield energetically competitive ansatz wave functions for
half filling of the second LL.
Paired quantum Hall states

The even denominator in the filling factor indicates that the 5/2 state may originate from bosonic entities formed by electrons or
composite fermions. Different from the original description with strongly correlated electrons, the effective interaction between
composite fermions is much weaker. Similar to the case of n ¼ 1/2, a composite fermion Fermi liquid is formed when the system has
filling factor 5/2. However, the effective interaction between composite fermions becomes weakly attractive at n ¼ 5/2 and leads to a
Cooper instability Scarola et al. (2000a). It is believed that the pairing between composite fermions gives rise to the gapped FQH
state at n ¼ 5/2 and other half-integer filling factors. This idea is illustrated in Fig. 3. This motivates ansatz states where cBeff is an
eigenstate of an effective pairing Hamiltonian Read and Green (2000).

The pairing Hamiltonian of Bardeen-Cooper-Schrieffer (BCS) takes the form:

HBCS ¼
X
k

ℏ2k2

2m� −m
� ��

c{kck +
1
2

D�
kc−kck + Dkc

{
kc

{
−k

� 	i
: (5)

Here, ck and ck
{ are the second quantized operators for composite fermions, with the index k labeling themomentum.We assume the

composite fermions are spin-polarized in this section and have thus suppressed the spin index. The symbols m� and m label the
effective mass and chemical potential of composite fermions, respectively. Importantly, bothm� and m are non-perturbative and due
solely to the Coulomb interaction between electrons.

Knowing that composite fermions can form Cooper pairs does not completely determine the nature of the 5/2 state. Different
pairing channels with different gap functions Dk lead to different possible phases Read and Green (2000). Which one or what
combination of these states are actually realized in a realistic experimental sample may depend sensitively on the microscopic
details and experimental conditions. Notice that we use the terminologies, “states” and “topological orders” (sometimes abbrevi-
ated as orders) interchangeably in the following discussion.
Fig. 3 Pairing of composite fermions in the n ¼ 5/2 and other half-integer FQH states. The red dots are electrons. Each of them is attached to two magnetic flux
quanta marked by black arrows and form a composite fermion. These composite fermions form Cooper pairs (grouped by the red ovals in the figure), that gives rise
to a gapped phase at half-integer filling factors.
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Pfaffian (Moore-Read) state

The Pfaffian state (also known as the Moore-Read state) has the following wave function Moore and Read (1991):

CPf zif gð Þ ¼ J2Pf
1

zi −zj

� �
exp −

X
i

jzij2
4ℓ20

 !
: (6)

The attachment of two flux quanta to each electron is implemented by the Jastrow factor, which also fixes the filling factor to be
n ¼ 1/2. The Gaussian factor is ubiquitous in every quantumHall wave function, which originates from the eigenfunctions of LLs in
the symmetric gauge Prange and Girvin (1987). This factor will be dropped in the following discussion. Finally, the Pfaffian factor is
defined as

Pf
1

zi −zj

� �
¼ A

1
z1 −z2

1
z3 −z4

⋯
� �

, (7)

where A denotes anti-symmetrization over the set of coordinates zi. This “explains” the name of the Pfaffian state.
The Pfaffian wave function has several important features. The right hand side of Eq. (7) can be understood as a real-space BCS

paired state at zero effective magnetic field Read and Green (2000), Schrieffer (1999). CPf is therefore gapped flowing to the
composite fermion BCS gap. CPf is also an exact zero energy ground state of an idealized three-body Hamiltonian Greiter et al.
(1992), which will be further discussed in Section “Overview of numerical results”.

Eq. (6) is an ansatz state for the incompressible (gapped) state of electrons half filling of the lowest LL. To describe the 5/2 state,
we assume the electrons completely fill the lowest two LLs (one with spin up and another with spin down polarizations), and the
Pfaffian wave function describes the fully polarized electrons in the half filled second LL only Greiter et al. (1992), Moore and Read
(1991), Read and Green (2000). Note that wave functions for FQH states in higher LLs can be generated systematically by acting LL
raising operators on a wave function defined in the lowest LL Girvin and Yang (2019). For this reason we can always represent a
wave function in any LL by its lowest LL counterpart, which is what we do throughout this chapter unless noted otherwise.
Conformal field theory description
Historically, the wave function in Eq. (6) was introduced in Moore and Read (1991) via conformal field theory (CFT). CFT has since
become a powerful tool in studying quantum Hall physics Hansson et al. (2017). For details on CFT, readers may refer to the
textbook Francesco et al. (1997). Here, we will only outline the basic ideas and state the necessary results directly.

For the Pfaffian state, the CFT description actually involves two different CFTs. The first part is a compactified holomorphic
boson f(z), which is responsible for the correct filling factor at n ¼ 1/2 for the half-filled LL. The second part is the holomorphic
Ising CFT which has three different primary fields as summarized in Table 2. In particular, there is a holomorphic Majorana fermion
field c(z) which has the scaling dimension 1/2. The electron operator is defined as

bCe zj
� � ¼ c zj

� �
exp 2if zj

� �
 �
, (8)

which has scaling dimension 3/2 indicating that it indeed represents a fermion. The wave function in Eq. (6) can now be interpreted
as the correlation function between electron operators:

CPf zj
� � � ¼YN

j¼1

bCe zj
� � bObg zj

� �D E
: (9)

In the above equation, the background charge operator bObg zj
� �

ensures that the correlation function does not vanish. It is also
responsible for reproducing the correct Gaussian factor in the wave function.
Table 2 Primary fields in the holomorphic Ising CFT (top table) and their fusion rules (bottom table).

Primary field Scaling dimension

I 0
c 1/2
s 1/16

� I c s

I I c s
c c I s
s s s c + I
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After defining the suitable electron operator in the CFT approach, all possible quasiparticles in the quantum Hall state can
be deduced systematically. For example, consider the quasiparticle described by the CFT operator

bCqp zð Þ ¼ s zð Þeiaf zð Þ, (10)

where a is a constant that needs to be determined. The operator product expansion between the quasi-particle and the electron
operators must be single-valued (or without any branch cut). This condition leads to a ¼ n0 + 1/2, with n0 being an arbitrary integer.
In particular, n0 ¼ 0, −1 corresponds to quasiparticles with charges �e/4. The corresponding CFT operator has scaling dimension
1/8, which is the most relevant operator among all possible operators for quasiparticles in the Pfaffian state. Interestingly, the fusion
rule s � s ¼ c + I indicates that these quasiparticles are non-Abelian anyons. This exciting feature has motivated many of the
ongoing studies of 5/2 state, in the hope of finding its potential applications in topological quantum computation Kitaev (2003),
Nayak et al. (2008).

Edge theory
FQH states that are gapped in the bulk must nonetheless become gapless at the edges Halperin (1982). Effective low-energy theories
have been used to model gapless edge states Wen (2004). Also, the bulk-edge correspondence suggests that different bulk
topological orders usually have correspondingly different edge structures Cano et al. (2014), Dubail and Read (2011), Qi et al.
(2012), Swingle and Senthil (2012), Yan et al. (2019). The knowledge of edge physics can provide invaluable insight into the nature
of the underlying quantum Hall states. Hence, various types of experiments have been proposed and performed to probe the edge
structure of different quantum Hall states. For a review of these edge probes, see Heiblum and Feldman (2020).

For the Pfaffian state, its edge structure can be deduced from the aforementioned CFT approach. Similar to the Laughlin state, the
Pfaffian edge possesses a chiral Bose mode fc. The subscript c indicates that it is a charge mode. Its chirality, which corresponds to
the downstream direction of propagation, is fixed by the direction of the external magnetic field. In addition, the Pfaffian edge has a
chiral Majorana fermion mode c that is copropagating with the Bose mode Milovanovi�c and Read (1996), Wan et al. (2006), Wen
(1993). As a result, the Pfaffian edge is described by the Lagrangian density,

ℒPf ¼ −
2
4p

∂xfc ∂t + vc∂xð Þfc + ic ∂t + vn∂xð Þc: (11)

The symbols vc and vn denote the speeds of the charge Bose mode and neutral Majorana fermion mode, respectively. Notice that a
chiral Bose field and a chiral Majorana fermion field are present in both the bulk and the edge of the Pfaffian state. This feature is a
manifestation of the bulk edge correspondence. In numerical simulations, vc and vn were found to satisfy vc � vn due to Coulomb
interaction Wan et al. (2008)—see Section “Overview of numerical results”. The charge density of the edge is completely governed
by the Bose mode, given by r(x) ¼ − e∂xfc/2p. Its corresponding edge channel contributes to an electrical Hall conductance
sxy ¼ e2/2h. At n ¼ 5/2, there are actually two more edge channels originating from the two completely filled LLs. Both of them are
described by chiral Bose modes different from fc. Each of these integer channels contributes sxy ¼ e2/h, so the electrical Hall
conductance 5e2/2 h at n ¼ 5/2 follows. Unless otherwise specified, we will ignore the two integer channels in this section. The edge
structure for the Pfaffian state is shown in Fig. 4.

Weak pairing of composite fermions
As previously mentioned, the FQH state at n ¼ 5/2 is believed to originate from the pairing between composite fermions. The
Pfaffian state in particular postulates a weak pairing phase [i.e., m > 0 in Eq. (5)] of composite fermions in the p- wave angular
momentum channel Read and Green (2000). The corresponding gap function in Eq. (5) takes the form Dk ¼ D0(kx + iky). From this
perspective, the Pfaffian factor in the wave function can be interpreted as the BCS wave function in position space representation.
Furthermore, the Chern number of this weak pairing phase was evaluated to be C ¼ 1; an explicit calculation can be found in the
Appendix A of Ma (2019). This indicates that the Pfaffian state is topologically nontrivial. It is reflected by the existence of a chiral
Majorana fermionmode on the edge, which is also consistent with the breaking of time reversal symmetry in the p-wave BCS pairing
channel.
Pfaffian PH-PfaffianAPf (clean) APf (disordered)

Fig. 4 Edge structures of the Pfaffian, anti-Pfaffian (abbreviated as APf in the figure), and PH-Pfaffian states. Here, solid lines and dashed lines denote Bose modes
and Majorana fermion modes, respectively. The chirality of the overall charge mode fc is defined as the downstream direction (pointing to the right). In the
anti-Pfaffian state, the description of its edge structure depends on disorder. In the case of clean edge, there are two Bose charge modes f1 (integer mode) andf1/2

(fractional mode). These two modes can be coupled by disorder. For sufficiently strong disorder, the edge is driven to the disorder-dominated fixed point and
being described by an overall charge mode and three upstream Majorana fermion modes. Note that we have neglected the two additional integer Bose modes due to
the two lower LLs which are present in the actual edge of the 5/2 state.
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Anti-Pfaffian state

When the effect of LL mixing is negligible, the particle-hole transformation is an exact symmetry in a half-filled LL. Thus, the
particle-hole conjugate of the Pfaffian state provides another viable candidate to describe the 5/2 state. This motivated the
introduction of the anti-Pfaffian state in Levin et al. (2007) and Lee et al. (2007). In principle, the wave function of the
anti-Pfaffian state can be obtained systematically from particle-hole conjugating the Pfaffian wave function in Eq. (6) Lee et al.
(2007). In fact, as discussed in Section “Overview of numerical results”, since most numerical studies consider the limit where
particle-hole symmetry is exact, both the Pfaffian and anti-Pfaffian states are trivially related—they are particle-hole conjugate states
to one another. Nevertheless, more recent numerical work has undertaken studies of the anti-Pfaffian state under various
conditions.

Using the parton theory introduced in Jain (1989b), the 22111parton state was proposed to describe the 5/2 state (Balram et al.,
2018a). It was discovered that the 22111 parton state describes the same phase, and has a high numerical overlap with the wave
function of the anti-Pfaffian state Balram et al. (2018a). Meanwhile, the parton state is much easier to use in numerics.

The anti-Pfaffian state has a more complicated edge structure than the Pfaffian. First, there is an integer Bose mode circulating on
the edge in the downstream direction. Due to the particle-hole transformation, the chiralities of the Bose mode and the Majorana
fermion mode on the original Pfaffian edge are reversed. As a result, there are three different edge modes in the anti-Pfaffian state as
illustrated in Fig. 4. In a real experimental sample, disorder exists and couples the edge modes. When this coupling is sufficiently
strong, the anti-Pfaffian edge is driven to the disorder-dominated phase, which consists of a single downstream charge Bose mode
and three upstream neutral Majorana fermion modes Lee et al. (2007), Levin et al. (2007). Furthermore, these Majorana fermion
modes exhibit an emergent SO(3) symmetry and have the same velocity vn: As a result, the edge can be described by

ℒApf ¼ −
2
4p

∂xfc ∂t + vc∂xð Þfc + i
X3
j¼1

cj ∂t −vn∂xð Þcj: (12)

The anti-Pfaffian state also hosts non-Abelian anyons with charges �e/4. Since the edge is not maximally chiral, the scaling
dimensions of CFT operators for quasiparticles are non-universal. The e/4 anyon has a minimum scaling dimension of 1/4,
which is achieved in the aforementioned disorder-dominated phase. The scaling dimension is larger than the value of 1/8 in the
Pfaffian state. This difference turns out to be important when one considers tunneling experiments discussed in Section “Early
experiments and evidence for/against non-Abelian states”.

In the weak pairing picture, the anti-Pfaffian state is interpreted as the superconducting phase arising from f-wave pairing
between composite fermions. The gap function in Eq. (5) takes the form Dk ¼ D0(kx−iky)

3. Note that the corresponding
Bogoliubov-de Gennes (BdG) Hamiltonian has Chern number C ¼ �3: This explains the difference between the numbers of chiral
Majorana fermion edge modes in Pfaffian and anti-Pfaffian states.
PH-Pfaffian state

Recently, the particle-hole Pfaffian (PH-Pfaffian) state has attracted a considerable amount of attention as a candidate 5/2 state in
GaAs heterostructures. It was originally introduced in the theory of Dirac composite fermions, which is a theory that preserves
particle-hole symmetry explicitly in the half-filled LL Son (2015, 2016). In particular, the PH-Pfaffian state can be viewed as arising
from s-wave pairing between Dirac composite fermions. This translates into a p-wave pairing (with the opposite chirality as the
Pfaffian) between ordinary composite fermions, in which the corresponding BdG Hamiltonian has Chern number C ¼ �1:

Different from the Pfaffian and anti-Pfaffian states, the PH-Pfaffian state is particle-hole symmetric. It is worth noting that a similar
state known as the time-reversal symmetry preserving Pfaffian T -Pfaffianð Þwas introduced to describe the T -invariant surface state
of topological insulators Bonderson et al. (2013), Fidkowski et al. (2013). Nevertheless, the realization of PH-Pfaffian order does
not require the system itself to preserve particle-hole symmetry Zucker and Feldman (2016)—after all, LL mixing and other effects
present in real experimental systems explicitly break particle-hole symmetry.

The edge structure of the PH-Pfaffian state can be deduced from its particle hole symmetry. After a particle hole transformation,
the resulting edge theory has central charge 1−c, with c being the central charge of the original edge theory. In order for the edge to be
particle-hole symmetric, c needs to be 1/2. Furthermore, there must be a downstream Bose mode fc, such that its corresponding
edge channel leads to the correct electrical Hall conductance of sxy ¼ e2/2h. Therefore, the remaining edge mode must be an
upstream Majorana fermion mode c Hence, the PH-Pfaffian edge is described by the Lagrangian density,

ℒPH-Pf ¼ −
2
4p

∂xfc ∂t + vc∂xð Þfc + ic ∂t −vn∂xð Þc: (13)

The edge structure is shown in Fig. 4.
After deducing the edge structure, it is straightforward to formulate the CFT description of the bulk. The electron operator with

the appropriate chirality and scaling dimension is bCe zð Þ ¼ c zð Þ exp 2if zð Þ½ �: Here, z denotes the complex conjugation of z.
Physically, the anti-holomorphicity of c originates from its upstream chirality at the edge. By evaluating the correlation function



Fractional quantum Hall effect at the filling factor n ¼ 5/2 333
between electron operators, a possible wave function for the PH-Pfaffian state was written down explicitly in Zucker and Feldman
(2016):

CPH-Pf zif gð Þ ¼ J2Pf
1

zi − zj

� �
: (14)

To be studied in numerics, one needs to project the wave function into a single LL, which turns out to be subtle. An alternative wave
function can be obtained based on the argument of negative flux attachment Jolicoeur (2007). However, there is limited numerical
support for either wave function to describe a gapped phase after the lowest LL projection. This issue will be discussed more in
Section “Overview of numerical results”.
Unified description: Kitaev’s 16-fold way

Based on different approaches such as trial wave functions, CFT, parton theory, and particle-hole conjugation, other possible
candidates for describing FQH states at half-integer filling factors were introduced. They are listed in Table 3. Some of them may be
irrelevant to the 5/2 state in monolayer GaAs quantum wells, but they may describe different half-integer states in other materials
listed in Table 1. For example, the spin-unpolarized version of Halperin-331 state is believed to describe the FQH state at n ¼ 1/2 in
bilayer systems and wide quantum wells. It has been studied widely numerically He et al. (1993), Peterson and Das Sarma (2010),
Peterson et al. (2010), Scarola et al. (2010), Scarola and Jain (2001), Yoshioka et al. (1989). Also, the 221 parton state may describe
Table 3 Possible topological orders in the 16-fold way for the spin-polarized 5/2 state, and their predicted experimental signatures and topological shifts.

C Name References ge/4 kH Even-odd effect? Shift

0 K ¼ 8 (i, ii) 1/8 3 No 3
1 Pfaffian (iii, iv) 1/4 3.5 Yes 3
–1 PH-Pfaffian (v, vi) 1/4 2.5 Yes 1
2 331 (i) 3/8 4 Maybe 5
−2 113 (vii, viii) 3/8 2 Maybe −1
3 221 parton/ SU(2)2 (ix, x) 1/2 4.5 Yes 5
−3 Anti-Pfaffian/ 22111 parton (ix, xi, xii, xiii) 1/2 1.5 Yes −1
4 / / 5/8 5 Maybe /
−4 Anti-331 (xiv) 5/8 1 Maybe /
5 / / 3/4 5.5 Yes 7
−5 Anti-SU(2)2 (xiv) 3/4 0.5 Yes −3
6 / / 7/8 6 Maybe /
−6 / / 7/8 0 Maybe /
7 / / 1 6.5 Yes 9
−7 / / 1 −0.5 Yes −5
8 / / 9/8 7 Maybe /

Here, the possibilities of edge reconstruction and Majorana gapping are ignored. The first column shows the Chern numbers of the topological orders. Topological orders with odd
(even) are non-Abelian (Abelian). On the edges of these topological orders, there are chiral Majorana fermion modes. The orders with have upstream neutral modes. Since a pair of
Majorana fermion modes can be combined into a neutral Bose mode, there is no unpaired Majorana fermion mode at even. In the second and third columns, we provide the usual
names of the topological orders in the existing literature if any (see the end of this caption for the key of the references). The smallest possible charge anyon has the charge e/4.
When the edge is in the disorder-dominated phase, the fourth column gives the tunneling exponents for the e/4 anyons. These values are boldfaced when the e/4 anyon is the most
relevant quasiparticle. The fifth column lists the thermal Hall conductance in units of k0 ¼ p2kB

2 T/3h. They are half-integers (integers) for non-Abelian orders (Abelian orders).
All non-Abelian orders should demonstrate the even-odd effect in a Fabry-Pérot interferometer. Abelian orders (except the K ¼ 8 state) may also show the same effect if they possess
flavor symmetry. These are listed in the sixth column. The last column shows the topological shifts for different topological orders, which are important for numerical studies performed
on the spherical geometry. Note that the shifts for Abelian orders here are for the spin-polarized states. For the spin-unpolarized Halperin-331 state, the shift is 3 but not 5 Wen (1993).
For Abelian orders with the shifts are unpublished. A brief overview of different experimental techniques are given in Section “Early experiments and evidence for/against non-Abelian
states”, “Transport and optics: Bulk energy gap”, “Density dependence”, “Disorder, mobility, and sample design”, “In-plane magnetic field and sample tilt impacts the bulk gap”,
“Optical probes of the bulk gap”, “Surface acoustic waves, geometric resonance transport, light scattering, and Knight shift: Spin polarization”, “Surface acoustic waves and geometric
resonance”, “Transport”, “Light scattering”, “Knight shift”, “Tunneling with QPCs and SETs: Quasiparticle charge and edge exponents”, “QPC tunneling”, “SETs”, “Edge exponents
from tunneling conductance”, “Noise in QPCs: Upstream neutral mode”, “Interferometry: Quasiparticle charge and braiding”, “Interferometry and charge”, “Interferometry and
braiding”, “Summary of early experimental findings”, “Recent surprises and puzzles”, “Experimental results”, “Possible interpretations”, “Bulk edge correspondence: PH-Pfaffian”,
“Disorder induced Pf-APf domain walls”, “Partial equilibration on anti-Pfaffian edges”, “Recent and ongoing developments”, “Temperature dependence of ℓeq”, “Interface
experiments”, “Summary of recent developments”, “Future directions”. For a detailed discussion, see Ma and Feldman (2019b). The labels for the references in which the topological
orders were introduced are (i) Halperin (1983); (ii) Wen and Zee (1992a); (iii) Moore and Read (1991); (iv) Greiter et al. (1991); (v) Son (2015); (vi) Zucker and Feldman (2016);
(vii) Yang and Feldman (2014); (viii) Yang (2015); (ix) Jain (1989b); (x) Jain (1990); (xi) Levin et al. (2007); (xii) Lee et al. (2007); (xiii) Balram et al. (2018a); (xiv) Yang and
Feldman (2013).
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half-integer states in graphene systems Kim et al. (2019), Wu et al. (2017). Given that these topological orders were introduced via
different approaches, it is desirable to have a unified and systematic description.

The possible types of topological orders or phases in the paired quantum Hall state depend on the spin polarization of electrons
and the associated composite fermions. Experimental results suggest that the 5/2 state observed in GaAs samples at the electron
density r 	 (2–3) � 1011 cm−2 are spin polarized (see Section “Early experiments and evidence for/against non-Abelian states”).
This conclusion is also supported from numerical work (see Section “Overview of numerical results”). Furthermore, a recent
geometric resonance measurement performed very close to n ¼ 5/2 has provided strong evidence of a fully spin-polarized Fermi sea
for composite fermions Hossain et al. (2018).

There are an infinite number of possible channels for pairing composite fermions which would, at first, appear to give an
infinitely long list of possible topological orders for describing the 5/2 state. But the classification of possible theories is constrained.
The classification of topological orders is based on the types of anyons they possess Wen (2004). When two topological orders have
the same set of anyons (i.e., all fractional charges, braiding statistics, and fusion rules are the same), then they are equivalent.
Following the above definition, there are only 16 possible topological orders from pairing spin-polarized composite fermions. This
property is known as Kitaev’s 16-fold way Kitaev (2006). Therefore, most of the existing candidates for describing the spin-polarized
5/2 state are particular members in the 16-fold way Ma and Feldman (2019b). The original work by Kitaev considered topological
orders with neutral excitations only, however, charge excitations exist in the 5/2 state. It was shown that all of these topological
orders can host charge �e/4 anyons. The Chern number C of the topological order carries important information, which will be
discussed below. Based on the 16-fold way description, various experimental signatures for different topological orders were
predicted and summarized in Table 3.
Properties of anyons
C can be identified as the Chern index in the original Kitaev’s 16-fold way, such that the properties of anyons in each topological
order can be inferred. The eight orders with even C are Abelian, whereas the eight with odd C are non-Abelian. In the latter case,
quasiparticles with charges (2 m + 1)e/4 (where m 2 ℤ) are non-Abelian anyons. For the former case, there are two different types (or
flavors) of Abelian anyons for quasiparticles with charges (2 m + 1)e/4. The scaling dimensions of the electron operator, and the
operators for quasiparticles with charges �e/4 and � e/2 are Ma and Feldman (2019b)

De ¼ 3
2
, De=2 ¼ 1

4
, and De=4 ¼ |C |+1

16
: (15)

These results are useful in analyzing quasiparticle tunneling conductance experiments. In particular, the low-temperature electrical
conductance, in the idealized case, obeys s 	 T2g–2, where g ¼ 2D is the tunneling exponent Wen (2004) and T is temperature.
The value of g depends on the type of quasiparticles participating in the tunneling process, which can have different scaling
dimension D for different candidate states for the 5/2 FQH state.
Edge theory
The Chern number C also specifies the number and chirality of the Majorana fermion modes on the edge of the topologically
ordered phase. Suppose the edge is equilibrated by disorder, then its appropriate description consists of an overall charge mode fc

and a collection of Majorana fermion modes cj. Since a pair of counter propagating Majorana fermion modes can be gapped out or
become localized due to electron tunneling on the edge, we can assume all cj have the same chirality. In addition, these cj exhibit an
emergent SO jC jð Þ symmetry in the low temperature limit (i.e., the symmetry breaking terms are irrelevant in the renormalization
group sense) and have the same velocity nn: For more details, see Yang and Feldman (2013, 2014). From the above discussion, the
edge of a topologically ordered phase with Chern number C is described by Feldman and Halperin (2021), Ma and Feldman
(2019b):

ℒ ¼ −
2
4p

∂xfc ∂x + nc∂xð Þfc + i
XjC j

j¼1

cj ∂t + sgn Cð Þnn∂x½ �cj: (16)

Since a pair of cj can be combined into a complex fermion mode and becomes a Bose mode upon bosonization, there are jC j=2
neutral chiral Bose modes when C is even. Hence, Abelian orders such as the unpolarized Halperin-331 state do not have unpaired
Majorana fermion modes on the edge. The existence or absence of unpaired Majorana fermion modes can be probed in the thermal
Hall conductance experiments. The edge structures are different for topological orders with C and C + 16m where m 2 ℤð Þ, but the
16-fold way implies that they have the same set of anyons. Hence, they are equivalent.

Edge reconstruction andMajorana fermion gapping lead to additional candidates for describing the 5/2 edge state. These include
the Majorana-gapped edge-reconstructed Pfaffian state and the Majorana gapped anti-Pfaffian state Overbosch and Wen (2008).
However, their realization in real GaAs samples is not supported by tunneling conductance experiments or upstream noise
measurements (see Section “Early experiments and evidence for/against non-Abelian states”).



Fractional quantum Hall effect at the filling factor n ¼ 5/2 335
Bulk collective excitations

Incompressible FQH states must be gapped at all wavevectors. It turns out that lowest LL FQH states at filling nCF/(2pnCF � 1)
possesses a low-lying intra-LL branch of collective modes that were first identified numerically at 1/3 filling Haldane and Rezayi
(1985). These modes are accurately captured by the composite fermion wave functions.

Quasiparticle-quasihole pairs inserted into cBeff define composite fermion magnetoexcitons. Composite fermion magnetoexci-
tons have a quasiparticle-quasihole spacing proportional to their wavevector. The ensuing collective mode dispersion reveals
neutral roton modes at intermediate wavevectors and a well separated quasiparticle-quasihole pair at large wavevectors
(Alternatively, they can be viewed as a density wave created on top of the otherwise uniform ground state.).

Composite fermion magnetoexciton wave functions have been systematically compared against unbiased numerical results and
have been found to be essentially exact in the lowest LL Jain (2007). The gaps predicted from wave function energetics compare well
with experiment as well Hirjibehedin et al. (2005), Kang et al. (2001), Kukushkin et al. (2009), Scarola et al. (2000b). These
collective modes have also been incorporated as central features of composite fermion effective field theories of lowest LL FQH
states Lopez and Fradkin (1993), Murthy and Shankar (2003). Unfortunately, accurate and well tested wave functions of the
quasiparticle-quasihole excitations at 5/2 are still lacking.

A very useful approximation to FQH collective mode theory was originally formulated by Girvin, MacDonald and Platzman
(GMP) Girvin et al. (1985). It only requires a ground state ansatz and captures the fact that these collective modes are akin to density
waves. The GMP excitation is gapped and neutral as well. In the long-wavelength limit, the GMP mode behaves as a spin-2 mode
analogous to a graviton Golkar et al. (2016a), Yang (2016), Yang et al. (2012). This graviton mode is chiral with its chirality (or
polarization) depending on the FQH state Liou et al. (2019).

The GMP approximation was used to study the low lying excitations of the 5/2 state Park and Jain (2000), Wright and Rosenow
(2012). Moreover, the GMP modes in Pfaffian, anti-Pfaffian, and PH-Pfaffian states have different polarizations Haldane et al.
(2021), Nguyen and Son (2021). As reviewed in Section “Future directions”, this feature is useful in probing the nature of the 5/2
state. An additional type of collective excitation from Cooper-pair breaking was predicted for the Pfaffian state Greiter et al. (1991),
which is dubbed as the neutral fermion mode Bonderson et al. (2011), Möller et al. (2011). It is gravitino-like and has spin 3/2 in
the long-wavelength limit Yang et al. (2012). In the Pfaffian state, the GMP and neutral fermion modes can be viewed as
superpartners Gromov et al. (2020). It is expected that neutral fermion modes also exist in other non-Abelian candidates in the
16-fold way. However, no related study has been reported.
Overview of numerical results

Numerical support for the Laughlin state and composite fermion theory of the FQH effect in the lowest LL was definitive and set an
extremely high standard. For example, finite size effects are reduced due to the large energy gaps and fast spatial decay of
correlations. Wave function overlaps between exact Coulomb ground states and the composite fermion states (including the
Laughlin state) approach unity Jain (2007), Prange and Girvin (1987). Numerical support for the Pfaffian description of the FQH
effect at 5/2, while impressive as reviewed in this section, is less conclusive.

Early numerical support for the Pfaffian description of the 5/2 state was provided in the seminal work by Morf (1998). Over the
years, numerical work has continued to play an important role. Here we briefly discuss some technical details regarding the
numerical approaches used in studies of the FQH effect before discussing important landmarks and results.
Numerical methods and geometries

The non-interacting basis states for the Hamiltonian consisting of only the electron-electron interaction, Eq. (1), are massively
degenerate and there is no small parameter or normal state around which a perturbation theory can be formulated. An extremely
useful parameterization, due to Haldane (1983) and discussed in more detail in Prange and Girvin (1987), reformulated the
Hamiltonian into so-called Haldane pseudopotentials. Eq. (1) can be rewritten as

H ¼
X
m

V
nð Þ
m,two-body

X
i<j

bPij mð Þ, (17)

where bPi j mð Þ is a projection operator onto two particle states with relative angular momentum m and V
nð Þ
m,two-body are the Haldane

pseudopotentials in units of e2/eℓ0. V
nð Þ
m,two-body is the interaction energy between two electrons with relative angular momentum

m projected into the n-th electronic LL (the n ¼ 1 corresponds to the second LL, sometimes called the first excited LL).
To study the FQH effect at n ¼ 5/2, the simplest model Hamiltonian is Eq. (17) with the Vm

(1) corresponding to the Haldane
pseudopotentials for the Coulomb interaction between electrons confined to the second LL. The pure Coulomb interaction is an
idealized situation because the magnetic field strength is taken to infinity (or equivalently the electron mass going to zero), i.e., the
case of infinite spacing between LLs or zero LL mixing.

It turns out that LL mixing Bishara and Nayak (2009), Peterson and Nayak (2013), Simon and Rezayi (2013), Sodemann and
MacDonald (2013) and the finite thickness Peterson et al. (2008a, 2008b) of the quasi-two-dimensional electron system are
important effects for second LL physics which must be taken into account. Finite thickness is typically parameterized by the width of
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the quantumwell w/ℓ0	2 − 3 for GaAs samples [see Ando et al., 1982; Stern and Das Sarma, 1984; Zhang and Das Sarma, 1986] and
LL mixing is parameterized by the ratio k of the Coulomb interaction energy ECoul to the cyclotron energy ℏoc ¼ eB/mc and depends
inversely on the square root of the magnetic field strength:

k ¼ ECoul
ℏoc


 2:5ffiffiffi
B

p : (18)

The second approximation is specific to GaAs heterostructures. Thus, when k � 1, LL mixing can be ignored and the “pure”
Coulomb Hamiltonian projected into the second LL is a good model. However, as discussed in Section “Early experiments and
evidence for/against non-Abelian states” the FQH effect at 5/2 has been observed over a wide range of magnetic field strengths: 1
T ≲ B ≲ 30 T, corresponding to 2.5 ≳ k ≳ 0.5, hence, k is never vanishingly small and is often sizable.

Besides the realistic (or idealized) Hamiltonian relevant for experimental systems mentioned above, there is a model Hamil-
tonian due to Greiter et al. (1992), which produces the Pfaffian as an exact zero-energy ground state. This (artificial) three-body
Hamiltonian is written as

H3 ¼
X
i<j<k

Sijk r2
j ½dðzi � zjÞr4

kdðzi � zkÞ�
n o

(19)

where Sijk symmetrizes over all permutations of ijk. The form of H3 is due to the fact that the Pfaffian vanishes whenever three
electrons coincide Greiter et al. (1991), see Eqs. (6) and (7). Note that H3 breaks particle-hole symmetry explicitly as does the
Pfaffian wave function. The particle-hole conjugate of H3, called H3, produces the anti-Pfaffian as an exact ground state Lee et al.
(2007), Levin et al. (2007).

Three geometries are commonly utilized in numerical studies and pertinent details are discussed by Jain (2007). The experi-
mental system is quasi-two-dimensional with edges created with confining potentials. For numerical convenience and simplicity
this system is mapped to a quasi-two-dimensional one with periodic boundary conditions (the torus geometry), a rotationally
symmetric system (the disk geometry), and a compact geometry where the electrons on the two-dimensional plane are mapped to
the surface of a sphere with the perpendicular magnetic field produced by a magnetic monopole placed at the center (the spherical
geometry). There is also the cylinder geometry (a torus with a cut) used primarily in DMRG calculations. Each geometry has pros
and cons.

The torus geometry is perhaps the most straightforward Chakraborty and Pietiläinen (1995), Haldane (1985), Yoshioka (2002).
The system is a parallelogram with periodic boundary conditions. The LL degeneracy per unit area is B/f0 and the filling factor is
precisely defined as n ¼ r/(B/f0). The energy eigenvalues are labeled by pseudo-momenta (kx, ky). This geometry has genus one (it
has a single hole) and allows a topological ground state degeneracy greater than one that can be leveraged to identify the topological
order of an exact ground state.

In the spherical geometry Wu and Yang (1976, 1977) the electrons are placed on the surface of a sphere of constant radius
R ¼ ffiffiffiffi

Q
p

ℓ0 where Q is the strength of the Dirac magnetic monopole at the center of the sphere. The total magnetic flux through the
surface of the sphere is 2Qf0 and 2Q is an integer due to Dirac’s quantization condition. The relationship between the number of
electrons and the magnetic flux is given by

2Q ¼ n −1N −S (20)

where S is an order-one number called the topological shift Wen and Niu (1990), Wen and Zee (1992b).
Different shifts S correspond to states with different topological orders. For example, the Pfaffian has S ¼ 3 while the

anti-Pfaffian has S ¼ −1, see Table 3. The filling factor in this geometry is then defined as n ¼ limQ!1N/2|Q| and energy eigenstates
are given as functions of total angular momentum L. This geometry has no edges and a finite degeneracy of 2(Q + n) + 1 for the n-th
LL. This makes the sphere especially convenient to study bulk physics, ground states and low-energy excitation spectra, and ansatz
wave functions.

In the disk geometry, the single-particle states are especially simple Jain (2007). In fact, the disk geometry is utilized often when
representing ansatz wave functions in real space and when calculating Haldane pseudopotentials of various interaction potentials.
The disk geometry requires a confining potential to keep the electrons from repelling one another off to infinity. Since the disk
geometry necessarily has an edge it can be used to study edge physics.

While all the numerical work has finite size effects due to the modest number of electrons that can be studied, i.e., up to about
N ¼ 18 for realistic Hamiltonians discussed in detail in Section “Competing phases and Landau level mixing” which has a total
Lz ¼ 0 subspace dimension of over 29 million states, the energy gap necessary for a FQH state to exist reduces the finite size effects
substantially. See the Supplemental Materials of Balram and Wójs (2020) for the largest systems exactly diagonalized to date.
We note that Monte Carlo simulations, which can treat on the order of hundreds of electrons, mostly involve the analysis of ansatz
wave functions and not exact eigenstates.
Spin polarization

The FQH effect at 5/2 remained puzzling for a dozen years after its experimental discovery by Willett et al. (1987). Initial “tilt-field”
experiments showed a disappearing FQH plateau upon tilting the sample with respect to the magnetic field direction while keeping
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the filling factor fixed. It was initially thought that the ground state at 5/2 was spin-unpolarized because of this which largely ruled
out non-Abelian physics and the Pfaffian state, see Section “Surface acoustic waves, geometric resonance transport, light scattering,
and Knight shift: Spin polarization”. However, Morf (1998)’s seminal work changed the paradigm by providing substantial support
for the Pfaffian description of 5/2.

Morf (1998) studied the pure Coulomb interaction via exact diagonalization in the spherical geometry for up to
N ¼ 18 electrons. As noted above, in the spherical geometry for electrons half-filling the second LL (the lowest spin-up and
spin-down lowest LLs are taken to be fully occupied and inert) the relationship between Q and N for electrons in the second LL is
2Q ¼ 2 N−S. In the limit ofQ! 1 the filling factor is 1/2 in the second LL no matter the value of S. The Pfaffian has S ¼ 3 but there
is no a priori reason to fix S in exact diagonalization.1 However, any FQH candidate state has to be a rotationally invariant state with
L ¼ 0 (uniform density) and a finite energy gap.

Morf (1998) showed three important things: fully spin polarized states had lower ground state energy than spin-unpolarized
states, S ¼ 3 had L ¼ 0 ground states for all even N compared to other S, the state for S ¼ 3 was found to have a finite energy gap in
the thermodynamic limit (Fig. 5, top). In addition, it was shown that the wave function overlap between the exact ground state for
S ¼ 3 and the Pfaffian state was substantial (60–80%) and could be made nearly unity by increasing the V1

(1) pseudopotential by
10% compared to the bare value—the energy gap was also found to be maximum at this value of increased V1

(1).
A technically important point for numerical calculations is that H3, which in the spherical geometry is written as

H3 ¼
X
i<j<k

bPi j k 3Q −3ð Þ, (21)
Fig. 5 (Top) Morf (1998) found the energy gap for the Pfaffian shift at S ¼ 3 to be finite in the thermodynamic limit and that the low energy dispersion for fixed
number of particles N displays a roton mode at finite wave vector (not shown). (Bottom) The ground state energy, obtained using density-matrix-
renormalization-group techniques by Feiguin et al. (2009) for Eq. (1) in the second LL in the spherical geometry, versus inverse particle number. The thermodynamic
limit is obtained for 1/N ! 0. DMRG was able to study the largest systems to date and found the fully spin-polarized P ¼ 1 ground state at the Pfaffian shift of S ¼ 3
to be lower in energy than partially polarized states P 6¼ 1. This result significantly bolstered earlier results of Morf (1998). The figures are taken from Morf RH
(1998) Transition from quantum Hall to compressible states in the second landau level: New light on the n ¼ 5/2 enigma. Physical Review Letters 80: 1505–1508.
https://doi.org/10.1103/PhysRevLett.80.1505 and Feiguin AE, Rezayi E, Yang K, Nayak C, and Das Sarma S (2009) Spin polarization of the n ¼ 5/2 quantum Hall
state. Physical Review B 79: 115322. https://doi.org/10.1103/PhysRevB.79.115322 with permission.
1We note a technical point in numerical studies on the sphere. From Table 3 some of the shifts for various candidate states can be up to S ¼ 9. These large shifts
are complicated to analyze due to an effect called “aliasing”where an instance of (2Q,N) in Eq. (20) can correspond to a different filling factor n0 and a different
shift S0 or perhaps an excited state of an unrelated FQH state at yet another filing factor, see discussion in Morf et al. (2002).

https://doi.org/10.1103/PhysRevLett.80.1505
https://doi.org/10.1103/PhysRevB.79.115322
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where bPi j k is a projection operator onto electron triplets with maximum angular momentum L ¼ 3Q−3, can be solved to produce
the Pfaffian state exactly in the second quantized representation. This greatly facilitates overlap calculations since the inner product
can be calculated as a sum rather than a multi-dimensional integral. Furthermore, the energy spectrum of H3 provides a model
spectrum of a paired FQH state in a half-filled LL.

Note that Morf (1998) did not study the anti-Pfaffian with S ¼ −1, which was not known at the time. Due to the particle-hole
symmetry of the Hamiltonian, all the results would be identical2 to S ¼ 3 anyway.

The spin-polarization of the Coulomb interaction in the second LL is a numerically taxing problem to study, i.e., the Fock space
is formidably large. While Morf (1998)’s early calculations strongly supported a spin-polarized ground state for S ¼ 3, this result
was more firmly established via DMRG for up to N ¼ 26 particle Feiguin et al. (2008, 2009) (see Fig. 5, bottom). There is little
numerical doubt that the FQH ground state at 5/2 is fully (or mostly) spin-polarized; see Biddle et al. (2013), Park et al. (1998) and
Dimov et al. (2008) for more support using variational Monte Carlo techniques and Ginzburg-Landau theory, respectively. It is
noteworthy that spin-polarization is maintained under realistic effects such as LL mixing and finite thickness of the quantum well
Rezayi and Simon (2011).
Excitation gaps

There are several energy gaps relevant for the FQH effect at the 5/2 state. The transport gap, the “neutral” gap, and the neutral
fermion gap. The thermodynamic stability of the FQH effect at 5/2 depends on all three.
Transport gap
The transport gap is the energy of a far separated quasiparticle/quasihole pair and is the gap experimentally measured by examining
the longitudinal resistance; see Section “Early experiments and evidence for/against non-Abelian states”. Here we discuss the
transport gap calculated via exact diagonalization in the spherical geometry. The transport gap can be calculated two ways. One
is to calculate the ground state energy for systems with 2Q ¼ 2 N−3 and 2Q ¼ 2 N−3 � 1, the �1 creates a two quasihole state or
two quasiparticle state, respectively, with charges�e/4. The transport gap is the average of these excitation energies. Another method
is to consider the low-energy dispersion at fixed N and take the gap between the lowest energy state for L ¼ N/2 (for a paired state
like the Moore-Read Pfaffian or L ¼ N for an unpaired state) and the L ¼ 0 ground state.

Both of these methods for obtaining the transport gap are approximately the same. Morf (1998) found this transport gap to be
approximately 0.05 e2/eℓ0—the n ¼ 1/3 Coulomb state in the lowest LL has a gap of about 0.1 e2/eℓ0 for comparison Jain (2007).
The gap calculations of Morf (1998) have been bolstered over the years, see Feiguin et al. (2008), Morf et al. (2002), Pakrouski et al.
(2015). We note that Park and Jain (2000) used the GMP approximation to calculate the energy gap dispersion for the Pfaffian state
finding similar results to Morf (1998) both qualitatively and quantitatively.
Neutral gap
The “neutral” gap is defined as the difference between the L ¼ 0 ground state energy and the energy of the first excited state for any
L. Morf (1998) calculated the neutral gap at 2Q ¼ 2 N−3 and found it to be approximately 0.02 e2/eℓ0. This gap is thought to be
accessible experimentally via photoluminescence spectroscopy; see Section “Light scattering”. In general, the neutral gap is smaller
than, but of the same order of magnitude as, the transport gap.
Neutral fermion gap
The Pfaffian supports a neutral fermion excitation mode which is the gap for the Bogoliubov-de Gennes quasiparticles in the p-wave
superconductor analogy for the Pfaffian state Bonderson et al. (2011), Greiter et al. (1991, 1992), Möller et al. (2011), Moore and
Read (1991), Read and Green (2000)—this is not the “neutral” gap discussed above. This mode technically can be calculated in the
spherical geometry by studying a system at S ¼ 3 but for odd particle numbered systems instead of even required for pairing.
Bonderson et al. (2011),(Sreejith et al., 2011), Hutzel et al. (2019), Möller et al. (2011) calculated the neutral fermion mode for the
Pfaffian state and for the ground state of the second LL Hamiltonian corresponding to 5/2, see Fig. 6. Similar to the overlap and gap
calculations of Morf (1998), increasing the V1

(1) Haldane pseudopotential by approximately 10% produced a result more in line
with the Pfaffian expectation.
Realistic effects on energy gaps
Realistic effects such as LL mixing and/or finite thickness of the quantum well have been shown to generally reduce the size of the
energy gaps by up to 50% Dean et al. (2008b), Luo et al. (2021), Morf et al. (2002), Pakrouski et al. (2015), Peterson et al. (2008a,
2008b). However, theoretical calculations still overestimate the experimentally measured energy gaps; see Section “Early experi-
ments and evidence for/against non-Abelian states” below.
2For a particle-hole symmetric Hamiltonian in the spherical geometry in a half-filled LL, all spectra for S are identical to those with S! 2 dS. Hence, the
Pfaffian spectra for S ¼ 3 is identical to the anti-Pfaffian spectra for S ¼ −1.



Fig. 6 Neutral fermion mode versus wave vector k in units of the magnetic length calculated using exact diagonalization in the spherical geometry by Möller et al.
(2011). The right panel shows the mode for the Pfaffian state (in this work they denote the second LL Coulomb Hamiltonian H asℋC(LL1) and H3 asℋPf), whereas
the left panel is the neutral fermion mode for the n ¼ 1 Coulomb Hamiltonian. Increasing V1

(1) a little bit produces a mode closer qualitatively to that of the pure
Pfaffian state, similar to overlaps and gaps found by Morf (1998). Note that Möller et al. (2011) denote l as the magnetic length ℓ0. The figure is taken from Möller G,
Wójs A, and Cooper NR (2011) Neutral fermion excitations in the Moore-Read state at filling factor n ¼ 5/2. Physical Review Letters 107: 036803. https://doi.org/
10.1103/PhysRevLett.107.036803 with permission.
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Evidence for pairing

An important physical aspect of the Pfaffian state is that the composite fermions form pairs analogous to a p-wave superconductor.
Scarola et al. (2000a) used Monte Carlo with the composite fermion wavefunctions in the spherical geometry, showing that the
residual interaction between the composite fermions in the second LL is attractive. This attractive interaction is not found for
composite fermions in the half-filled lowest LL, see Fig. 7.

Lu et al. (2010) showed an even-odd effect in the ground state energy per particle for the second LL Coulomb Hamiltonian
indicative of pairing. This effect was absent in the lowest LL and instead was qualitatively similar to the “shell” structure expected of
a composite fermion Fermi sea. In addition, Lu et al. (2010) calculated a “superconducting order parameter”, hc⁎{(r)c⁎{(0)i, where the
Fig. 7 (Left) The interaction energy for pairs of electrons (B ¼ 0) and composite fermions (B⁎ ¼ 0) in the lowest and second LL, respectively, versus angular
momentum L, i.e., the pseudopotentials in the spherical geometry for N ¼ 27 particles. Increasing L corresponds to increasing inter-particle separation when in a
single LL. The short range composite fermion pseudopotentials are negative for 5/2 but not 1/2 where they are similar to those for electrons at B ¼ 0. (Right) The
binding energy D for a composite fermion pair in the second Landau level, compared to the lowest Landau level, extrapolates to a negative value as 1/N! 0
indicating a pairing instability in the L ¼ 1 channel. Figures are taken from Scarola VW, Park K, and Jain JK (2000a) Cooper instability of composite fermions. Nature
(London) 406: 863–865. http://www.nature.com/nature/journal/v406/n6798/abs/406863a0.html with permission.

https://doi.org/10.1103/PhysRevLett.107.036803
https://doi.org/10.1103/PhysRevLett.107.036803
http://www.nature.com/nature/journal/v406/n6798/abs/406863a0.html
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creation operators c⁎
{ are composite fermion creation operators since they are the objects that pair in the Pfaffian state compared to

electrons, see Fig. 3 in Lu et al. (2010). In addition to the above calculations, a small increase in the pair correlation function of the
Pfaffian state, calculated via Monte Carlo, for small distances has been interpreted as evidence for real space pairing Park et al.
(1998).

The relative stability of the Pfaffian phase and further evidence for pairing was demonstrated by Möller and Simon (2008), who
considered a larger class of wave functions of the Pfaffian form, i.e.,

CCF −pairing zið Þ ¼ J2Pf g zi −zj
� �
 �

(22)

where g(zi−zj) is an antisymmetric pairing function for the composite fermions. The Pfaffian state has g(zi−zj) ¼ 1/(zi−zj), see Eq. (7).
By varying the form of the interaction potential and using the pairing function as a variational parameter, it was shown through the
calculation of wave function overlaps in the spherical geometry between CCF–pairing and the exact ground state that the paring is
maintained under realistic conditions, and the ground state remains in the Pfaffian phase. A similar conclusion was more recently
obtained in the torus geometry by Sharma et al. (2021).
Topological properties

Any candidate for the FQH state at 5/2 must have an energy gap. There is also a consensus that some sort of pairing must be
involved. However, the Pfaffian/anti-Pfaffian state has specific signatures related to yet another important property: non-Abelian
topological order.

Topological shift
The shift S in the spherical geometry is a topological quantum number related to the topological order of the FQH state. The shift
arises due to the orbital motion and the curvature of the sphere Wen and Niu (1990). Various candidate FQH states have an
associated shift when represented in the spherical geometry. Incidentally the shift is related to the Hall viscosity Read (2009).
As discussed above Morf (1998) found in the absence of LL mixing effects that S ¼ 3 was rotationally invariant for all even N and
had a finite energy gap. This is not necessarily true for other S.

The torus geometry does not have a shift. However, the so-called infinite-DMRG calculations done on an infinite cylinder can
cleverly extract the shift from the quantum entanglement data of the ground state as the leading term of a theoretical object called
the “momentum polarization” Tu et al. (2013), Zaletel et al. (2013, 2015).

Ground state degeneracy
In the torus geometry, the Pfaffian state displays an exact threefold ground state degeneracy at unique values of pseudomomenta.
Note that we have factored out the (trivial) twofold center-of-mass degeneracy from the filling factor. This degeneracy can be
understood analytically, see Greiter et al. (1992), and shows up numerically as well. Thus, if the second LL Coulomb interaction
Hamiltonian is in the Pfaffian phase it should show this threefold (quasi)degeneracy. Peterson et al. (2008a, 2008b, 2010), Rezayi
(2017), Wang et al. (2009) all found the threefold quasi-degeneracy manifest for the 5/2 system. In fact, Peterson et al. (2008a,
2008b) found that the realistic effect of finite thickness of the quantum well enhanced the degeneracy compared to the pure second
LL Coulomb interaction.

Wave function overlaps
The numerical wave function overlap between the Pfaffian state and second LL Coulomb ground state was calculated by Morf
(1998) and found to be nearly 80% and could be made nearly unity by increasing the short-range Haldane pseudopotential.
We note that the interpretation of overlap calculations, while used widely in the study of FQH states, are subtle. Overlaps are
necessarily calculated for finite size systems and vanish in the thermodynamic limit trivially. Thus, a high overlap should not be
taken as evidence of the existence of a phase in isolation. Nonetheless, high overlaps between the exact ground state of second LL
Coulomb interaction have been routinely calculated and have been shown to increase with moderate finite thickness of the
quantum well before eventually decreasing at very wide quantum wells (Jeong and Park, 2015; Morf, 1998; Pakrouski et al.,
2015; Papi�c et al., 2009; Peterson et al., 2008a,b; Rezayi, 2017; Rezayi and Simon, 2011; Tylan-Tyler and Lyanda-Geller, 2015; Wang
et al., 2017).

Entanglement entropy and spectra
The overlap is not universal and vanishes in the thermodynamic limit. The entanglement entropy and spectrum provide a more
universal signature. A wave function’s entanglement entropy is calculated by dividing the system into two subsystems A and B, in
orbital space,3 and constructing the reduced density matrix rA by taking a partial trace of all the degrees of freedom in the
B subsystem, or vice-versa Srednicki (1993). The entanglement entropy is then the von Neumann entropy SE ¼ −Tr[rAlnrA] of
rA. For gapped ground states, SE can be shown to generically scale with the length of the boundary between the two subsystems
3The division into subsystems can also be done in real space, see Sterdyniak et al. (2012). We consider only orbital cuts here.
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Srednicki (1993). If a state has topological order, SE will show a reduction by a universal constant, i.e., for a topological state the
entanglement entropy is expected to obey

SE ¼ aL −g + O 1=Lð Þ (23)

where L is the length of the boundary, a is a system dependent non-universal constant, and g is the so-called topological
entanglement entropy Kitaev and Preskill (2006), Levin and Wen (2006). For a topologically ordered state g ¼ lnD where D is
the total quantum dimension of the theory, see Nayak et al. (2008). For the Pfaffian, g ¼ ln

ffiffiffi
8

p
Dong et al. (2008), Fendley et al.

(2007), Moore and Read (1991), Zozulya et al. (2007).
Consistent with energy gaps and overlaps, Friedman and Levine (2008) and Biddle et al. (2011) found that g for ground state of

the half-filled second LL Hamiltonian was consistent with the value for the Pfaffian state when finite thickness of the quantum well
was included, see Fig. 3 in that work.

It turns out there is far more information in rA than the entanglement entropy. Li and Haldane (2008) investigated the
eigenvalues of rA and defined corresponding entanglement “energies” xn, whose spectrum is called entanglement spectrum. The
entanglement spectrum can be used as a universal “fingerprint” to identify the topological order of a wave function. The low-lying
levels are related quantitatively and qualitatively to the related CFT and its corresponding edge theory—the orbital cut is thought to
create an edge of sorts and the edge excitations can be studied. Fig. 8 shows the entanglement spectra calculated by Li and Haldane
(2008) for the ground state of the half-filled second LL for a system withN ¼ 16 electrons in the spherical geometry. The inset shows
the entanglement spectra for the Pfaffian wave function. For the Coulomb state there are several low-lying levels that match those of
the Pfaffian and there is a so-called “topological entanglement gap” to non-universal levels protecting the topological properties.

The low-lying entanglement spectrum for the 5/2 system is maintained when finite thickness effects are included in addition to
LL mixing effects (Section “Competing phases and Landau level mixing”).

Edge velocities
While the entanglement spectrum is used to investigate the edge excitations by proxy, Wan et al. (2006) utilized the disk geometry to
study the edge excitations of the Pfaffian state and the second LL Coulomb state directly. Chiral edge excitations were identified and
fractionally charged excitations were consistent with the Pfaffian description. Additionally, the velocities for the fermionic and
bosonic excitation branches vb and vf, respectively, were found to satisfy vb � vf. In a follow up work, Wan et al. (2008) mixed in the
three-body H3 term perturbatively to the analysis (similar to LL mixing discussed below) and suggested that a smooth edge
confinement potential might favor the anti-Pfaffian state while a sharp edge favors the Pfaffian. As mentioned above, finite size
effects arise more readily in the disk geometry and this work required particular care to choose a proper confining potential.

In contrast to edge studies in the disk geometry, Soulé et al. (2013) studied edge modes of the Pfaffian state (compared to the
second LL Coulomb ground state) in a QPC-type geometry using an open cylinder. With a combination of exact diagonalization,
using H3 to generate the Pfaffian state exactly, and Monte Carlo, it was found that nb 
 nf.

Non-Abelian quasiparticles
Perhaps the most interesting aspect of non-Abelian FQH states is the braiding statistics of the excitations and their non-Abelian
nature Moore and Read (1991), Nayak and Wilczek (1996), Prodan and Haldane (2009), Read and Rezayi (1996). Within the
context of CFTs the non-Abelian braiding statistics are well-established as discussed above in Section “Theoretical background”.
In the spherical geometry the Pfaffian Hamiltonian in Eq. (19) produces a zero-energy 2n−1 degenerate manifold of states from
Fig. 8 The low-lying entanglement spectra x for the ground state of the half-filled second LL Coulomb interaction Hamiltonian for N ¼ 16 electrons in the spherical
geometry as a function of z-component of total angular momentum Lz

A in the A partition. The inset shows low-lying entanglement spectra for the Pfaffian state. The
low-lying levels of both are in close correspondence and match the expectations from CFT for the Pfaffian. P[0|0] corresponds to a particular orbital cut explained in
detail by Li and Haldane (2008). The figure is taken from Li H and Haldane FDM (2008) Entanglement spectrum as a generalization of entanglement entropy:
Identification of topological order in non-abelian fractional quantum Hall effect states. Physical Review Letters 101: 010504. https://doi.org/10.1103/PhysRevLett.
101.010504 with permission.

https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
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2n quasiholes, separated from the continuum by an energy gap, when exactly diagonalized at 2Q ¼ 2 N−3 + n. The degeneracy 2n–1

is only obtained in the limit of N� n and finite size effects produce more complicated degeneracies given in Table I of Read and
Rezayi (1996)—an example of the non-Abelian zero-energy quasihole manifold is shown Fig. 3 of the same work for a system with
N ¼ 10 electrons. These quasihole excitations are analogous to the vortex excitations in the p-wave superconductor analogy of the
Pfaffian state. Monte Carlo calculations were performed by Tserkovnyak and Simon (2003) confirming the CFT predictions of the
Pfaffian quasihole wave functions Nayak and Wilczek (1996). Using the so-called bipartite composite fermion theory, (Sreejith
et al., 2011a,b)constructed ansatz states for the non-Abelian quasiparticle excitations that accurately represent the non-abelian
excitations of Eq. (19) and possibly are adiabatically connected to the low-energy states of the second LL Coulomb Hamiltonian.

However, a fair amount of numerical controversy continues regarding the question of whether non-Abelian excitations are
manifest in a system with a realistic interaction appropriate for the FQH effect at 5/2. Generally, the Coulomb interaction, even
when realistic effects such as LL mixing and finite thickness are included, does not show a zero-energy manifold of non-Abelian
quasihole states separated from the continuum by an energy gap. Instead the quasihole degeneracy is strongly broken and the
energy gap is not clearly discerned Peterson et al. (2008c), Tőke and Jain (2006), Wójs et al. (2010). Recently, Hutzel et al. (2019)
showed that the zero-energy quasihole manifold is adiabatically connected to a degeneracy-broken set of states of a two-body
Hamiltonian related more closely to the second LL Coulomb Hamiltonian than the three-body Hamiltonian of Eq. (19). Thus, it is
possible that the broken quasihole degeneracy generally observed in two-body interacting systems is a consequence of finite-size
effects and mutual quasihole interactions Nayak et al. (2008).

Finally, a recent parton wave function describing a half-filled FQH state, called the 22111 state was constructed based on the
original idea in Jain (1989b). This wave function is constructed and analyzed in real space, via Monte Carlo for example, and was
shown to be in the same phase as the anti-Pfaffian via an analysis of its entanglement spectra, wave function overlap, and pair
correlation function Balram et al. (2018a). Since the anti-Pfaffian does not have a simple real space expression similar to Eq. (6) for
the Pfaffian, the 22111 state is a particularly convenient representation. Beyond the convenience of the 22111 representation of the
anti-Pfaffian, the parton theory of the half-filled second LL suggests a unique hierarchy of expected FQH states. In particular, the
sequence of states from n ¼ 2 + 2/3 to 2 + 1/2 and 2 + 6/13 discussed as possibly exotic in experiments Kumar et al. (2010). The 2
+ 6/13 state, which is topologically equivalent to the hierarchy state of Levin and Halperin (2009), is unexpected from weakly
interacting composite fermion theory without the more robust observations of states at n ¼ 2 + n/(2n + 1) for 1 � n � 5, see
(Balram, 2021; Balram et al., 2018b, 2019). In fact, recent experimental work by Huang et al. (2022) in bilayer graphene used
this method to investigate whether various half-filled FQH states arose from the anti-Pfaffian or the Pfaffian.

Adiabatic continuity
Historically, an important piece of numerical evidence supporting the Laughlin description of the FQH effect at n ¼ 1/3 was that the
Laughlin state was adiabatically connected to the Coulomb ground state. In this case the logic is straightforward. The Laughlin
state for 1/3 is the exact ground state of Eq. (1) for which only V(0)

1,two−body 6¼ 0 while all others are set to zero, the so-called
hard-core potential. To show adiabatic continuity between the lowest LL Coulomb ground state and the Laughlin state, one
calculates the energy spectrum for the Coulomb Hamiltonian and then “adiabatically” reduces all Haldane pseudopotentials other
than V(0)

1,two−body to zero. If the energy gap remains finite throughout this process then the ground states for the “hardcore” potential
and the lowest LL Coulomb Hamiltonian are equivalent.

For the FQH effect at 5/2, demonstrating adiabatic continuity is more complicated. Complications arise because H3 (producing
the Pfaffian) is a three-body interaction that is (i) artificial and (ii) breaks particle-hole symmetry. Nonetheless, one can construct a
Hamiltonian that interpolates between the second LL Coulomb interaction and H3, i.e., H(a) ¼ (1−a)H + aH3. In Storni et al.
(2010) [and a related calculation in Hutzel et al., 2019] it was shown that for the second LL Coulomb interaction the energy gap
remained open as a was tuned from zero to one showing adiabatic continuity between the Pfaffian state and the ground state for
5/2, for finite sized systems. Interestingly, adiabatic continuity was not obtained for the lowest LL Coulomb interaction showing
second LL physics is crucial for the formation of the Pfaffian state.
Competing phases and Landau level mixing

So far we have discussed a preponderance of evidence showing that the Pfaffian (and anti-Pfaffian) states are viable states to describe
the FQH effect at 5/2 even in realistic systems with finite quantum well thickness. However, small changes in Hamiltonian
parameters have demonstrated that transitions to other competing states are possible Peterson et al. (2008a, 2008b), Rezayi
(2017), Wójs et al. (2010). For example, Rezayi (2017) performed exact diagonalization on both the sphere and torus and found
a first-order quantum phase transition between the Pfaffian state and a compressible stripe (anisotropic) phase. Interestingly, the
pure second LL Coulomb Hamiltonian was found to be barely on the compressible side of the phase transition but increasing the
finite width of the quantum well was shown to drive the system into the Pfaffian phase.

Of particular interest are perturbations that can break the degeneracy between the Pfaffian and anti-Pfaffian. The system for the
particle-hole symmetric second LL Coulomb Hamiltonian is right at the cusp of a (first-order) transition between these degenerate
states without a particle-hole symmetry breaking term Peterson et al. (2008c), Wang et al. (2017). Realistic effects such as finite
thickness soften the interaction generally, i.e., the Haldane pseudopotentials are reduced. LL mixing, however, not only softens the
interaction, it also explicitly breaks particle-hole symmetry Bishara and Nayak (2009). Since the Pfaffian and anti-Pfaffian are
related via particle-hole conjugation, LL mixing is an important effect.
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LL mixing can be taken into account in essentially two ways. One way is to expand the Fock space to include higher and lower
LLs, i.e., allow basis states with partially filled lower and higher LLs instead of projecting all the physics to the half-filled second LL.
This increased Fock spacemust still be truncated to a finite size in order to do any calculations. Papi�c et al. (2012), Rezayi and Simon
(2011), Zaletel et al. (2015) all analyzed the 5/2 FQH state using various non-perturbative methods that are not controlled or exact
in any limit.

In contrast, Peterson and Nayak (2013), Simon and Rezayi (2013), Sodemann and MacDonald (2013), Wooten et al. (2013)
constructed an effective Hamiltonian that included LL mixing perturbatively to lowest order in the LL mixing parameter k. Hence,
this approximation is exact for k ! 0. Further, Peterson and Nayak (2013) constructed an effective Hamiltonian that included LL
mixing and finite thickness. This latter effect is subtle since it requires LL and quantum well sub-band mixing. The form of the
effective Hamiltonian is

H w, kð Þ ¼
X
m

V
1ð Þ
m,two −body

h
wð Þ + k dV 1ð Þ

m,two −body wð Þ
iX

i<j

bPij mð Þ + k
X
m

~V
1ð Þ
m,three −body wð Þ

X
i<j<k

bPijk mð Þ (24)

where V(1)
m,two−body(w) is the bare finite thickness dependent two-body Haldane pseudopotential, dV(1)

m,two−body(w) is its perturbative
correction due to LL and sub-band mixing, and ~V

1ð Þ
m,three −body wð Þ is the emergent particle-hole symmetry breaking three-body

pseudopotential Simon et al. (2007).
Perturbative LL mixing treatment I
Wójs et al. (2010) were the first to numerically investigate the particle-hole symmetry breaking effective LL mixing Hamiltonian
constructed by Bishara and Nayak (2009). Assuming spin-polarized electrons, Wójs et al. (2010) studied the ground state and
low-energy excitations of the realistic second LL Hamiltonian as a function of k at S ¼ 3 (for the Pfaffian) and S ¼ −1 (anti-Pfaffian).
It was found, primarily through wave function overlaps, that the Pfaffian and its low-energy excitations were favored compared to
the anti-Pfaffian. We note, however, that the two-body pseudopotentials of the effective LL Hamiltonian calculated by Bishara and
Nayak (2009) were incorrect due to a subtle normal-ordering error in the perturbation theory—this error was corrected by Peterson
and Nayak (2013), Sodemann and MacDonald (2013).
Non-perturbative LL mixing treatment I
Rezayi and Simon (2011) did an exact diagonalization study in the torus geometry using a truncated Fock space that included LL
mixing non-perturbatively. In particular, it was shown by comparing the size of the wave function overlap between the exact ground
state and the Pfaffian or anti-Pfaffian that a model that included three LLs in the truncated Fock space, the Pfaffian was preferred.
However, increasing the Fock space to include four and five LLs, the anti-Pfaffian was preferred.

We note that Wójs and Quinn (2006) studied the 5/2 FQH effect under LL mixing using a truncated Fock space similar to Rezayi
and Simon (2011) finding chiey that the energy gap is strongly reduced. However, they did not discuss the anti-Pfaffian since it had
not been proposed yet.
Perturbative LL mixing treatment II
The effective Hamiltonian in Eq. (24) was analyzed via exact diagonalization in the spherical and toroidal geometry by Pakrouski
et al. (2015). It is noteworthy that only the lowest m � 8 emergent three-body pseudopotentials ~V

1ð Þ
m,three −body were taken into

account by Pakrouski et al. (2015)—above m ¼ 8 some of the three-body terms become multi-valued and it is non-trivial to
consider these types of terms in calculations. However, the ~V

1ð Þ
m,three −body decrease in value for increasingm and presumably have little

effect, see Section “Perturbative LL mixing treatment III” below to revisit this aspect. By analyzing wave function overlaps,
entanglement spectra, energy gaps, and an order parameter used to determine particle-hole symmetry breaking, it was found that
the Pfaffian state edges out the anti-Pfaffian throughout parameter space. The approximate quantum phase diagram calculated by
Pakrouski et al. (2015) is shown in Fig. 9. The stability of the Pfaffian phase was measured via the “neutral” energy gap. Sharp peaks
in the entanglement entropy indicate phase transitions to a compressible state for k > 0.7–1 (depending on w/ℓ0). Between about
0.6 < k < 0.7 there was a hint of an intermediate FQH state. The entanglement spectra in this small window had low-lying levels
with a slope opposite to the Pfaffian indicative of a state with edge modes opposite to the Pfaffian. However the entanglement and
energy gaps were too small to reach a firm conclusion. Recent diagonalization and overlap calculations for k> 1 suggest a reentrant
anomalous quantized Hall state captured by Bose-Einstein condensates of composite bosons (Das et al., 2022).
Non-perturbative LL mixing treatment II
In contrast to the perturbative approach of Pakrouski et al. (2015), Zaletel et al. (2015) utilized infinite-DMRG to explore LL mixing
effects within a truncated Fock space including up to five LLs. Starting at an experimentally relevant value of k ¼ 1.38,
infinite-DMRG was performed on a truncated system, at zero quantum well thickness, with three LLs for decreasing values of k
toward the perturbative limit of k ¼ 0. The infinite-DMRG was performed by incorporating the matrix product form of either the
Pfaffian or anti-Pfaffian on an infinite cylinder with a finite radius of approximately 20ℓ0. By analyzing the energy splitting between
the Pfaffian and anti-Pfaffian (see Fig. 10), they found the anti-Pfaffian phase dominates for all k.



Fig. 9 Approximate quantum phase diagram for the FQH effect at 5/2 calculated by Pakrouski et al. (2015) as a function of quantum well width w/ℓ0 and LL mixing
parameter k in the spherical geometry for a system of N ¼ 18 electrons. The area left of the lines with black circles and diamonds corresponds to the Pfaffian state
as determined by wave function overlap, entanglement spectrum, and a particle-hole symmetry breaking order parameter. The color indicates the strength of the
“neutral” energy gap which indicates the stability of the phase. The magnetic field values in Tesla are shown on the upper ordinate ðk∝1=

ffiffiffi
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p
Þ The lines with the

black circles and diamonds indicate peaks in the entanglement entropy marking phase transitions. The area to the right of the black diamonds is a non-FQH state.
The small area in-between the circles and diamonds around 0.6 < k < 0.7 has a possible FQH ground state with edge modes moving opposite to the Pfaffian. The
figure is taken from Pakrouski K, Peterson MR, Jolicoeur T, Scarola VW, Nayak C, and Troyer M (2015) Phase diagram of the n¼ 5/2 fractional quantum Hall effect:
Effects of landau-level mixing and nonzero width. Physical Review X 5: 021004. https://doi.org/10.1103/PhysRevX.5.021004 with permission.

Fig. 10 Energy estimate from Zaletel et al. (2015) of the splitting between the Pfaffian and anti-Pfaffian states calculated via DMRG using a truncated Fock space
simulating LL mixing as a function of k. The positive value indicates the anti-Pfaffian is preferred from the experimentally relevant value of k toward zero. The
figure is taken from Zaletel MP, Mong RSK, Pollmann F, and Rezayi EH (2015) Infinite density matrix renormalization group for multicomponent quantum Hall
systems. Physical Review B 91: 045115. https://doi.org/10.1103/PhysRevB.91.045115 with permission.
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Perturbative LL mixing treatment III
Motivated by the contrasting results of Pakrouski et al. (2015) and Zaletel et al. (2015), Rezayi (2017) re-investigated the
perturbative approach for zero quantum well width using the torus and spherical geometries for N ¼ 15 and 16 electron systems.
The torus geometry was utilized to directly compare the Pfaffian and anti-Pfaffian since there is no shift. The main difference
between Rezayi (2017) and Pakrouski et al. (2015) was the inclusion of an approximate4 m ¼ 9 three-body LL mixing pseudopo-
tential term in Eq. (24). As noted above, most of the emergent three-body pseudopotentials due to LL mixing above m ¼ 8 are
4The multi-component m ¼ 9 three-body term was diagonalized and the dominant term was taken as a single m ¼ 9 term in Eq. (24).

https://doi.org/10.1103/PhysRevX.5.021004
https://doi.org/10.1103/PhysRevB.91.045115


Fractional quantum Hall effect at the filling factor n ¼ 5/2 345
multi-component. Including this term tipped the balance toward the anti-Pfaffian as determined by wave function overlaps
between the exact ground state and the Pfaffian or anti-Pfaffian, in both geometries, up to k 	 1 where the overlap with the
anti-Pfaffian vanishes (the Pfaffian overlap collapsed early around k 	 0.6). The “neutral” energy gap was also shown to be larger for
the anti-Pfaffian compared to the Pfaffian state. This result was found to be rather stable to changes in the value of the m ¼ 9
three-body pseudopotential. However it is unknown to what extent quantum well sub-band mixing might affect the result.
Perturbative LL mixing treatment IV
In Tylan-Tyler and Lyanda-Geller (2015) a phase diagram was calculated via a perturbative LL mixing treatment and edge effects
were analyzed in the disk geometry. Here both LL mixing and the neutralizing background break the Pfaffian/anti-Pfaffian
degeneracy. It was found there was a quantum phase transition from anti-Pfaffian to Pfaffian as k is increased from zero,
qualitatively in contrast to what was found by Pakrouski et al. (2015). In the thermodynamic limit, the boundary effect (from
the trapping potential) that breaks the Pfaffian/anti-Pfaffian degeneracy is negligible as compared to the LL mixing effect from the
bulk. Meanwhile, the actual sample does have a finite size where the edge effect is present, which may play a role in breaking this
degeneracy.
Unexpected experimental results and the PH-Pfaffian

Numerical work has demonstrated that the Pfaffian/anti-Pfaffian is a strong candidate for a realistic model for the FQH effect at 5/2
that includes finite thickness of the quantum well. LL mixing effects allow the possibility to determine whether a realistic system
prefers the Pfaffian or anti-Pfaffian by explicitly breaking particle-hole symmetry. As discussed above, numerically that question
remains unanswered as some calculations suggest the Pfaffian while others suggest the anti-Pfaffian. To some extent this question
will have to be settled experimentally.

As discussed below in Section “Recent surprises and puzzles”, thermal conductance experiments by Banerjee et al. (2018) were
recently performed and did not settle the Pfaffian/anti-Pfaffian question. Instead, these experiments were consistent with a
candidate state that is particle-hole symmetric known as the PH-Pfaffian Zucker and Feldman (2016); see Eq. (14) above. In the
spherical geometry, this state has a shift of S ¼ 1 (the particle-hole symmetric point) and has scant numerical support at this time.
The second LL Coulomb interaction does not consistently obtain a rotationally invariant state with L ¼ 0 for all N at 2Q ¼ 2 N−1
with or without realistic effects of finite width and LL mixing. Furthermore, the overlap between the PH-Pfaffian and the exact
second LL Coulomb ground state was shown by Balram et al. (2018a) to be nearly zero. On the other hand, the overlap with the
lowest-lying L ¼ 0 LLL Coulomb ground state is rather high leading Balram et al. (2018a) to speculate that the PH-Pfaffian is a
critical state corresponding to a particle-hole symmetric pairing instability of the composite fermion Fermi sea [see also the
theoretical discussion in Milovanovi�c, 2017]. These results are consistent with those of Geraedts et al. (2016), Mishmash et al.
(2018), Pakrouski (2021), Rezayi et al. (2021), Yutushui and Mross (2020).

There are theoretical suggestions by Antoni�c et al. (2018), Milovanovi�c and Djurdjevi�c (2021), Milovanovi�c et al. (2020), Zucker
and Feldman (2016) that LL mixing and/or disorder are needed to stabilize the PH-Pfaffian state. Recently, Zhu and Sheng (2019)
studied disorder-driven transitions in the 5/2 FQH effect and found a transition from a pure Pfaffian/anti-Pfaffian phase, to an
(unknown) intermediate phase, to a compressible composite fermion Fermi sea phase. The intermediate phase is consistent with
either the PH-Pfaffian or the Pfaffian/anti-Pfaffian puddle state Lian andWang et al. (2018), Mross et al. (2018), Wang et al. (2018),
Zhu et al. (2020). Finally, Luo and Chakraborty (2017) found a positive gap (albeit less than the one for the Pfaffian shift of S ¼ 3)
for the PH-Pfaffian shift of S ¼ 1 at finite k via exact diagonalization on the sphere for N ¼ 10 electrons. In this work they utilized
yet another method of approximating LL mixing using an effective renormalized electron-electron interaction taking into account
the polarizability of all the other Landau levels (random phase approximation) which preserves particle-hole symmetry.
Summary of numerical results

Extensive numerical work has been done since the discovery of the FQH effect at n ¼ 5/2. The preponderance of evidence support
the Pfaffian/anti-Pfaffian description for a realistic second LL Hamiltonian that takes into account the finite width of the quantum
well. There is numerical support for the notion that the half-filled second LL Coulomb system is close to a first-order phase
transition that breaks particle-hole symmetry between the Pfaffian and anti-Pfaffian. LL mixing is a realistic effect that explicitly
breaks particle-hole symmetry. This effect has been incorporated into numerical studies in both the perturbative limit (exact as
k ! 0) and non-perturbative limit with mixed results. At the time of this writing, the (slim) majority of studies conclude the
anti-Pfaffian is favored by LL mixing effects.

Meanwhile, thermal Hall conductance measurements at n ¼ 5/2 yielded a result that was consistent with neither the Pfaffian nor
anti-Pfaffian. Instead the result points toward either the PH-Pfaffian or disorder-induced Pfaffian/anti-Pfaffian puddle formation.
The PH-Pfaffian has scant numerical support and disorder is notoriously difficult to include in numerical studies.
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Early experiments and evidence for/against non-Abelian states

Theoretical developments in the quantum Hall effects walk hand-in-hand with experimental discovery and verification of hypoth-
eses. Given the long list of possible candidates to describe the 5/2 state (Table 3), it is natural to rely on experiments to distinguish
these candidate theories. Of central interest is whether or not experiments can verify the non-Abelian nature of the 5/2 state, and if
so, which particular type. In this section, we summarize early experimental methods used to probe various properties of the 5/2
state. We review these results in the context of verification or exclusion of assumptions underlying certain candidate states. The next
section focuses on reviewing more recent results from thermal Hall conductance measurements specifically. See also prior reviews of
experimental progress in Das Sarma and Pinczuk (1996), Heiblum and Feldman (2020), Jiang and Wan (2019), Lin et al. (2014),
Schreiber and Csáthy (2020), Willett et al. (2013).
Transport and optics: Bulk energy gap

Incompressibility in quantum Hall fluids requires a bulk energy gap. Larger gaps define more robust states and a vanishing of the
gap defines phase boundaries in parameter space. Gaps at different momenta have acquired specific terminology.

The “transport gap” refers to the energy to create quasiparticle/quasihole pairs that are separated much further than their size,
usually assumed to be directly related to gap inferred from the thermal activation transport measurements (in the following we refer
to the activation gap measured in experiment as the “transport gap” to make connection with expectations from theory discussed in
Section “Numerical methods and geometries”). The “neutral” bulk gap refers to the energy needed to create a quasiparticle-hole pair
that are separated on the order of their size.

Numerical work shows that the quasiparticles at n ¼ 5/2 can be as large as 	10ℓ0 Morf et al. (2002) and that the transport gap is
expected to be much weaker than it is for filling factor 1/3 (see Section “Overview of numerical results”). The small gap obtained
from theory is consistent with measurements showing precise quantization of the 5/2 plateau in the Hall resistance only at much
lower temperatures than other fractions Pan et al. (1999b). The parameter dependence and size of these gaps offer a direct route to
compare theory and experiment. Engineering a larger gap is an important goal for observing non-Abelian quasiparticles because
many experiments become technically easier with large gaps.

Detailed transport measurements have been performed on the 5/2 state since its discovery. The transport gap was typically found
to be less than
 600 mK although a recent breakthrough set a record at
 820 mK Chung et al. (2021). As discussed below, the gap
depends on sample parameters. The measured transport gap of the 5/2 state is consistently found to be well below theory Choi et al.
(2008), Dean et al. (2008a), Nuebler et al. (2010), Samkharadze et al. (2011) [as with the other FQH effect states Das Sarma and
Pinczuk, 1996, Jain, 2007].

Several factors are known to lower the measured transport gap in comparison to the theoretical estimate of the charged gap.
Finite thickness of the two-dimensional electron gas and LL mixing both soften the short range part of the Coulomb interaction and
therefore lower the theoretical estimates Das Sarma and Pinczuk (1996), Jain (2007). But discrepancies still remain that are typically
ascribed to disorder, which are seldom included in theoretical estimates of the gap Morf and d’Ambrumenil (2003), Wan et al.
(2005).

Experimental parameters have shown a wide tun-ability of the transport gap. The following reviews experimental results
showing the behavior of the transport gap at 5/2 as various parameters are tuned. These include density, in-plane fields, quantum
well width, disorder, and other aspects of sample design.
Density dependence
Electronic gating of the two-dimensional electron gas allows tuning of its density, r. At fixed filling, increasing the density requires a
linear increase in the magnetic field since r ¼ nB/f0. Since the Coulomb energy scales as 1=ℓ0∝

ffiffiffi
B

p
, increasing the density would

therefore nominally increase the strength of the 5/2 energy gap in comparison to other energy scales, e.g., the temperature.
Early studies at 5/2 showed a smooth dependence of the transport gap on density Pan et al. (2001). But the role of density has

been more widely explored Liu et al. (2011a), Pan et al. (2014), Reichl et al. (2014), Samkharadze et al. (2017) to reveal more
complex behavior. It has been found that the transport gap of the 5/2 state is maximized at certain densities Liu et al. (2011a), Reichl
et al. (2014) due to competing effects at high densities that include sub-band mixing. Furthermore, Samkharadze et al. (2017)
found anomalous behavior in the transport gap and a possible topological phase transition at low densities, where LL mixing may
play a role. At even lower densities, the gap was found to vanish in an apparent spin transition Pan et al. (2014) with later evidence
for a nematic phase Samkharadze et al. (2016), Schreiber and Csáthy (2020), Schreiber et al. (2018) (see Section “In-plane magnetic
field and sample tilt impacts the bulk gap”). Competing phases therefore also play an important role in the density dependence of
transport gap measurements at 5/2.

Fig. 11 plots some of the measured transport gaps at 5/2 reported in the literature (before 2014) as a function of the density of
the two-dimensional electron gas. The data do not show a clear increasing trend with density. While competing phases play a role,
other important effects such as impurity screening also significantly impact gap measurements.



Fig. 11 Transport gaps measured at filling 5/2 normalized to Coulomb energy units (ECoul ¼ e2/eℓ0) as a function of density of the two-dimensional electron gas as
reported for various heterostructures in the literature. The symbols correspond to the following references: (i) Reichl et al. (2014), (ii) Nuebler et al. (2010), (iii) Pan
et al. (2008), (iv) Choi et al. (2008), (v) Miller et al. (2007), (vi) Eisenstein et al. (1990), (vii) Pan et al. (1999a), (viii) Pan et al. (2011), and (ix) Gamez and Muraki
(2013). The figure is taken from Reichl C, Chen J, Baer S, Rössler C, Ihn T, Ensslin K, Dietsche W, and Wegscheider W (2014) Increasing the n¼ 5/2 gap energy: An
analysis of MBE growth parameters. New Journal of Physics 16: 023014. https://doi.org/10.1088/1367-2630/16/2/023014 with permission.
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Disorder, mobility, and sample design
Disorder is believed to be responsible for a lowering of the transport gap. Disorder is typically parameterized by a constant shift G,
where the measured transport gap is compared with DA−G and DA is the transport gap in the absence of disorder. The microscopic
origin of G is not completely understood. Example scattering mechanisms include background impurities, interface roughness,
alloys, or even phonons Ahn and Das Sarma (2022). Generally speaking, disorder which is in some way biased to lower the energy
of spatially non-uniform excitations in comparison to otherwise uniform FQH ground states, would tend to lower the energy gap.

Mobility is often used as a proxy for sample quality because increases in zero-field sample mobility tend to, on average, increase
the measured transport gap at 5/2 Choi et al. (2008), Chung et al. (2021), Dean et al. (2008b), Deng et al. (2014), Pan et al. (2011),
Qian et al. (2017b), Reichl et al. (2014), Samkharadze et al. (2011, 2017), Shingla et al. (2018). But it is well known that the
interplay of disorder, length scales, screening, and temperature leaves the zero-field sample mobility as only rather indirectly related
to sample quality at it pertains to 5/2 Ahn and Das Sarma (2022), Das Sarma and Hwang (2014a, 2014b). This is consistent with a
recent comparison between low field electron quantum lifetime measurements and 5/2 transport gaps which found a lack of
correlation between these two quantities Qian et al. (2017a). The energy gap of the 5/2 state, however, was found to depend
monotonically on the mobility in the regime in which only one scattering mechanism dominates, in this case alloy scattering Deng
et al. (2014), Kleinbaum et al. (2020).

Screening of sample dopants and impurities can help increase the 5/2 transport gap. Fig. 11 shows a general increase in the gap
with density (as nominally expected) but there is not a clear trend because many other factors impact the gap. For example, moving
dopants far from the two-dimensional electron gas was reported to increase the 5/2 gap Reichl et al. (2014). Also, a nontrivial
dependence was found depending upon the range of disorder in the type of sample used Pan et al. (2011). Furthermore, the FQH
effect was observed at 5/2 at rather low mobility after illumination Gamez and Muraki (2013). These findings underscore the
complex role of impurity screening on sample quality.

The non-trivial interplay of impurities and other parameters such as sub-band splitting led to work on the role of sample design
itself to possibly engineer higher 5/2 transport gaps. It was found that samples designed to lower impurity concentrations while
allowing a wide tuning of the electron density maximizes the 5/2 gap Chung et al. (2021), Liu et al. (2011a), Pan et al. (2011),
Reichl et al. (2014), Watson et al. (2015). Furthermore, while it is usually expected that widening the width of quantumwells lowers
the transport gap (due to a softening of the short range part of the effective Coulomb interaction; see Section “Overview of
numerical results”), some experiments do show that widening the well width can increase the gap Xia et al. (2010), consistent with
numerical simulations incorporating the trade off in competing phases Peterson (2012).

A recent breakthrough increased the 5/2 gap in GaAs-based quantum wells to a record 820 mK Chung et al. (2021). This
significant (30%) improvement over the previous record Choi et al. (2008), Qian et al. (2017b) was achieved by reducing
background impurities. A recent analysis by Ahn and Das Sarma (2022) points out that the new record brings the measured
transport gap to within 40% of an ideal theoretical gap that includes only finite thickness (see Section “Numerical methods and
geometries” for a discussion of finite thickness in numerics).

Confinement, pressure, and in-plane electric fields have also been explored as sample design parameters. Survival of the 5/2 state
under lateral confinement in quantum point contacts (QPCs) is important for edge tunneling and braiding experiments. It was
found that various confinement protocols can drive the formation of an even denominator FQH effect in the second LL Fu et al.
(2016). But the direct application of a weak in-plane electric field in the Corbino geometry Zhu et al. (2018) did not show
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enhancement of the strength of the 5/2 state as expected Tylan-Tyler and Lyanda-Geller (2017). Pressure and strain can play a role in
orientation of the nearby nematic phase Koduvayur et al. (2011) discussed below. They were found to reduce the gap at 5/2 and
drive a transition to the nematic phase Samkharadze et al. (2016), Schreiber and Csáthy (2020), Schreiber et al. (2018).

In-plane magnetic field and sample tilt impacts the bulk gap
An in-plane field increases Zeeman energy in comparison to the Coulomb energy thus allowing a tuning of the ratio of these two
energies. Increasing Zeeman energy would, in principal, favor states with higher spin polarization. Sample tilt in a fixed magnetic
field was used to explore this ratio in the context of the important question of the polarization of the 5/2 state (see Section “Surface
acoustic waves, geometric resonance transport, light scattering, and Knight shift: Spin polarization”).

Sample tilt simultaneously alters several energy scales at once. For example, an in-plane field imposed by sample tilt can also
alter the interaction by impacting finite thickness effects thus lowering the energy of competing ground states at 5/2 Peterson et al.
(2008a, 2008b). As a result, experiments find differing behavior depending upon width, density, and tilt angle. For example,
increasing tilt lowers the transport gap in some samples Dean et al. (2008a, 2008b), Eisenstein et al. (1988, 1990), Xia et al. (2010),
Zhang et al. (2010), while others find weak dependence Csáthy et al. (2005),Wang et al. (2020) or even an enhancement Liu et al.
(2012).

Sample tilt was found to introduce a competing anisotropic phase Du et al. (1999), Lilly et al. (1999), Pan et al. (1999a). The
anisotropic phase is believed to be a compressible nematic (stripe) phase Fradkin et al. (2010), Koulakov et al. (1996), Moessner
and Chalker (1996), Rezayi et al. (1999), Rezayi (2017), Schreiber and Csáthy (2020). The general trend found to date Csáthy et al.
(2005), Dean et al. (2008a, 2008b), Eisenstein et al. (1988, 1990), Liu et al. (2012), Wang et al. (2020), Xia et al. (2010), Zhang
et al. (2010) shows that increased tilt angles induce a transition from an isotropic incompressible state, to an anisotropic
compressible state. For even larger tilt angles the anisotropy is observed to diminish with no transport gap observed.

Concomitant anisotropy and incompressibility have been reported as well. In addition to evidence reported in standard
transport tilt experiments Liu et al. (2013), Xia et al. (2011), there is also evidence from optical methods Levy et al. (2016) and
non-linear transport in the Corbino geometry Bennaceur et al. (2018) that there is concomitant FQH effect and charge density wave
order even in the absence of tilt. Observation of FQH effect requires a gap. But charge density waves (assuming they cause
anisotropy) tend to lead to compressibility. Concomitant FQH effect and anisotropy (and/or density wave order) is therefore at
odds with the idea that the 5/2 FQH effect derives from a spatially uniform incompressible quantum Hall liquid. Observations of
coexisting orders could also derive from domain formation Wan and Yang (2016).

Optical probes of the bulk gap
An incompressible FQH state requires a bulk collective-mode gap at all wavevectors. Optical studies of FQH states can be used to
probe the bulk gap at many different wavevectors, not just the large wavevectors assigned to the transport gap. Since optical
wavelengths are much smaller than the magnetic length, optical probes would be expected to create nearly zero-wavevector
excitations. But the breakdown of translational invariance through, e.g., disorder, allows access to other wavevectors Das Sarma
and Pinczuk (1996).

Several optics experiments at 5/2 reveal a uniform incompressible state as expected from transport experiments Du et al. (2019),
Levy et al. (2016), Rhone et al. (2011), Stern et al. (2010b), Wurstbauer et al. (2013) [Note, however, that there is evidence of
domain formation Rhone et al., 2011.]. Wurstbauer et al. (2013) report evidence of gapped low-lying excitations at 5/2 using
resonant inelastic light scattering. The excitations observed here are reported to be consistent with spin-conserving roton-like neutral
modes (see Section “Surface acoustic waves, geometric resonance transport, light scattering, and Knight shift: Spin polarization”).
These results are also consistent with recent resonant inelastic light scattering experiments where the intra-LL plasmon spectrum
characteristic of a nematic phase was observed to have a pronounced minimum at 5/2 Du et al. (2019). Du et al. (2019) argued that
this was evidence for the strength of the uniform liquid paired state. Optical probes have also been used to infer spin polarization as
discussed in the following section.
Surface acoustic waves, geometric resonance transport, light scattering, and Knight shift: Spin polarization

Anti-symmetry of the total electron wave function requires that odd l-wave chiral BCS pairing of composite fermions be in a
symmetric spin state, e.g., full spin polarization. The Pfaffian wave function and other non-Abelian wave functions considered in the
literature (see Table 3) usually assume full spin polarization. Full spin polarization is therefore believed to be an important
condition for non-Abelian quasiparticle candidate states that have received the most attention in the literature. Although one can, in
principle, construct non-Abelian states without full spin polarization, see, e.g., Barkeshli and Wen (2010a, 2010b), Faugno et al.
(2019), Yang and Rezayi (2008). The following section reviews experimental findings regarding the assumption of full spin
polarization.

Surface acoustic waves and geometric resonance
Pairing of composite fermions in a fully polarized state requires a fully polarized composite fermion Fermi sea Read and Green
(2000) that can be thought of as originating from a composite fermion Cooper instability Scarola et al. (2000a). Surface acoustic
wave measurements were used to deduce the existence of a composite fermion Fermi sea in the half-filled lowest LL (n ¼ 1/2) Willett
et al. (1993) and a later measurement Willett et al. (2002) at 5/2 revealed similar Fermi surface properties, although at 5/2 the
temperature had to be tuned to be high enough to leave behind a gapless composite fermion Fermi sea at 5/2. Subsequent geometric
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resonance measurements Hossain et al. (2018), Mueed et al. (2017) went further to reveal evidence for a fully polarized Fermi sea
near 5/2. These experiments thus provide evidence for an underlying polarized composite fermion Fermi sea that sets the stage for
an instability to a fully polarized incompressible paired state at low temperatures at 5/2.

Transport
We now turn to transport experiments designed to infer the polarization of the gapped 5/2 state. Tilted field transport gap
measurements were the first to be used to infer the ground state polarization Csáthy et al. (2005), Dean et al. (2008a, 2008b),
Eisenstein et al. (1988, 1990), Liu et al. (2012), Wang et al. (2020), Xia et al. (2010), Zhang et al. (2010). But as discussed above, the
presence of competing ground states with tilt complicates these interpretations. Early studies found a collapse of the transport gap
upon tilt which was interpreted as evidence for an unpolarized (or partially polarized) state Eisenstein et al. (1988, 1990). However,
the subsequent observation of a competing anisotropic phase at higher tilt Lilly et al. (1999), Pan et al. (1999a) shows that the
reduction of the 5/2 transport gap was most likely due to competing phases for these parameters Dean et al. (2008a), Friess et al.
(2014).

Density tuning, as opposed to sample tilt, was used as an alternate route to explore ground state polarization as inferred from the
transport gap. Density and magnetic field dependence over a wide range initially showed Pan et al. (2001) no transition (in support
of a full polarization). But subsequent studies Pan et al. (2014), Samkharadze et al. (2017) found evidence consistent with a spin
transition from a fully polarized state at high density to an unpolarized state at low densities where LLmixingmay play a strong role.

Light scattering
Light scattering has been used to probe the polarization and excitations of the 5/2 state. Polarization resolved photoluminescence
spectroscopy at 5/2 exhibited a sharp drop near 5/2 which was initially interpreted as evidence for an unpolarized state Stern et al.
(2010b). And a combination of elastic and inelastic resonant scattering reveals a spin-excitation continuum that suggests competing
phases and possibly polarized/unpolarized domains slightly away from filling 5/2 Rhone et al. (2011). But later resonant inelastic
light scattering revealed spin waves only very close to filling 5/2 Du et al. (2019), Levy et al. (2016), Wurstbauer et al. (2013) that
were argued to reveal full (or nearly full) spin polarization.

Fig. 12 shows resonant inelastic light scattering data from Wurstbauer et al. (2013) performed at 5/2. Sample tilt is used to
impart finite momentum transfer in photon backscattering [For a review of these methods see, e.g., Das Sarma and Pinczuk, 1996.].
Fig. 12 (a) Resonant inelastic light scattering intensities measured at n ¼ 5/2 as a function of the incoming photon energy. The inset shows spectra at energies
marked by horizontal arrows in the color plot. EZ labels the Zeeman energy to show evidence for spin-wave modes. (b) Empirical wavevector (qℓ0) dispersion based
on the observed resonant inelastic light scattering mode energies showing at least one deep roton minimum at energy DR. D0 and D1 label the small and large
wavevector gaps, respectively. The inset shows a schematic of the optical transitions between the valence band (VB), conduction band (CB), and the LLs labeled by
N. oL and oS label the incoming and scattered photon frequencies, respectively. The figure is taken from Wurstbauer U, West KW, Pfeiffer LN, and Pinczuk A
(2013) Resonant inelastic light scattering investigation of low-lying gapped excitations in the quantum fluid at n¼ 5/2. Physical Review Letters 110: 026801. https://
doi.org/10.1103/PhysRevLett.110.026801 with permission.
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Fig. 12 reveals both a magnetoexciton collective mode (see Section “Overview of numerical results”) and small wavevector spin
wave modes excited near the Zeeman energy. The coexistence of these modes was interpreted to be consistent with a fully polarized
state with a magnetoexciton, as expected for polarized candidate states such as the Pfaffian and anti-Pfaffian. A gapless mode was
also found at fillings slightly away from 5/2, consistent with other optical experiments Rhone et al. (2011). These and other light
scattering data therefore provide evidence for a gapped fully spin polarized state at fillings very close to 5/2 but a gapless mode
(possibly due to domain formation or competing phases) slight away from filling 5/2 Du et al. (2019), Levy et al. (2016), Rhone
et al. (2011), Stern et al. (2010b), Wurstbauer et al. (2013).

Knight shift
Strong evidence for full spin polarization at 5/2 also came from resistively detected nuclear magnetic resonance experiments Stern
et al. (2012), Tiemann et al. (2012). These experiments rely on the hyperfine interaction between the electrons in the GaAs quantum
well and the atomic nuclei. Shifts in the nuclear resonance frequency are used to infer the polarization of the electron gas
(Knight shift).

Fig. 13 shows data from Tiemann et al. (2012). The data show that the ferromagnets expected at fillings n ¼ 1 and n ¼ 1/3 are
nearly fully polarized whereas the data at and near n ¼ 5/2 reveal full polarization (within error bars). These and other Knight shift
data were interpreted as evidence for full spin polarization Stern et al. (2012), Tiemann et al. (2012) although some theory work
suggests interpretation of full polarization is not always justified Chesi and Loss (2008).
Tunneling with QPCs and SETs: Quasiparticle charge and edge exponents

Candidate ground states at 5/2 all have dominant quasiparticle charges of e/4 (see Table 3). Experiments conclusively identifying
bulk quasiparticle charge of e/4 are therefore crucial in confirming that the ground state at 5/2 is a paired state, a necessary condition
before detecting their non-Abelian nature. Edge theories of various proposed states also rely on assumptions regarding quasiparticle
charge. Many different edge tunneling exponents are predicted from these theories (Table 3). The tunneling exponent, g, is inferred
from tunneling conductance measurements (see Section “Properties of anyons”). The following reviews experimental determina-
tion of quasiparticle charge and tunneling exponents with QPCs and SETs at filling 5/2.

QPC tunneling
Shot noise in tunneling across a QPC can be used to determine quasiparticle charge of a FQH liquid Girvin and Yang (2019). Initial
work Dolev et al. (2008) found evidence for e/4, although subsequent work Dolev et al. (2010) finds the charge to be higher than
expected when in a regime of very weak backscattering probability and sufficiently small excitation energies. Here the measured
value of charge was found to vary with temperature and applied voltage. This puzzling result might be explained by the transport
properties at low energies being dominated by agglomerate excitations with charge e/2, rather than the e/4 quasiparticles (Carrega
et al., 2011). These two contributions may be distinguished by finite-frequency noise measurements (Carrega et al., 2012).

The quasiparticle charge can also be inferred from the detailed temperature and/or bias voltage dependence of QPC
tunneling conductance. Here two parameters, the quasiparticle charge and the tunneling exponent are extracted. Several works
Baer et al. (2014), Fu et al. (2016), Radu et al. (2008), Venkatachalam et al. (2011) extracted a quasiparticle charge consistent with
Fig. 13 (a) Longitudinal Hall resistance measured as a function of total filling factor in the presence of a radio frequency (rf ) driving field. (b) The electron spin
polarization (P) deduced from restively detected nuclear magnetic resonance plotted as a function of total filling factor. The figure is taken from Tiemann L, Gamez G,
Kumada N, and Muraki K (2012) Unraveling the spin polarization of the n ¼ 5/2 fractional quantum Hall state. Science 335: 828–831. https://doi.org/10.1126/
science.1216697.
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or below e/4. The non-universality of the observed charge at 5/2 is consistent with observations at other fractions Feldman and
Halperin (2021).

SETs
SETs offered a method to extract local quasiparticle charge without relying on edge physics Venkatachalam et al. (2011). Here the
inverse compressibility in a local region is measured and the quasiparticle charge is inferred from gate-tuned jumps. A value of e/4
was measured after disorder averaging. These experiments offer the most direct measurement of e/4 because they are local and avoid
edge tunneling.

Edge exponents from tunneling conductance
Tunneling exponents extracted from tunneling conductance measurements can, unlike quasiparticle charge, be used to discern
between various candidate states in Table 3. The tunneling exponent (Section “Properties of anyons”) for the Majorana-gapped
edge-reconstructed Pfaffian state is expected to be 0.5 Overbosch and Wen (2008). In weak backscattering tunneling conductance
measurements Baer et al. (2014), Fu et al. (2016), Lin et al. (2012), Radu et al. (2008) the tunneling exponent was found to be
smaller than 0.4, which is consistent with Abelian states. But confinement was found to alter the value of the tunneling exponents
Fu et al. (2016). This is consistent with more recent work which finds tunneling exponents that are incompatible even with
established theories of the lowest LL, e.g., the 1/3 state Hennel et al. (2018) [see also Section VIII in Feldman and Halperin, 2021 for
further discussion].
Noise in QPCs: Upstream neutral mode

Some candidates for the 5/2 state possess topologically protected upstream neutral modes. These modes do not carry charge, so it is
difficult to detect them in an electrical transport experiments. However, they carry energy and can generate excess upstream noise.

Noise in quantum point contact experiments have been used to detect the presence of upstream neutral modes at filling 5/2 Bid
et al. (2010), Dolev et al. (2011), Gross et al. (2012). The detection of upstream neutral modes would appear to cast serious doubt
on the Pfaffian state in real samples since only downstream modes are expected (see Fig. 4). On the other hand, it has been pointed
out that edge reconstruction would allow an upstream neutral mode in a Pfaffian state Bid et al. (2010), Overbosch and Wen
(2008).

Dolev et al. (2011) went on to explore the nature of the upstream neutral modes. They compared those found at 5/2 to those at
7/3 and 8/3 on the same device. They concluded that the neutral upstream modes are not due to edge reconstruction. Their
conclusion casts doubt on the possibility of a Pfaffian ground state but supports an anti-Pfaffian state instead since it does possess
an upstream neutral mode in the absence of edge reconstruction (Fig. 4).
Interferometry: Quasiparticle charge and braiding

Interferometry in the FQH regime relies on surface patterned gates to define multiple QPCs that guide edge currents in closed or
open loops depending on gate voltages. The loops encircle Aharonov-Bohm fluxes to probe the accumulated phase of the wave
function. The response of the device therefore depends on both the quasiparticle charge and the area enclosed. As a result,
interference experiments can be used to measure both quasiparticle charge and quasiparticle braiding statistics. In this section we
briefly review interferometry measurements of quasiparticle charge and braiding. More detailed discussion can be found in the
reviews (Carrega et al., 2021) (Feldman and Halperin, 2021) and Willett et al., 2013.

Interferometry and charge
The Aharonov-Bohm phase depends on the quasiparticle charge. Interferometry measurements near 5/2 observed oscillations as a
function of Aharonov-Bohm flux. The flux was tuned in two ways: magnetic field strength or area (tuned by a side gate). The
observed oscillation patterns consistent with quasiparticle charge of both e/4 and e/2 were foundWillett et al. (2009, 2010), but they
coexist only at low temperatures. As temperature was increased, oscillations consistent with just e/2 charge survive. This was
anticipated by Wan et al. (2008), who found the coherence length of the e/4 quasiparticles is much shorter than that of the e/2
quasiparticles, because the former involves the slow neutral mode velocity while the latter does not. As a result increasing
temperature (which reduces coherence length) suppresses interference signal from the e/4 charge first.

Interferometry and braiding
We now review interferometry measurements that provide evidence for non-Abelian braiding statistics of quasiparticles in the 5/2
state. Interferometry experiments are expected to reveal topological properties of anyons through anomalies in the Ahoronov-Bohm
effect Bonderson et al. (2006), Das Sarma et al. (2005), de Chamon et al. (1997), Fradkin et al. (1998), Nayak et al. (2008), Stern
and Halperin (2006). A topological even-odd effect in interferometry was expected to lead to smoking-gun evidence of non-Abelian
order (if present) derived from fusion rules summarized in Fig. 2. Nevertheless, it was later argued that some Abelian orders can also
demonstrate the same effect under certain circumstances Stern et al. (2010a).

Several works went on to report evidence for non-Abelian excitations in interference experiments An et al. (2011), Willett et al.
(2013, 2019). In these experiments resistance oscillations as a function of magnetic field were observed (similar to the oscillations
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used to infer quasiparticle charge). Here, however, periods consistent with the magnetic field needed to add one or more
non-Abelian quasiparticles were observed as phase slips. The case for such oscillations were strengthened by controls done at
filling 7/3 where only Abelian quasiparticles were expected. Willett et al. (2013) summarizes next steps and hurdles for operation of
a device as described in Das Sarma et al. (2005). These include: phase stability, better control over device area, control of state
changing current with time, and reproducibility in interference oscillations.
Summary of early experimental findings

We summarize early experimental support for assumptions underlying the possibility of candidate states hosting non-Abelian
quasiparticles at filling 5/2. A culmination of experimental work finds that the bulk energy gaps measured in both optics and
transport are consistent with theoretical models that account for finite thickness and LL mixing in a spin polarized state. It is
expected that more realistic modeling that includes disorder would bring theory and experiment into better agreement. Further-
more, the culmination of evidence from both theory and experiment support the full polarization of the electrons in the half filled
second LL, although there is some evidence of domain formation. All experiments tend to support a measured quasiparticle charge
of e/4 with some evidence for an additional quasiparticle with charge e/2. Whereas results from quasiparticle edge tunneling,
braiding, and shot noise have, so far, not been able to conclusively demonstrate sufficient conditions for non-Abelian quasiparticles.
Recent surprises and puzzles

The vast collection of experimental results reviewed in the previous section has provided invaluable insights into our understanding
of the 5/2 state. Meanwhile, the underlying topological order remains elusive. This challenge can, in principle, be met by measuring
the thermal Hall conductance,

KH ¼ c
p2k2BT
3h

� �
¼ ck0T: (25)

Here, c ¼ cd−cu is the chiral central charge of the CFT describing the edge of the sample Cappelli et al. (2002), Kane and Fisher
(1997), Read and Green (2000). Note that cd and cu are the total central charges for the downstream and upstream modes,
respectively. When the edge of the quantum Hall system has counterpropagating edge modes, the interpretation of Eq. (25)
becomes subtle. This issue will be discussed in Section “Partial equilibration on anti-Pfaffian edges”.

Two types of edge modes are relevant to the 5/2 state. A Bose mode has central charge 1 or −1. This is independent of whether the
mode is charged or neutral. A Majorana fermion mode has central charge 1/2 or −1/2. The positive/ negative value is adopted when
the mode is downstream/ upstream in both cases. Therefore, each topological order in Table 3 has its predicted thermal Hall
conductance at n ¼ 5/2 given by

KH ¼ 3 +
c
2
: (26)

The first term on the right hand side originates from the three Bose modes that exist in any topological order describing the 5/2 state.
All of them are running downstream. Note that KH < 0 indicates that heat (or energy) flow along the edge in the opposite direction
as the flow of charges, but the sign of KH cannot be resolved in the usual two-terminal setup.
Experimental results

The first set of experimental data of thermal conductance measurement in the 5/2 state was reported recently in Banerjee et al.
(2018). The data is shown in Fig. 14.

At temperature around 20 mK, KH was nearly quantized at 2.5k0. This result is very exciting as the half-integer quantized value
for KH strongly supports the non-Abelian nature of the 5/2 state. Meanwhile, the result remains puzzling. It does not agree with the
theoretical predicted values, namely either KH ¼ 1.5k0 for anti-Pfaffian state or KH ¼ 3.5k0 for Pfaffian state. A more detailed
analysis of the data also reveals a very rapid increase of KH at low temperature (below 18 mK). This growth is much faster than any
other filling factors Banerjee et al. (2017).
Possible interpretations

Both the unusual growth of KH at low temperature and its nearly quantized value at 2.5k0 can be explained naturally if the sample
has the PH-Pfaffian edge structure (see Section “Theoretical background”). However, the PH-Pfaffian state has not received much
numerical support as the Pfaffian or anti-Pfaffian state (see Section “Overview of numerical results”). The apparent tension between
experimental data and existing numerical results motivated various proposals (or scenarios), which we now turn to.



Fig. 14 Thermal conductance as a function of temperature for the 5/2 state in a GaAs heterostructure at electron number density r 
 3.0 � 1010 cm−2. Data is
taken from Banerjee M, Heiblum M, Umansky V, Feldman DE, Oreg Y, and Stern A (2018) Observation of halfinteger thermal Hall conductance. Nature (London) 559:
205–210. https://www.nature.com/articles/s41586-018-0184-1 with permission.
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Bulk edge correspondence: PH-Pfaffian
As already mentioned, the most straightforward interpretation is that the bulk possesses the PH-Pfaffian order. Then, one would
need to understand how to reconcile with existing numerical studies, which largely ignored effects of disorder and LL mixing,
although the latter has been treated perturbatively in some cases. It was first suggested that the PH-Pfaffian state may be stabilized by
a combination of LL mixing and disorder effects Zucker and Feldman (2016). Meanwhile, the stabilization of PH-Pfaffian state by
sufficiently strong LL mixing alone in uniform systems was also proposed Antoni�c et al. (2018), Milovanovi�c et al. (2020). This idea
is corroborated by demonstrating explicitly the possible emergence of the PH-Pfaffian state in translationally and rotationally
invariant systems Sun et al. (2020). In particular, more than one LL needs to be involved in stabilizing the PH-Pfaffian state
Milovanovi�c and Djurdjevi�c (2021).

Disorder induced Pf-APf domain walls
While it is challenging to include disorder directly in microscopic numerical studies, its effect can be studied in a more phenom-
enological manner. In the limit of zero LL mixing such that particle hole symmetry is preserved, the Pfaffian and anti-Pfaffian states
are degenerate at n ¼ 5/2. Disorder breaks the particle hole symmetry locally, and may induce Pfaffian and anti-Pfaffian domains.
The domain walls are found to support gapless neutral (Majorana fermion) excitations, but have a charge gap Barkeshli et al.
(2015), Wan and Yang (2016).

When the domain walls come close enough to each other, these neutral excitations can tunnel across the domain walls. The
resulting percolation phase from the four copropagating Majorana fermions on each domain wall determines the thermal Hall
conductance of the system. Using an effective network model, it was found that different phases can be realized in the system
depending on the disorder strength (Lian and Wang, 2018; Mross et al., 2018; Wang et al., 2018). An effective field theory was
further proposed in Hsin et al. (2020) to capture the qualitative features of the phase diagram found in Lian and Wang (2018).
In principle, there is a phase with KH ¼ 2.5k0 and share the topological properties of the PH-Pfaffian state. Nevertheless, this phase
is not favored for generic parameters in the network model analyzed by Wang et al. (2018). Its realization requires either the
assumption that it is only a subdominant phase nucleated in the domain walls, or constraining the scattering events for Majorana
fermion modes along domain walls by additional symmetry.

Using the technique of density matrix renormalization group, subsequent work studied the energetics of domain walls. It was
originally concluded that the formation of domain wall is energetically unfavorable Simon et al. (2020). However, the later work
Zhu et al. (2020) suggested that the intrinsic electric dipole moment emerging at the interface not taken into account in Simon et al.
(2020) can stabilize the Pfaffian and anti-Pfaffian domains under experimental conditions.

The domain states discussed here are quite similar to the stripe state of Wan and Yang (2016) [proposed before the experiment
Banerjee et al., 2018], where stripes (or domains) of Pfaffian and anti-Pfaffian states form spontaneously. Such a state restores
particle-hole symmetry on average.

Partial equilibration on anti-Pfaffian edges
In the above two scenarios, one holds the view that the realistic sample has the PH-Pfaffian edge structure, although they have
different bulk origins. This is reasonable because the value 2.5k0 is only consistent with the PH-Pfaffian state (see Table 3). At the
same time, this conclusion actually relies on the assumption that the edge of the sample is fully equilibrated. When the edge has
downstream modes only, this assumption is always satisfied independent of the system size. Then, the thermal Hall conductance
should agree with the theoretical predicted value in Eq. (25).

https://www.nature.com/articles/s41586-018-0184-1
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The situation becomes more subtle if the edge has counterpropagating modes. In this case the downstream and upstreammodes
along the same edge originate from two different sources at different temperatures Banerjee et al. (2018). The distance required for a
pair of counterpropagating edge modes to reach thermal equilibration is known as the thermal equilibration length, denoted as ℓeq.
In order to achieve a complete thermal equilibration on the edge, the length of the edge, denoted as L, needs to satisfy L � ℓeq

Aharon-Steinberg et al. (2019), Banerjee et al. (2017).
The above subtlety gives rise to a possible reconciliation between the experimental data and the realization of anti-Pfaffian state

in the sample (including the edge). When the edge is fully equilibrated, the anti-Pfaffian state has KH ¼ 1.5k0. This is because the net
central charge of the edge theory is given by c ¼ 3–3(0.5) ¼ 1.5. On the other hand, the two central charges of a pair of counter-
propagating edge modes should add instead of subtracting each other if these twomodes do not equilibrate. Hence, KH/k0 can be as
large as 3 + 3(0.5) ¼ 4.5 in the anti-Pfaffian state, if all upstream modes do not thermally equilibrate with the downstream modes.
For the measured value KH ¼ 2.5k0, it can be explained by partial thermal equilibration on the anti-Pfaffian edge. For the details of
the mechanism, various proposals were introduced and debated Asasi and Mulligan (2020), Feldman (2018), Ma and Feldman
(2019a), Simon (2018a, 2018b), Simon and Rosenow (2020).
Recent and ongoing developments

In an attempt to distinguish the above scenarios, several subsequent experimental and theoretical studies have been carried out.

Temperature dependence of ℓeq
Besides the value 2.5k0, it is also important to explain the unusually rapid growth of KH at low temperature. An increase of KH at low
temperature is actually reasonable because ℓeq is temperature dependent. Most of the topological orders (with both downstream and
upstream edge modes) have ℓeq 	 T−2. For a sample edge with length L, the ratio L/ℓeq decreases as T is lowered. This can lead to a
lack of thermal equilibration on the edge, and leads to an increase in KH at low temperature Aharon-Steinberg et al. (2019), Banerjee
et al. (2017).

The special structure of the PH-Pfaffian edge poses stringent constraints on possible interaction terms that couple the down-
stream Bose mode fc and the single upstream Majorana fermion mode c (see Fig. 4). The most relevant interaction is described by
the operator,

bO xð Þ ¼ � xð Þ∂xfc c∂xcð Þ, (27)

with �(x) being a random variable in space. The scaling dimension of bO xð Þis D ¼ 3, which is larger than the usual operators that
couple two counter-propagating Bose modes, or a downstream Bose mode and a pair of different upstream Majorana fermion
modes. In the language of renormalization group, bO xð Þ describes a more irrelevant process and leads to ℓeq	T−4 in the PH-Pfaffian
edge Ma and Feldman (2020). This exceptional dependence in temperature for the thermal equilibration length may explain the
unusual rapid growth of KH at low temperature, if the system has the PH-Pfaffian edge structure.

Interface experiments
One of the main differences among possible candidates for the 5/2 state is the number and chirality of neutral modes on the edge.
Thus, it is desirable to probe them more directly. By placing a region with n ¼ 5/2 close to another region with n ¼ 2 or n ¼ 3, a
resulting 5/2–2 or 5/2–3 interface is formed. Some of the original edge modes are gapped out or become localized along the
interface. For Pfaffian, anti-Pfaffian, and PH-Pfaffian edges, the modes that remain freely propagating along the interfaces are
illustrated in Fig. 15. An important consequence is that these gapless modes dominate both charge and energy transport along the
interface.
Pfaffian
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Fig. 15 Schematic diagram for the freely propagating (gapless) modes along the 5/2–2 and 5/2–3 interfaces when the 5/2 state has Pfaffian, anti-Pfaffian, or
PH-Pfaffian edge. The solid lines and dashed lines label Bose charge modes and neutral Majorana fermion modes, respectively. The square with label A and S
represent respectively the amplifier and source. The effective interface length is defined as the distance between A and S. A hot spot (denoted as the fire mark) is
formed at the back of the source when a dc current is injected at the interface from S. Depending on the gapless modes’ chirality, excess noise may be measured at
the amplifier or not. Note that the direction of magnetic field was reversed in the experiment when switching from the 5/2–2 to the 5/2–3 interface, so that the
positions of the source and amplifier needed not be interchanged.
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By injecting a dc source current at the interface, a hot spot will be created at the back of the source. Relatively short interfaces
(28 mm, 38 mm, 48 mm, and 58 mm) were employed in the experiment that realized thermally unequilibrated transport. In this
regime, shot noise will be detected at the amplifier when there are gapless modes propagating away from the source to the amplifier.
In the experiment, shot noise was observed in both 5/2–2 and 5/2–3 interfaces Dutta et al. (2022b). If one neglects the possibility of
reconstruction along the interface, the experimental result is only achievable if the original 5/2 state has the PH-Pfaffian edge. This is
because the PH-Pfaffian edge is the only one that remains unchanged under particle hole transformation. Furthermore, it has been
theoretically proposed that electrical conductance measurement in a device that simultaneously contains both 5/2–2 and 5/2–3
interfaces could also identify the Pfaffian, anti-Pfaffian, and PH-Pfaffian edges uniquely Yutushui et al. (2022).

Another subsequent experiment was performed to measure the thermal conductance of the 5/2–2 and 5/2–3 interfaces Dutta
et al. (2022a). In order to achieve thermal equilibration for a proper thermal conductance measurement, a much longer interface
with length 160 mm was used. The measured values for the 5/2–2 and 5/2–3 interfaces were (0.55 � 0.02)k0 and (0.53 � 0.02)k0,
respectively. For Pfaffian and anti-Pfaffian edges, either the resulting 5/2–2 or 5/2–3 interface will have a pair of copropagating Bose
and Majorana fermion modes. These two modes are always equilibrated, so KH/k0 ¼ 1.5 is expected. Hence, the observed values in
experiment favors the PH-Pfaffian edge in the original 5/2 state.
Summary of recent developments

To summarize, the results from recent experiments have provided increasing support for the realization of PH-Pfaffian edge in the
5/2 state. This edge structure is also consistent with previous results from tunneling experiments and the observation of upstream
neutral modes. On one hand, the bulk-edge correspondence suggests that the bulk of the sample should be also described by the
PH-Pfaffian state. On the other hand, the domain-wall picture hints at a possible difference between the bulk and the edge of the
sample. Therefore, the underlying nature of the 5/2 state is still an open problem.
Future directions

In this section, some possible future research directions for the 5/2 state are listed.
Noise measurements

Besides the thermal conductance and interface experiments reviewed in the previous section, there are some recent theoretical
proposals to identify the Pfaffian, anti-Pfaffian, and PH-Pfaffian edges via noise measurements. The corresponding results can
further strengthen the support for or challenge the realization of PH-Pfaffian edges in real samples.

Shot noise in dc transport
It has been proposed that the combination of thermal conductance and shot noise measurements in dc transport can uniquely
distinguish between the Pfaffian, anti-Pfaffian, and PH-Pfaffian edges. In addition to the edge modes coming from the second LL as
shown in Fig. 4, all states at n ¼ 5/2 have two additional edge modes originating from the lowest LL.

Depending on the sample edge length, it is possible that edge modes from the second LL equilibrate among themselves, but not
with those from the lowest LL Ma and Feldman (2019a). In this scenario, both anti-Pfaffian and PH-Pfaffian edges will show
KH ¼ 2.5k0. However, the predicted shot noises in dc measurement are distinct for these two edges. Only the anti-Pfaffian edge will
generate a nonvanishing shot noise Park et al. (2020). For more details of the topological classification of noises in different types of
edges, see Spånslätt et al. (2019). For the Pfaffian edge, it has no upstreammodes. Thus, KH ¼ 3.5k0 independent of the sample edge
length. At this moment, there is no proposal for the reconciliation between the thermal conductance data with the Pfaffian edge.

Thermal tunneling noise across a QPC
The scaling dimension of quasiparticles probed in tunneling experiments may help identify the edge structure of the 5/2 state.
However, existing results depend sensitively on the device configuration and lead to ambiguous interpretations. It has been
suggested that such an ambiguity could be removed by measuring the thermal tunneling noise across the QPC Schiller et al.
(2022). This noise is generated due to quasiparticle tunneling, and should be defined as the excess noise away from the usual
Nyquist-Johnson noise. In particular, the associated Fano factor will show different dependencies on the temperatures of the two
edges and the voltage bias across the QPC, when the scaling dimension of the tunneling quasiparticle is changed. This feature allows
one to distinguish between the anti-Pfaffian and PH-Pfaffian edges.
Local power measurement in multi-terminal thermal conductance experiment

The thermal conductance data reviewed in Section “Recent surprises and puzzles” was taken from a two-terminal setup, which
cannot resolve the sign of KH. Neither can it give a universal value of |KH| when the edge is not fully equilibrated. This leads to
ambiguous interpretation of the experimental result. It is important to develop techniques for measuring KH reliably, that should
work independent of the equilibration on the sample edge.
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In a very recent work, a multi-terminal measurement on thermal conductance was performed Melcer et al. (2022). Using the new
setup, the power carried by the downstream and upstream edge modes can be measured separately. From this, KH can be deduced
properly from KH ¼ Kd – Ku, where Kd and Ku denote the thermal conductance for the downstream and upstream modes,
respectively. At n ¼ 2/3, the new setup gives KH ¼ (0.04 � 0.03)k0, which agrees with the theoretical predicted value, KH ¼ 0 for
an equilibrated edge at n ¼ 2/3. It would be natural to generalize the same kind of measurement to the 5/2 state. The result can
provide another piece of information to help differentiate between the PH-Pfaffian and partially equilibrated anti-Pfaffian edges.
Other interferometry experiments

Direct measurement of braiding statistics of quasiparticles is an ideal probe of the topological order of a FQH liquid. While the
Fabry-Pérot interferometer has become a commonly used device for detecting non-Abelian statistics, there are some caveats in this
technique which were discussed in Section “Interferometry and braiding”. The topological even-odd effect was originally proposed
as a smoking-gun signal of non-Abelian nature of the 5/2 state Bonderson et al. (2006), Stern and Halperin (2006). However, it was
later discovered that the Abelian 331 state Stern et al. (2010a), and all other Abelian states (except the K ¼ 8 state) in the 16-fold way
can mimic the same effect if the two types of e/4 anyons exhibit flavor symmetry Ma and Feldman (2019b). It will be important to
include these caveats in future experimental designs to better delineate expected order at 5/2.

A recent breakthrough on interferometry at n ¼ 1/3 in the lowest LL has significant implications for detection of non-Abelian
excitations at n ¼ 5/2 Nakamura et al. (2019). In Nakamura et al. (2020), Fabry-Pérot interferometry was used to directly observe
Abelian anyon statistics at n ¼ 1/3. Normally, such experiments are done in a regime where the strong Coulomb interaction between
edge states and the bulk of the interferometer complicates interpretation of signals of anyonic phases. But samples used in
Nakamura et al. (2020) incorporate epitaxially grown layers used to screen (and therefore soften) these interactions. The net result
was a robust Aharonov-Bohm interference in the fractional quantum regime showing clear phase slips consistent with Abelian
anyon fractional statistics. Application of these seminal developments to n ¼ 5/2 is a logical next step.

Mach-Zehnder interferometry
Issues in discerning topological orders can be circumvented by employing the Mach-Zehnder interferometer Ji et al. (2003), Law
et al. (2006), Ponomarenko and Averin (2007, 2010). Previous work discovered that the corresponding signatures (i.e., tunneling
current and Fano factor) for each individual state in the 16-fold way are different Feldman and Kitaev (2006), Feldman et al. (2007),
Ma and Feldman (2019b), Wang and Feldman (2010), Yang (2015), Zucker and Feldman (2016). Although it is much harder to
fabricate an Mach-Zehnder interferometer than a Fabry-Pérot interferometer, the former was employed to yield evidence of
fractional statistics of anyons in the FQH state at n ¼ 2/5 Kundu et al. (2022). It will be highly desirable to perform the same
experiment for the 5/2 state.

Non-Abelian anyon collider
Besides the result from the standard Fabry-Pérot interferometry Nakamura et al. (2020), fractional statistics of anyons in the
Laughlin state at n ¼ 1/3 was also observed in an anyon collider setup Bartolomei et al. (2020), Rosenow et al. (2016). In a recent
preprint Lee and Sim (2022), it has been proposed that the latter technique may also differentiate among non-Abelian statistics of
anyons in the Pfaffian, anti-Pfaffian, and PH-Pfaffian states. This may be achieved in future experiments.
Bulk probes: Polarized Raman scattering and thermal power

While the bulk edge correspondence is a very powerful tool in studying topological phases, there is the possibility of its breakdown
in realistic samples due to various complications at the edge as discussed earlier. In fact the edge physics of the Laughlin 1/3 state is
still not yet completely understood Chang (2003), most likely due (at least in part) to edge reconstruction Wan et al. (2002, 2003),
Yang (2003). It would thus be highly desirable to go beyond edge physics and probe the 5/2 state (and other FQH states, Abelian or
non-Abelian) in the bulk more directly in future experiments. We review some existing theoretical proposals below.

It was found that the graviton or magnetoroton in the Pfaffian state has a polarization −2 Liou et al. (2019), just like the Laughlin
state. Since the chirality of the graviton is reversed under particle hole transformation Liou et al. (2019), Son (2019), the associated
graviton in the anti-Pfaffian state has a polarization +2, as seen in numerics Haldane et al. (2021). The situation becomes more
subtle in the PH-Pfaffian state. Due to particle hole symmetry, it is expected that gravitons (if they are present) should come with
both polarizations (�2).

In order to excite the graviton mode, a net angular momentum +2 or −2 needs to be transferred to the sample. This may be
implemented by using Raman scattering with circularly polarized light Golkar et al. (2016b). Importantly, the absorption of a
photon can occur only if the incoming photon has the correct polarization. For example, the incoming photon must have the
polarization −1 in order to excite the graviton mode in the Pfaffian state Liou et al. (2019). On the other hand, the graviton mode in
the anti-Pfaffian state requires an incoming photon with polarization +1. The emitted photon must have the opposite polarization
such that the net angular momentum transfer is �2 for anti-Pfaffian and Pfaffian respectively. For the PH-Pfaffian state, roughly
equal absorption of both kinds of polarized photons is expected Haldane et al. (2021), Nguyen and Son (2021). Suppose the
sample contains Pfaffian and anti-Pfaffian domains, the same technique can also reveal this structure if the spatial resolution of the
experiment is finer than the typical sizes of the domains. Since Raman scattering has already been performed in studying GMP
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modes in other quantum Hall states, it offers a huge potential in identifying the precise nature of the 5/2 state in future experiment,
which goes beyond the knowledge from edge probes.

The polarized Raman scattering discussed above directly probes the chirality of the FQH state (namely, whether it is electron-like
or hole like), but not the nature of its quasiparticles. The latter, on the other hand, can be probed using bulk thermoelectric and
thermodynamic measurements Barlas and Yang (2012), Cooper and Stern (2009), Gervais and Yang (2010), Yang and Halperin
(2009). More specifically, such experiments can (potentially) measure the logarithm of the quantum dimension of the non-Abelian
quasiparticles, which is the topological entropy they carry (Abelian quasiparticles have quantum dimension one and thus carry no
topological entropy). Subsequent thermal power experiments have yielded encouraging but not yet definitive results Chickering
et al. (2010, 2013). It would be highly desirable to continue this line of work.
Conclusion

The physics of the 5/2 FQH state, most likely the first and only non-Abelian state of matter identified in nature at the time of
writing, is extremely rich. This richness, revealed through enormous experimental, theoretical, and numerical effort, underlies the
decades-long debate over the precise nature of the ground and excited states. Considerable progress has been made on all of these
fronts, as we have reviewed here. The remaining unresolved puzzles that we have outlined in this chapter offer exciting opportu-
nities for future research.
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Tőke C and Jain JK (2006) Understanding the 5/2 fractional quantum Hall effect without the Pfaffian wave function. Physical Review Letters 96: 246805. https://doi.org/10.1103/

PhysRevLett.96.246805.
Tserkovnyak Y and Simon SH (2003) Monte Carlo evaluation of non-abelian statistics. Physical Review Letters 90: 016802. https://doi.org/10.1103/PhysRevLett.90.016802.
Tsui DC, Stormer HL, and Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters 48: 1559–1562. https://doi.org/10.1103/

PhysRevLett.48.1559.
Tu HH, Zhang Y, and Qi XL (2013) Momentum polarization: An entanglement measure of topological spin and chiral central charge. Physical Review B 88: 195412. https://doi.org/

10.1103/PhysRevB.88.195412.
Tylan-Tyler A and Lyanda-Geller Y (2015) Phase diagram and edge states of the n ¼ 5/2 fractional quantum Hall state with landau level mixing and finite well thickness. Physical

Review B 91: 205404. https://doi.org/10.1103/PhysRevB.91.205404.
Tylan-Tyler A and Lyanda-Geller Y (2017) In-plane electric fields and the n ¼ 5/2 fractional quantum Hall effect in a disk geometry. Physical Review B 95: 121302. https://doi.org/

10.1103/PhysRevB.95.121302.
Venkatachalam V, Yacoby A, Pfeiffer L, and West K (2011) Local charge of the n ¼ 5/2 fractional quantum Hall state. Nature (London) 469: 185–188. https://www.nature.com/

articles/nature09680.
Wan X and Yang K (2016) Striped quantum Hall state in a half-filled landau level. Physical Review B 93: 201303. https://doi.org/10.1103/PhysRevB.93.201303.
Wan X, Yang K, and Rezayi EH (2002) Reconstruction of fractional quantum Hall edges. Physical Review Letters 88: 056802. https://doi.org/10.1103/PhysRevLett.88.056802.
Wan X, Rezayi EH, and Yang K (2003) Edge reconstruction in the fractional quantum Hall regime. Physical Review B 68: 125307. https://doi.org/10.1103/PhysRevB.68.125307.
Wan X, Sheng DN, Rezayi EH, Yang K, Bhatt RN, and Haldane FDM (2005) Mobility gap in fractional quantum Hall liquids: Effects of disorder and layer thickness. Physical Review B

72: 075325. https://doi.org/10.1103/PhysRevB.72.075325.
Wan X, Yang K, and Rezayi EH (2006) Edge excitations and non-Abelian statistics in the Moore-read state: A numerical study in the presence of coulomb interaction and edge

confinement. Physical Review Letters 97: 256804. https://doi.org/10.1103/PhysRevLett.97.256804.
Wan X, Hu ZX, Rezayi EH, and Yang K (2008) Fractional quantum Hall effect at n ¼ 5/2: Ground states, non-abelian quasiholes, and edge modes in a microscopic model. Physical

Review B 77: 165316. https://doi.org/10.1103/PhysRevB.77.165316.
Wang C and Feldman DE (2010) Identification of 331 quantum Hall states with Mach-Zehnder interferometry. Physical Review B 82: 165314. https://doi.org/10.1103/

PhysRevB.82.165314.
Wang H, Sheng DN, and Haldane FDM (2009) Particle-hole symmetry breaking and the n ¼ 5/2 fractional quantum Hall effect. Physical Review B 80: 241311. https://doi.org/

10.1103/PhysRevB.80.241311.
Wang C, Cooper NR, Halperin BI, and Stern A (2017) Particle-hole symmetry in the Fermion-Chern-Simons and Dirac descriptions of a half-filled Landau Level. Physical Review X

7: 031029. https://doi.org/10.1103/PhysRevX.7.031029.
Wang C, Vishwanath A, and Halperin BI (2018) Topological order from disorder and the quantized Hall thermal metal: Possible applications to the n ¼ 5/2 state. Physical Review B

98: 045112. https://doi.org/10.1103/PhysRevB.98.045112.
Wang P, Sun J, Fu H, Wu Y, Chen H, Pfeiffer LN, West KW, Xie XC, and Lin X (2020) Finite-thickness effect and spin polarization of the even-denominator fractional quantum Hall

states. Physical Review Research 2: 022056. https://doi.org/10.1103/PhysRevResearch.2.022056.
Watson JD, Csáthy GA, and Manfra MJ (2015) Impact of heterostructure design on transport properties in the second Landau level of in situ back-gated two-dimensional electron

gases. Physical Review Applied 3: 064004. https://doi.org/10.1103/PhysRevApplied.3.064004.
Wen XG (1993) Topological order and edge structure of n ¼ 1/2 quantum Hall state. Physical Review Letters 70: 355–358. https://doi.org/10.1103/PhysRevLett.70.355.
Wen XG (2004) Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons. New York: Oxford University Press.
Wen XG and Niu Q (1990) Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Physical Review

B 41: 9377–9396. https://doi.org/10.1103/PhysRevB.41.9377.
Wen XG and Zee A (1992a) Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Physical Review B 46: 2290–2301. https://doi.org/10.1103/

PhysRevB.46.2290.
Wen XG and Zee A (1992b) Shift and spin vector: New topological quantum numbers for the Hall fluids. Physical Review Letters 69: 953–956. https://doi.org/10.1103/

PhysRevLett.69.953.
Wilczek F (1982) Quantum mechanics of fractional-spin particles. Physical Review Letters 49: 957–959. https://doi.org/10.1103/PhysRevLett.49.957.
Willett RL (2013) The quantum Hall effect at 5/2 filling factor. Reports on Progress in Physics 76: 076501. https://doi.org/10.1088/0034-4885/76/7/076501.
Willett R, Eisenstein JP, Störmer HL, Tsui DC, Gossard AC, and English JH (1987) Observation of an even-denominator quantum number in the fractional quantum Hall effect. Physical

Review Letters 59: 1776–1779. https://doi.org/10.1103/PhysRevLett.59.1776.
Willett RL, Ruel RR, West KW, and Pfeiffer LN (1993) Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level. Physical Review Letters

71: 3846–3849. https://doi.org/10.1103/PhysRevLett.71.3846.
Willett RL, West KW, and Pfeiffer LN (1999) Geometric resonance of composite fermion cyclotron orbits with a fictitious magnetic field modulation. Physical Review Letters

83: 2624–2627. https://doi.org/10.1103/PhysRevLett.83.2624.
Willett RL, West KW, and Pfeiffer LN (2002) Experimental demonstration of fermi surface effects at filling factor n ¼ 5/2. Physical Review Letters 88: 066801. https://doi.org/

10.1103/PhysRevLett.88.066801.

https://doi.org/10.1103/PhysRevB.85.125308
https://doi.org/10.1103/PhysRevB.85.125308
https://doi.org/10.1103/PhysRevB.30.840
https://doi.org/10.1103/PhysRevLett.96.016802
https://doi.org/10.1103/PhysRevLett.96.016802
https://doi.org/10.1103/PhysRevB.82.085321
https://doi.org/10.1103/PhysRevB.82.085321
https://doi.org/10.1103/PhysRevLett.105.096801
https://doi.org/10.1103/PhysRevLett.108.066810
https://doi.org/10.1103/PhysRevLett.104.076803
https://doi.org/10.1103/PhysRevLett.104.076803
https://doi.org/10.1103/PhysRevLett.68.1379
https://doi.org/10.1103/PhysRevB.102.121303
https://doi.org/10.1103/PhysRevB.102.121303
https://doi.org/10.1103/PhysRevB.86.045117
https://doi.org/10.1103/PhysRevB.86.045117
https://doi.org/10.1126/science.1216697
https://doi.org/10.1126/science.1216697
https://doi.org/10.1103/PhysRevLett.96.246805
https://doi.org/10.1103/PhysRevLett.96.246805
https://doi.org/10.1103/PhysRevLett.90.016802
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevB.88.195412
https://doi.org/10.1103/PhysRevB.88.195412
https://doi.org/10.1103/PhysRevB.91.205404
https://doi.org/10.1103/PhysRevB.95.121302
https://doi.org/10.1103/PhysRevB.95.121302
https://www.nature.com/articles/nature09680
https://www.nature.com/articles/nature09680
https://doi.org/10.1103/PhysRevB.93.201303
https://doi.org/10.1103/PhysRevLett.88.056802
https://doi.org/10.1103/PhysRevB.68.125307
https://doi.org/10.1103/PhysRevB.72.075325
https://doi.org/10.1103/PhysRevLett.97.256804
https://doi.org/10.1103/PhysRevB.77.165316
https://doi.org/10.1103/PhysRevB.82.165314
https://doi.org/10.1103/PhysRevB.82.165314
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevB.80.241311
https://doi.org/10.1103/PhysRevX.7.031029
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevResearch.2.022056
https://doi.org/10.1103/PhysRevApplied.3.064004
https://doi.org/10.1103/PhysRevLett.70.355
http://refhub.elsevier.com/B978-0-323-90800-9.00135-9/rf1405
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.49.957
https://doi.org/10.1088/0034-4885/76/7/076501
https://doi.org/10.1103/PhysRevLett.59.1776
https://doi.org/10.1103/PhysRevLett.71.3846
https://doi.org/10.1103/PhysRevLett.83.2624
https://doi.org/10.1103/PhysRevLett.88.066801
https://doi.org/10.1103/PhysRevLett.88.066801


Fractional quantum Hall effect at the filling factor n ¼ 5/2 365
Willett RL, Pfeiffer LN, and West KW (2009) Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proceedings of the
National Academy of Sciences of the United States of America 106: 8853–8858. http://www.pnas.org/content/106/22/8853.

Willett RL, Pfeiffer LN, and West KW (2010) Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles.
Physical Review B 82: 205301. https://doi.org/10.1103/PhysRevB.82.205301.

Willett RL, Nayak C, Shtengel K, Pfeiffer LN, and West KW (2013) Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at n¼ 5/2. Physical Review
Letters 111: 186401. https://doi.org/10.1103/PhysRevLett.111.186401.

Willett R, Shtengel K, Nayak C, Pfeiffer L, Chung Y, Peabody ML, Baldwin K and West KW (2019) Interference measurements of non-Abelian e/4 & Abelian e/2 quasiparticle braiding.
arXiv:1905.10248. https://arxiv.org/abs/1905.10248.

Wójs A and Quinn JJ (2006) Landau level mixing in the 5/2 fractional quantum Hall state. Physical Review B 74: 235319. https://doi.org/10.1103/PhysRevB.74.235319.
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