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Quantum simulation costs for Suzuki-Trotter decomposition of quantum many-body lattice models
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Quantum computers offer the potential to efficiently simulate the dynamics of quantum systems, a task whose
difficulty scales exponentially with system size on classical devices. To assess the potential for near-term
quantum computers to simulate many-body systems we develop a formalism to straightforwardly compute
bounds on the number of Trotter steps needed to accurately simulate the time evolution of fermionic lattice
models based on the first-order commutator scaling. We apply this formalism to two closely related many-body
models prominent in condensed matter physics, the Hubbard and t-J models. We find that, while a naive
comparison of the Trotter depth first seems to favor the Hubbard model, careful consideration of the model
parameters and the allowable error for accurate simulation leads to a substantial advantage in favor of the t-J
model. These results and formalism set the stage for significant improvements in quantum simulation costs.
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I. INTRODUCTION

Despite rapid growth in accessible computational re-
sources, simulating quantum systems on classical computers
has remained an elusive challenge. This difficulty arises
from the exponential scaling of complexity with system size
necessary to accurately model quantum systems. Quantum
computers, at least in theory, present a solution to this prob-
lem. By relying on hardware that is itself quantum in nature,
quantum computers can be used to efficiently simulate the dy-
namics of other quantum systems [1–3]. Quantum simulation
is poised to be a potent tool, with potential applications in
a diverse array of areas, including high-energy physics and
biology [4]. In particular, the quantum simulation of electronic
structure promises to have particular significance for quantum
chemistry [5–7] and materials science [8].

A critical step in any quantum simulation problem is to
translate the Hamiltonian that generates the dynamics for
the simulated system into a qubit Hamiltonian that can be
implemented on a quantum computer. For the case of elec-
tronic structure, this translation can be accomplished using
the celebrated Jordan-Wigner transformation [9], which maps
the fermionic creation and annihilation operators to the Pauli
operators. The cost of this mapping in terms of circuit de-
sign can be quantified by the Pauli depth, the maximum
length of Pauli operators needed to implement any given term
of the qubit-mapped Hamiltonian. A notable challenge in
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maintaining a low Pauli depth for fermionic Hamiltonians is
the need to account for the underlying anticommutivity of
the fermionic operators. To do so, the parity for each orbital
must be stored using a string of Pauli Z operators [10]. A
consequence of the parity information being stored nonlocally
in the Jordan-Wigner string is that each fermionic operator is,
in the most general case, mapped to O(N ) Pauli operators,
where N is the total qubit number [7] (unless nonlocal gates
are used [11]). This nonlocality is an inevitable consequence
of the fermion sign problem, which is responsible for the
classification of such fermionic lattice models as NP-hard
[12]. With this in mind, in this work we focus on the Jordan-
Wigner mapping as our primary tool for encoding fermionic
Hamiltonians in qubit form.

Along with encoding the Hamiltonian in qubit form, quan-
tum simulation also requires a method of implementing the
time evolution of the system. This can be done by decom-
posing the time-evolution operator into a series of local gate
operations by means of the Suzuki-Trotter expansion [13,14],
a method known as Trotterization [15]. As the expansion is
only exact in the limit of an infinite number of expansion
steps, practical applications require truncating at a finite num-
ber of steps, and consequently introducing a truncation error,
ε. This error, along with the desired evolution time, τ , are
the model-independent parameters that determine the required
number of Trotter steps for the simulation, r. Thus, ε, τ , and
r are the three key quantities for benchmarking Trotterized
quantum simulation. In general, the choice of ε and τ will
depend on the simulation observable of interest and the model
energy scale. For example, an accurate quantum simulation
to determine the energy gap [16] of a particular many-body
model will require an ε significantly smaller than the typical
energy spacing. We therefore use the dimensionless quan-
tity rε/τ 2 as a model independent measure of the Trotter
cost.
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Together, the Pauli depth and maximum number of Trotter
steps, r, provide two significant benchmarks for the compu-
tational cost of quantum simulation. This, in turn, has led to
significant study in how to optimize these costs, such as by
circuit modifications that lead to the cancellation of Jordan-
Wigner strings and reordering the terms in the Suzuki-Trotter
expansion to reduce the error in each step [11].

In this work, rather than seeking to optimize these costs for
a particular model, we instead compare the costs between two
prominent models for quantum condensed matter, namely the
Hubbard and t-J models. We avoid performing detailed gate
counts or circuit depth estimations, as has been previously
explored [11,17–19]. Our goal is to first answer the ques-
tion of which condensed matter models are most amenable
to simulation independent of any specific implementation or
choice of simulation parameters, before proceeding with any
detailed minimization of computational costs. In this way we
can first demonstrate that any advantage either model shows
in computational cost is inherent to the structure of the model
itself.

To date, the Hubbard model has served as one of the
foremost models targeted for quantum simulation. Numerous
approaches, have been pursued, including experimental ana-
log simulations using using atoms confined in optical lattices
[20–25] as well as quantum dots [26] and NMR systems
[27]. The Hubbard model has also received focus as test-
bed model for simulation on near-term quantum computers
[28–31]. With this in mind, it is important to identify whether
or not the Hubbard model is truly the most efficient model,
in terms of simulation resources, that captures the physics of
interest.

The t-J model, which arises out of a perturbative treatment
of the Hubbard model in the limit where the on-site interaction
dominates over the hopping energy [32–35], is of particular
interest due to its potential to model high-temperature super-
conductivity [35–39]. An important feature of the t-J model
Hamiltonian is the presence of Gutzwiller projection oper-
ators that eliminate the possibility of any site being doubly
occupied [38,40–42]. This significantly reduces the Hilbert
space of the t-J model in comparison to the more general
Hubbard model, which motivates the supposition that the t-
J model should be more tractable to simulate on near-term
quantum computers. To confirm whether this hypothesis bears
out, we apply the Jordan-Wigner transformation along with
optimized bounds on the Trotter error scaling [43] to bench-
mark the simulation costs for two-dimensional Hubbard and
t-J models on a square lattice in terms of the Pauli and Trotter
depths.

There remains debate about the presence of superconduct-
ing behavior in the ground state of the doped t-J model.
Unbiased classical simulation using exact diagonalization
techniques to probe this issue have been limited to 20 sites for
the case of the two-dimensional (2D) t-J model [44]. Quantum
simulation could help settle the debate. With the growing,
but still very limited, qubit resources available to existing
quantum computers, determining the model that makes the
most efficient use of those resources while maintaining the
potential to reveal impactful new physics is of significant
importance to both the quantum computing and condensed
matter communities. To address this question, we develop a

formalism for applying the optimized commutator bound [43]
to fermionic lattice models that yields analytical expressions
for the Trotter depth in terms of the model parameters. We
then apply this formalism to demonstrate that the bound on
the Trotter depth is significantly lower for the t-J model in
comparison to the Hubbard model in the parameter regime of
validity. These results suggest that the t-J model should be
a prominent candidate for simulation on near-term quantum
computers.

In Sec. II we begin by reformulating the upper bound on
Trotter depth given in Ref. [43] for the case of square lattice
models with both open and periodic boundary conditions.
Then, in Sec. III we review the 2D Hubbard and t-J mod-
els including a mapping of the spinful models onto bipartite
spinless lattices, before we apply the Jordan-Wigner trans-
formation in Sec. IV. From the Jordan-Wigner transformed
Hamiltonians we can immediately evaluate the minimum
Pauli depth for each model. In Sec. V we apply our expanded
form of the Trotter bound in order to compare the maximum
Trotter depth for the t-J and Hubbard models in both one and
two dimensions. Notably, we show that the Trotter depth for
both models scales linearly with the system size in both one
dimension and two dimensions. Furthermore, we find that,
within the parameter regimes where a valid comparison can
be made, the t-J model is significantly less costly to simu-
late. Finally, in Sec. VI we summarize our results and offer
some perspectives on their significance for near-term quantum
simulation.

II. BOUNDING TROTTER DEPTH

For a Hamiltonian that can be decomposed as H =∑�
γ Hγ

it is well established that the bound on the Trotter depth scales
with

∑�
γ ||Hγ || [45,46], where ||A|| denotes the spectral norm

of operator A. However, this bound is typically a significant
overestimate, as it neglects to account for any commutativity
within the terms of the Hamiltonian. In Ref. [43] it was shown
that this bound can be improved to,

rcom = O

⎛
⎝τ 2

ε

�∑
γ1,γ2

||[Hγ1, Hγ2 ]||
⎞
⎠. (1)

This bound is a powerful improvement and can be orders
of magnitude smaller than bounds arising from just the
norm of the Hamiltonian terms. Note that Eq. (1) is spe-
cific to a first-order product formula. The bound derived in
Ref. [43] is further generalized to any order, but for the pur-
poses of this paper we consider only the first-order result,
and leave generalizations to higher orders to be explored in
future work.

Before applying this bound to any specific models, let us
first consider it in more detail. First, we note that the bound
is primarily dependent on the spectral norms of commuta-
tors of the individual Hamiltonian terms. For Jordan-Wigner
transformed fermionic Hamiltonians, the Hamiltonian will
always consist of a sum over products of Pauli matrices, along
with some prefactors. The spectral norm of any product of
Pauli matrices is always one, as demonstrated in Appendix A.
Thus, if each Hγ consists of only products of Pauli matrices,
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||[Hγ1 , Hγ2 ]|| will simply be given by the absolute value of the
product of the respective prefactors of Hγ1 and Hγ2 .

Fermionic lattice Hamiltonians are typically expressed as
a sum over lattice sites, H =∑i, j Hi, j . In the following we
assume translationally invariant lattices, up to boundary terms.
As stated above, after applying the Jordan-Wigner transfor-
mation each single-site term, Hi, j , can be decomposed into D
subterms,

Hi, j =
D∑
δ

H δ
i, j (2)

where each H δ
i, j consists only of products of Pauli matrices.

Note that each ||[H δ
i, j, H δ

i, j]|| is guaranteed to be zero, while
the same is not true for ||[Hi, j, Hk,l ]|| as each H δ

i, j may not
commute with all the others. Thus, to ensure we capture
all noncommutation in the Hamiltonian, we decompose it as
H =∑Ny,Nx

i j

∑D
δ H δ

i, j for the purposes of evaluating Eq. (1).
We note that Hi, j and Hk,l must share at least one pair of
Pauli operators with the same indices for any [H δ

i, j, H δ′
k,l ] to

be nonzero.
To simplify notation we define the operators,

Ai1, j1
i2, j2

≡
D∑

δ1,δ2=1

∣∣∣∣[H δ1
i1, j1

, H δ2
i2, j2

]∣∣∣∣. (3)

Let us consider some general properties of each Ai1, j1
i2, j2

.

(1) Ai1, j1
i2, j2

= Ai2, j2
i1, j1

;

(2)
∑

i1,i2
Ai1, j1

i2, j2
=∑i1,i2

Ai1, j2
i2, j1

.
The first property follows from

||[B,C]|| = ||[C, B]||. (4)

We can verify the second is true by expanding the
summations as,

Ny∑
i1,i2=1

Ai1, j1
i2, j2

= A1, j1
1, j2

+ A1, j1
2, j2

+ · · · + A1, j1
Ny, j2

+ A2, j1
1, j2

+ · · · + A
Ny, j1
Ny, j2

, (5)

and,

Ny∑
i1,i2=1

Ai1, j2
i2, j1

= A1, j2
1, j1

+ A1, j2
2, j1

+ · · · + A1, j2
Ny, j1

+ A2, j2
1, j1

+ · · · + A
Ny, j2
Ny, j1

. (6)

We see that for each term Ai1, j1
i2, j2

in Eq. (5) there will be a

corresponding Ai2, j2
i1, j1

term in Eq. (6).
Finally, we also note that, since each single-site term Hi, j

in a lattice Hamiltonian is identical to each other single-site
term, up to a change in indices, we have Ai, j

i+a, j+b = Ak,l
k+a,l+b.

This property is in essence a statement that the rectangular
lattice is invariant under horizontal and vertical translations,
up to boundary terms. Using these properties we can expand

Eq. (1) as,

rcom = τ 2

ε

{
NxNyA1,1

1,1 + 2Ny

Nx−1∑
p=1

[
(Nx − p)A1,1

1,1+p

]

+ 2Nx

Ny−1∑
q=1

[
(Ny − q)A1,1

1+q,1

]

+ 2
Nx−1∑
p=1

Ny−1∑
q=1

[
(Nx − p)(Ny − q)A1,1

1+q,1+p

]

+ 2
Nx−1∑
p=1

Ny−1∑
q=1

[
(Nx − p)(Ny − q)A1+q,1

1,1+p

]}
. (7)

This expression constitutes the centerpiece of our formalism.
We pause here for a clarification of notation. Using the condi-
tion Ai, j

i+a, j+b = Ak,l
k+a,l+b we see that all Ai, j

i, j are equal, A1,1
1,1 =

A1,2
1,2 = A2,1

2,1 = . . .. Thus we have replaced the summation that
would appear in Eq. (7) with a product over the total number
of Ai, j

i, j terms, i.e.,
∑

i j Ai, j
i, j = NxNyA1,1

1,1. Similar statements

hold for all Ai, j
i, j+p, Ai, j

i+q, j , Ai, j
i+q, j+p, and Ai+q, j

i, j+p. For simplicity’s
sake, we have chosen i = j = 1, but we stress that Eq. (7) is
true for any choice of i and j. However, to account for the
lattice boundaries, for any choice other than i = j = 1, all
j indices should be considered modulo Nx and all i indices
should be considered modulo Ny. We emphasize further that
Eq. (7) is completely general in regards to hopping, including
all-to-all interactions. As we will demonstrate in subsequent
sections, model-dependent rules and specification of bound-
ary conditions can considerably simplify this expression.

To ensure that we have expanded Eq. (1) properly, we can
check to make sure Eq. (7) has the same number of terms. We
see that Eq. (1) has N2

x N2
y total terms. Using the summation

identity,

N−1∑
i=1

(N − i) = N (N − 1)

2
, (8)

we find that Eq. (7) has,

NxNy + NyNx(Nx − 1) + NxNy(Ny − 1)

+ Ny(Ny − 1)Nx(Nx − 1) = N2
x N2

y (9)

total terms. Therefore, as expected, Eqs. (1) and (7) have an
equal number of terms.

III. HUBBARD AND t-J MODELS

The 2D Hubbard model is [41],

HH = −t
∑
〈i j,kl〉

∑
s∈{↑,↓}

(c†
i j,sckl,s + ci j,sc

†
kl,s)

(10)
+ U

∑
i j

ni j,↑ni j,↓,

where t is the hopping energy, U is the on-site interac-
tion energy, and c†

j,s and c j,s are the fermionic creation and
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FIG. 1. Schematic representation of the parameter space for
common fermionic lattice models near half-filling. The t-J model
emerges from the Hubbard model near half-filling under the con-
straint that U 	 t . The Heisenberg model then emerges from the t-J
model under the additional restriction of half-filling.

annihilation operators obeying the anticommutation relations,

{ci j,s, c†
kl,s′ } = δs,s′δi j,kl ,

{c†
i j,s, c†

kl,s′ } = {ci j,s, ckl,s′ } = 0. (11)

Note that ni j,s = c†
i j,sci j,s and ni j = ni j,↑ + ni j,↓. We consider

a rectangular lattice with N = NxNy sites. Each pair of in-
dices (i, k = 1, . . . , Ny and j, l = 1, . . . , Nx) denote the x, y
position of the site in the lattice, respectively, as illustrated in
Fig. 2. We also assume a closed system with a fixed number
of particles and thus do not include a chemical potential term
in the Hamiltonian.

The t-J model can be derived from the Hubbard model by
working in the regime where U/t 	 1 and considering only
the lower-energy subspace of unoccupied and singly occupied
sites [38,41]. The Hamiltonian for the t-J model is,

HtJ = −t
∑
〈i j,kl〉

∑
s∈{↑,↓}

P(c†
i j,sckl,s + ci j,sc

†
kl,s)P

+ J
∑
〈i j,kl〉

P

[
Si j · Skl − ni jnkl

4

]
P, (12)

where J ≡ 4t2/U . Here the P are the Gutzwiller projection
operators that ensure the system does not admit any doubly
occupied sites. In Fig. 1 we provide a schematic representa-
tion demonstrating the conditions under which the t-J model
emerges from a perturbative treatment of the Hubbard model.
For later convenience when applying the Jordan-Wigner trans-
formation it will be useful to express the t-J Hamiltonian
entirely in terms of the creation, annihilation, and number
operators,

HtJ = −t
∑
〈i j,kl〉

∑
s∈{↑,↓}

[(1 − ni j,s̄)(c†
i j,sckl,s + c†

kl,sci j,s)

× (1 − nkl,s̄)] + J

2

∑
〈i j,kl〉

∑
s∈{↑,↓}

[c†
i j,sci j,s̄c

†
kl,s̄ckl,s

− (1 − ni j,s̄)ni j,snkl,s̄(1 − nkl,s)]. (13)

The full derivation for this expression is provided in
Appendix B.

Examining Eq. (13) we see that the local projection opera-
tors leave the Heisenberg terms unchanged. This is expected,
as the spin-spin interaction only arises under the condition
of single occupancy. A natural question is then whether the
projection operators need to be applied to the J terms at
all. Assuming an initial state with no double occupancy, the
existence of the projection operators on the hopping terms is
sufficient to keep the state restricted to the subspace consisting
of only unoccupied and singly occupied sites. However, simu-
lating the dynamics of the t-J model on a real quantum device
will inevitably introduce errors, some of which may lead to
the system straying out of the restricted Hilbert space. With
this in mind, we leave the projection operators in place on the
J terms as a limited form of protection against this class of
errors.

A deeper degree of protection that would also guard against
initial states with doubly occupied sites can be implemented
using global projection operators that also project the im-
plicit identity operators that act on every other site in the
lattice for each term in Eq. (13). However, these global
projection operators are highly nonlocal and come at a pro-
hibitive cost in terms of Pauli depth. Thus, for the purpose
of this analysis, we assume the initial state used for any
simulation of the t-J model does not contain any double
occupancy.

IV. JORDAN-WIGNER TRANSFORMATION

It is well established that fermionic creation and annihi-
lation operators can be mapped to Pauli (qubit) operators by
means of the Jordan-Wigner transformation. In one dimension
this transformation takes the form of [9,10],

c†
j = exp

⎛
⎝iπ

j−1∑
k=1

σ+
k σ−

k

⎞
⎠σ+

j ,

c j = exp

⎛
⎝−iπ

j−1∑
k=1

σ+
k σ−

k

⎞
⎠σ−

j ,

n j = 1

2

(
σ 0

j + σ z
j

)
. (14)

Here σ+ ≡ (σ x + iσ y)/2, σ− ≡ (σ x − iσ y)/2 with σ x, σ y,
and σ z being the usual Pauli matrices and σ 0 being the identity
matrix.

In order to capture the full Jordan-Wigner string in two
dimensions, as illustrated in Fig. 2, each fermionic operator
must transform as follows,

c†
i, j = exp

(
iπ

i−1∑
k=1

Nx∑
l=1

σ+
k,lσ

−
k,l

)
exp

⎛
⎝iπ

j−1∑
l=1

σ+
i,lσ

−
i,l

⎞
⎠σ+

i, j

ci, j = exp

(
−iπ

i−1∑
k=1

Nx∑
l=1

σ+
k,lσ

−
k,l

)
exp

⎛
⎝−iπ

j−1∑
l=1

σ+
i,lσ

−
i,l

⎞
⎠σ−

i, j

ni, j = 1

2

(
σ 0

i, j + σ z
i, j

)
. (15)

Note that this implementation of the 2D Jordan-Wigner trans-
formation matches with the result derived in Ref. [47].
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FIG. 2. Illustration of the site labeling for the 2D Hubbard
model. Site (i, j) is highlighted in red. The solid line illustrates the
choice of Jordan-Wigner string.

Using Eq. (15) we have,

c†
i, jck,l = exp

⎛
⎝iπ

i−1∑
α=1

Nx∑
β=1

σ+
α,βσ−

α,β

⎞
⎠ exp

⎛
⎝iπ

j−1∑
β=1

σ+
i,βσ−

i,β

⎞
⎠σ+

i, j

× exp

⎛
⎝−iπ

k−1∑
α=1

Nx∑
β=1

σ+
α,βσ−

α,β

⎞
⎠

× exp

⎛
⎝−iπ

l−1∑
β=1

σ+
k,βσ−

k,β

⎞
⎠σ−

k,l (16)

Without loss of generality we assume i < k and j < l . Equa-
tion (16) then becomes,

c†
i, jck,l = σ+

i, j exp

⎛
⎝−iπ

Nx∑
β= j

σ+
i,βσ−

i,β

⎞
⎠

× exp

⎛
⎝−iπ

k−1∑
α=i+1

Nx∑
β=1

σ+
α,βσ−

α,β

⎞
⎠

× exp

⎛
⎝−iπ

l−1∑
β=1

σ+
k,βσ−

k,β

⎞
⎠σ−

k,l . (17)

We note that Eq. (17) has three distinct segments of Jordan-
Wigner strings. We will refer to these segments as string A,

exp

⎛
⎝−iπ

Nx∑
β= j

σ+
i,βσ−

i,β

⎞
⎠, (18)

string B,

exp

⎛
⎝−iπ

k−1∑
α=i+1

Nx∑
β=1

σ+
α,βσ−

α,β

⎞
⎠, (19)

FIG. 3. Illustration of the three segments of Jordan-Wigner string
found in Eq. (17) between sites (i, j) (highlighted in red) and (k, l )
(highlighted in blue).

and string C,

exp

⎛
⎝−iπ

l−1∑
β=1

σ+
k,βσ−

k,β

⎞
⎠, (20)

respectively. From a quick inspection of the bounds on the
summations for each string we see that together the three
segments account for all the sites between (i, j) and (k, l ).
This is illustrated in Fig. 3.

We are now ready to apply the Jordan-Wigner transforma-
tion to the Hubbard and t-J Hamiltonians. The first step in
doing so is to remove the spin dependence from the Hamil-
tonians. We can do this by mapping from a spinful lattice
to a bipartite spinless lattice. This technique is illustrated
graphically in Fig. 4.

FIG. 4. Jordan-Wigner string (solid line) for mapping a 2D grid
of spinful fermions to two grids of spinless fermions. Note that each
pair of dotted and solid rows represents one row of the spinful grid.
Site (i, 2 j) is highlighted in red.
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Making the substitutions,

ci, j,↑ → ci,2 j−1, ci, j,↓ → ci,2 j, ci, j+1,↑ → ci,2 j+1, ci, j+1,↓ → ci,2 j+2. (21)

we arrive at

HH = −t
∑

j

(c†
2 j−1c2 j+1 + c†

2 j+1c2 j−1 + c†
2 jc2 j+2 + c†

2 j+2c2 j ) + U
∑

j

n2 j−1n2 j, (22)

for the Hubbard model and,

HtJ = − t
∑

j

[(1 − n2 j )(c
†
2 j−1c2 j+1 + c2 j−1c†

2 j+1)(1 − n2 j+2) + (1 − n2 j−1)(c†
2 jc2 j+2 + c2 jc

†
2 j+2)(1 − n2 j+1)]

+ J

2

∑
j

[c†
2 j−1c2 jc

†
2 j+2c2 j+1 + c†

2 jc2 j−1c†
2 j+1c2 j+2 − (1 − n2 j )n2 j−1n2 j+2(1 − n2 j+1)

− (1 − n2 j−1)n2 jn2 j+1(1 − n2 j+2)] (23)

for the t-J model.
Applying the Jordan-Wigner transformation as given in Eq. (14) and simplifying using

σ+
j σ z

j = −σ+
j and σ z

j σ
−
j = −σ−

j (24)

as well as,

exp

⎛
⎝±iπ

j−1∑
k=1

σ+
k σ−

k

⎞
⎠ = (−1) j−1

j−1∏
k=1

σ z
k (25)

we arrive at,

HH = t

2

∑
i, j

[
(−1)Nx

{(
σ x

i,2 j−1σ
x
i+1,2 j−1 + σ

y
i+1,2 j−1σ

y
i,2 j−1

)
σ z

i,2 j + (σ x
i,2 jσ

x
i+1,2 j + σ

y
i+1,2 jσ

y
i,2 j

)
σ z

i+1,2 j−1

}

×
⎛
⎝ Nx∏

β=2 j+1

σ z
i,β

⎞
⎠
⎛
⎝2 j−2∏

β=1

σ z
i+1,β

⎞
⎠+ (σ x

i,2 j−1σ
x
i,2 j+1 + σ

y
i,2 j+1σ

y
i,2 j−1

)
σ z

i,2 j + (σ x
i,2 jσ

x
i,2 j+2 + σ

y
i,2 j+2σ

y
i,2 j

)
σ z

i,2 j+1

]

+ U

4

∑
i, j

(
σ 0

i,2 j−1 + σ z
i,2 j−1

)(
σ 0

i,2 j + σ z
i,2 j

)
(26)

For the Hubbard model. Similarly, for the t-J model we find,

HtJ = − t

8

∑
i, j

[
(−1)Nx

{(
σ 0

i,2 j − σ z
i,2 j

)(
σ x

i,2 j−1σ
x
i+1,2 j−1 + σ

y
i,2 j−1σ

y
i+1,2 j−1

)(
σ 0

i+1,2 j − σ z
i+1,2 j

)

+ (σ 0
i,2 j−1 − σ z

i,2 j−1

)(
σ x

i,2 jσ
x
i+1,2 j + σ

y
i,2 jσ

y
i+1,2 j

)(
σ 0

i+1,2 j−1 − σ z
i+1,2 j−1

)}⎛⎝ Nx∏
β=2 j+1

σ z
i,β

⎞
⎠
⎛
⎝2 j−2∏

β=1

σ z
i+1,β

⎞
⎠

+ (σ 0
i,2 j − σ z

i,2 j

)(
σ x

i,2 j−1σ
x
i,2 j+1 + σ

y
i,2 j+1σ

y
i,2 j−1

)(
σ 0

i,2 j+2 − σ z
i,2 j+2

)
+ (σ 0

i,2 j−1 − σ z
i,2 j−1

)(
σ x

i,2 jσ
x
i,2 j+2 + σ

y
i,2 j+2σ

y
i,2 j

)(
σ 0

i,2 j+1 − σ z
i,2 j+1

)]

+ J

2

∑
i, j

[
σ+

i,2 j−1σ
−
i,2 j

(
σ+

i+1,2 jσ
−
i+1,2 j−1 + σ+

i,2 j+2σ
−
i,2 j+1

)+ σ+
i,2 jσ

−
i,2 j−1

(
σ+

i+1,2 j−1σ
−
i+1,2 j + σ+

i,2 j+1σ
−
i,2 j+2

)

− 1

16

{(
σ 0

i,2 j − σ z
i,2 j

)(
σ 0

i,2 j−1 + σ z
i,2 j−1

)(
σ 0

i+1,2 j + σ z
i+1,2 j

)(
σ 0

i+1,2 j−1 − σ z
i+1,2 j−1

)
+ (σ 0

i,2 j − σ z
i,2 j

)(
σ 0

i,2 j−1 + σ z
i,2 j−1

)(
σ 0

i,2 j+2 + σ z
i,2 j+2

)(
σ 0

i,2 j+1 − σ z
i,2 j+1

)
+ (σ 0

i,2 j−1 − σ z
i,2 j−1

)(
σ 0

i,2 j + σ z
i,2 j

)(
σ 0

i+1,2 j−1 + σ z
i+1,2 j−1

)(
σ 0

i+1,2 j − σ z
i+1,2 j

)
+ (σ 0

i,2 j−1 − σ z
i,2 j−1

)(
σ 0

i,2 j + σ z
i,2 j

)(
σ 0

i,2 j+1 + σ z
i,2 j+1

)(
σ 0

i,2 j+2 − σ z
i,2 j+2

)}]
. (27)
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FIG. 5. Energy spectrum for a 1D four-site Hubbard model with
open boundary conditions (red, solid) superimposed with the energy
spectrum for a 1D four-site t-J model (cyan, dashed). We have set
U/t = 100 such that we see full overlap between the low-energy
spectrum of the Hubbard model with the t-J model spectrum.

The t-J model arises from the low-energy Hubbard model
in the limit U/t 	 1. As a check for the consistency of the
Jordan-Wigner transformations, we numerically calculate the
energy spectra of a four-site, four-particle 1D Hubbard and t-J
model using the Pauli representation we derived in Sec. IV.
We plot the resulting spectra for U = 10, t = 0.1, and J =
4t2/U = 0.004 in Fig. 5. We see that, as expected, the t-J
energy spectrum overlaps with that of the low-energy states
of the Hubbard spectrum.

As an additional verification, we also calculate the en-
ergy eigenstates for the Hubbard and t-J models under the
same parameters using the ALPS (Algorithms and Libraries
for Physics Simulations) software package [48]. To within
numerical precision, we obtain the same spectrum as from
the exact diagonalization of our Jordan-Wigner transformed
Hamiltonians.

Comparing Eqs. (26) and (27) we see that the maximum
Pauli depth of the t-dependent terms is identical between the
two models. Both contain at least one term that consists of a
product of Nx Pauli operators. In contrast, the maximum Pauli
depth of the U -dependent term in the Hubbard model is only
two, half that of the J-dependent term in the t-J model.

V. t-J AND HUBBARD TROTTER DEPTH

With the full Jordan-Wigner transformed Hamiltonians,
we can now apply Eq. (7) to bound the number of Trotter
steps necessary to simulate the time evolution of the Hubbard
and t-J models. Note that, for completeness, we examine the
one-norm scaling in Appendix C. This comparison empha-
sizes the improvement offered by the commutator scaling,
particularly for the Hubbard model, which can be over an
order of magnitude lower, even for small system sizes. In the
following analysis we also consider specifically the case of
open boundary conditions. In Appendix D we extend these
results to the case of periodic boundary conditions.

We begin by considering some common features of both
models. As both the Hubbard and t-J models are restricted
to only nearest-neighbor hopping, we have Ai1, j1

i2, j2
= 0 for all

(i2, j2) �= (i1 + 1, 1 � j2 � j1) and for all (i2, j2) �= (i1, j1 �
j2 � Nx ). These conditions account for the segments of
Jordan-Wigner string that are not shared between site (i, j)
and its vertical neighbor (i + 1, j), as discussed in Sec. IV.
The first set of nonzero Ai1, j1

i2, j2
accounts for the segment of

Jordan-Wigner string stretching from site (i, j) rightward to
site (i, Nx ), and the second accounts for the segment stretching
leftward from site (i + 1, 1) to site (i + 1, j).

Furthermore, by inspecting Eqs. (26) and (27) we find that
all Ai, j

i, j+p>1 and Ai+1, j
i, j+p>1 vanish. This is due to the fact that the

only Pauli operators with the same indices Hi, j will share with
Hi, j+p>1 arise from the Jordan-Wigner strings, which consist
of only σ z operators. Thus, each commutator will take the
form of either,

[σ zσ x, σ xσ z], [σ zσ y, σ yσ z], [σ zσ x, σ yσ z],

[σ zσ z, σ xσ x], [σ zσ z, σ yσ y]. (28)

all of which are zero by the properties of the Pauli operators.
Thus, for the case of the Hubbard and t-J models, Eq. (7)

simplifies to,

rH, tJ
com = τ 2

ε

{
NxNyA1,1

1,1 + 2Ny(Nx − 1)A1,1
1,2

+ 2Nx(Ny − 1)A1,1
2,1 + 2(Ny − 1)(Nx − 1)A2,1

1,2

}
. (29)

We reiterate here that, like Eq. (7), this equation is valid for
any choice of i and j, and that for any choice other than
i = j = 1 all j indices should be considered modulo Nx and
all i indices modulo Ny.

A. Hubbard

In order to get an expression for Eq. (29) in terms of our
model parameters (t and U ) we need to compute each Ai2, j2

i1, j1
.

In Table I we break up each single-site term in the Hubbard
Hamiltonian, Eq. (26), into terms that consist only of products
of Pauli operators, along with some common prefactors. Then
using,

Ai1, j1
i2, j2

≡
12∑

δ1,δ2=1

∣∣∣∣[H δ1
i1, j1

, H δ2
i2, j2

]∣∣∣∣, (30)

where each H δ
i, j is listed in Table I, we calculate each Ai2, j2

i1, j1
.

This process is considerably simplified since each H δ
i, j con-

sists of a tensor product of Pauli operators. Since the norm of
a tensor product of Pauli operators is always one, we immedi-
ately know each Ai2, j2

i1, j1
will be of the form,

Ai2, j2
i1, j1

= 2

(
aH

t2

4
+ bH

|tU |
8

+ cH
U 2

16

)
, (31)

where aH , bH , and cH are positive integers determined by
the number of nonzero commutators in Ai2, j2

i1, j1
with the corre-

sponding prefactor, and the factor of 2 arises from the Pauli
commutation relations.

Inspecting the terms in Table I we first note that for all
Ai2, j2

i1, j1
we have cH = 0, as the potential terms all consist only

of σ z and identity operators and thus will always commute
with each other. To determine aH and bH let us consider each
Ai2, j2

i1, j1
term in Eq. (29).
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FIG. 6. Commutator bound on the Trotter depth for the Hubbard model as a function of (a) t with U = 1, N = 36 (b) U with t = 1, N = 36
and (c) N with U = t = 1. The top pair of lines show the Trotter depth for a 2D model with periodic (orange, dotted) and open (red, solid)
boundary conditions. The bottom pair of lines correspond to a 1D model with periodic boundary conditions (dark blue, dashed) and open
boundary conditions (light blue, solid).

Of the 144 commutators in Eq. (30), we see that only 40
are nonzero for Ai, j

i, j . Of these 40 commutators, 8 of them
have the prefactor t2/4 and the other 32 have the prefactor
|tU |/8. Thus, for Ai, j

i, j we have aH = 8, bH = 32, and cH = 0.
Combining these coefficients with Eq. (31) arrive at,

Ai, j
i, j = A1,1

1,1 = 4t2 + 8|tU |. (32)

We can repeat the same process for Ai, j
i, j+1 and Ai, j

i+1, j where
in both cases we find 16 nonzero commutators, 8 with the
prefactor t2/4 and 8 with |tU |/8. Thus,

Ai, j
i, j+1 = Ai, j

i+1, j = A1,1
1,2 = A1,1

2,1 = 4t2 + 2|tU |. (33)

Finally, we see that for Ai+1, j
i, j+1 there are only four nonzero

commutators, all corresponding to t2/4. Thus,

Ai+1, j
i, j+1 = A2,1

1,2 = 2t2. (34)

We can now combine all these results with Eq. (29) to
yield,

rH
com = NxNy(4t2 + 8tU ) + 2Ny(Nx − 1)(4t2 + 2tU )

+ 2Nx(Ny − 1)(4t2 + 2tU ) + 4(Ny − 1)(Nx − 1)t2.

(35)

Here we note several important features of this result. First, we
see that the bound scales quadratically with t and linearly with
U . However, even more notably, it scales linearly with the
total number of lattice sites, N ≡ NxNy, despite the presence
of the lattice spanning Jordan-Wigner strings in Eq. (26).
This linear scaling arises due to the fact that all commutators
between non-nearest-neighbor sites will be of the form given
in Eq. (28) and will thus vanish.

In Fig. 6 we plot the functional form of the Trotter depth
from Eq. (35) as a function of t , U , and N for the case
of a 6 × 6 lattice. As the choices for values of ε and τ

will generally depend on the observables of interest for the
simulation, we quantify the overall Trotter cost in terms of
the problem-independent quantity rε/τ 2. For comparison, we
also include the Trotter depth for the case of periodic bound-
ary conditions (Appendix D) and for a 1D Hubbard model
with an equivalent number of lattice sites (Appendix F). Here
we see the quadratic scaling with t and linear scaling with U
and N illustrated for both 1D and 2D models. Significantly,

the difference in cost between 1D and 2D simulations is less
than a factor of ten for small system sizes, but still larger than
what can be efficiently simulated classically.

B. t-J

We can follow an exactly analogous process for the t-J
model. In Table II we break up each single-site term in the t-J
Hamiltonian, Eq. (27), into terms that consist only of products
of Pauli operators, along with some common prefactors. Then
using,

Ai1, j1
i2, j2

≡
64∑

δ1,δ2=1

∣∣∣∣[H δ1
i1, j1

, H δ2
i2, j2

]∣∣∣∣, (36)

where each H δ
i, j is listed in Table II, we calculate each Ai2, j2

i1, j1
in

Eq. (29).
For the t-J model, each Ai2, j2

i1, j1
will be of the form,

Ai2, j2
i1, j1

= 2

(
atJ

t2

64
+ btJ

|tJ|
128

+ ctJ
J2

256

)
. (37)

Unlike the Hubbard model, neither atJ , btJ , or ctJ will always
be zero, since the J terms arise from a second-order pertur-
bation that mixes both hopping and interaction. Let us again
consider each Ai1, j1

i2, j2
individually.

For Ai, j
i, j , of the 4096 commutators in (37), 1600 are

nonzero. Of these 1600 commutators, 384 of them correspond
to t2/32, 1024 to |tJ|/128, and 192 to J2/256. Thus we have
atJ = 384, btJ = 1024, and ctJ = 192 for Ai, j

i, j . Combining
these coefficients with Eq. (37) we arrive at,

Ai, j
i, j = A1,1

1,1 = 12t2 + 16|tJ| + 3
2 J2. (38)

For Ai, j
i, j+1 and Ai, j

i+1, j we find 960 nonzero commutators, with
256 corresponding to t2/32, 512 to |tJ|/128, and 192 to
J2/256. Thus,

Ai, j
i, j+1 = Ai, j

i+1, j = A1,1
1,2 = A1,1

2,1 = 8t2 + 8|tJ| + 3
2 J2. (39)

For Ai+1, j
i, j+1 there are only 480 nonzero commutators, with 128

corresponding to t2/32, 256 to |tJ|/128, and 96 to J2/256.
Thus,

Ai+1, j
i, j+1 = A2,1

1,2 = 4t2 + 4|tJ| + 3
4 J2. (40)
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FIG. 7. Commutator bound on the Trotter depth for the t-J model as a function of (a) t with J = 1, N = 36 (b) J with t = 1, N = 36 and
(c) N with J = t = 1. The top pair of lines show the Trotter depth for a 2D model with periodic (orange, dotted) and open (red, solid) boundary
conditions. The bottom pair of lines correspond to a 1D model with periodic boundary conditions (dark blue, dashed) and open boundary
conditions (light blue, solid).

Combining these results with Eq. (29), we find that the
functional form of the commutator bound on the Trotter depth
for the 2D t-J model is,

rtJ
com = NxNy

(
12t2 + 16|tJ| + 3

2 J2)
+ 2Ny(Nx − 1)

(
8t2 + 8|tJ| + 3

2 J2
)

+ 2Nx(Ny − 1)
(
8t2 + 8|tJ| + 3

2 J2
)

+ 2(Ny − 1)(Nx − 1)
(
4t2 + 4|tJ| + 3

4 J2
)
. (41)

As in the case of the Hubbard model, we see that the bound
on Trotter depth for the 2D t-J model scales linearly with N ≡
NxNy and quadratically with t . However, while the Hubbard
model scaled linearly with U , the t-J model scales quadrati-
cally with J . This is expected, as the J term in the t-J model
arises from a second-order perturbation that mixes both the
hopping and interaction.

In Fig. 7 we plot the functional form of the Trotter depth
from Eq. (41) as a function of t , J , and N , again for a 6 × 6
lattice. As before, we include the Trotter depth for the case
of periodic boundary conditions (and for a 1D t-J model with
an equivalent number of lattice sites). As we observed for the
Hubbard model, we see that the Trotter cost for both the 1D
and 2D models scales linearly with N , with less than a factor
of ten difference between them at N = 36.

C. Comparison: Hubbard vs t-J

With the functional form of the Trotter bound for both
Hubbard and t-J, we can now make a direct comparison be-
tween the models. As we do so, we must be careful in making
sure our comparison is fair, as the relevant parameters in
the Hubbard model are t and U while in the t-J model the
relevant parameters are t and J . In Fig. 8(a) we compare the
two bounds treating t as fixed and U and J as independent
parameters that are varied over the same range of values. In
this case, we see that the bound on the Hubbard model is
significantly lower than the t-J model.

However, this comparison is somewhat disingenuous, as
we know that U and J are not independent, but are related
by J ≡ 4t2/U . Furthermore, the t-J model is a valid approx-
imation to the Hubbard model only under the condition that
U/t 	 1. To account for both of these factors, in Fig. 8(b)
we replace J in the t-J model bound with 4t2/U and fix

U/t = 100. In this case, we see that the bound for the t-J
model is over an order of magnitude lower than for the Hub-
bard model. The reason for this behavior can be intuitively
seen when considering Fig. 5. For the Hubbard model, U
sets the energy scale, with the gaps between relevant energy
levels being on this order. For the t-J model, J sets the energy
scale. Thus, a Hubbard simulation that wants to capture the
behavior of the model at the energy scale of t-J must be able
to resolve energy gaps on the order of J , which for the t and U
parameters used in Figs. 5 and 8, are two orders of magnitude
smaller than U . For the same accuracy, the Hubbard simula-
tion must have much greater fidelity, and therefore requires a
larger Trotter depth.1

It is important to note that in Fig. 8, as in our other
comparison plots, we have plotted the bound in terms of the
dimensionless quantity rε/τ 2, which is the maximum number
of Trotter steps multiplied by the allowed error divided by the
square of the dimensionless time parameter. When comparing
the Hubbard and t-J model, the implicit assumption of this ap-
proach is that the allowed error, ε, is the same for both models.
If we wish to treat U and J as independent parameters, as in
Fig. 8(a), an alternative approach that maintains the fairness
of the comparison is to realize that ε must be different for
each model. For the Hubbard model it is logical to set ε as a
fraction of U while for the t-J model it is logical to set it as a
fraction of J . Since the Hubbard model must resolve energy
spacing on the order of J to have accuracy comparable to the
t-J model, and since U 	 J , this means εH � εtJ .

As an illustration of this behavior, let us consider a specific
example for parameters of t = 0.1 and U = 10. In order to
resolve the energy spectra of both models with equal accuracy,
we need to pick an ε significantly lower than the smallest
characteristic energy scale, which in this case is given by
J = 4t2/U . Let us choose ε = 0.1J . Thus we see that for the
Hubbard model we have an ε that is five orders of magnitude
smaller than the characteristic model energy scale, while for
the t-J model we have an ε that is only one order of magnitude
smaller than the characteristic energy scale. Assuming an
evolution time of τ = 10t and plugging all our parameters

1While the numerical calculation used to produce Fig. 5 was done
for 1D Hubbard and t-J models, the same logic applies in the 2D
case.
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FIG. 8. Log scale comparison for the commutator bound on Trotter depth for the 2D Hubbard (orange, dashed) and t-J (green, solid)
models. In (a) we fix t = 0.1 and plot the bound as a function of U for the Hubbard model and as a function of J for the t-J model. In (b) we
fix U/t = 100 and take J = 4t2/U and plot the bound on both models as a function of U . In (c) we fix t = 0.1, take J = 4t2/U and plot both
models as a function of U/t For all plots we have taken Nx = Ny = 6.

into Eqs. (35) and (41) we arrive at rH
com ≈ 1.34 × 106 and

rtJ
com ≈ 4.15 × 104, indicating that the Hubbard model is over

30 times more costly to simulate than the t-J model at these
parameters.

From these results, it is clear that the best choice of model
to simulate depends on the desired parameter range, namely
the ratio of U/t . With this in mind, in Fig. 8(c) we plot the
bound on the Trotter depth as a function of this ratio. We see
that as U/t → 0 the bound for the Hubbard model vanishes.
This is expected, as in the limit of vanishing U with finite t
all terms in the Hubbard Hamiltonian commute. Conversely,
as U/t → 0 the bound for the t-J model blows up. This occurs
since the t-J bound grows with J and J is inversely related to
U/t . Physically, this can be seen as corollary to the behavior
discussed in the previous two paragraphs. As we move beyond
the parameter range satisfying U 	 t , the energy scale grows
much larger than the typical spacing of the t-J model, and
eventually the assumptions going into the derivation of the
model break down.

As the number of Trotter steps is directly proportional to
the circuit depth, this advantage translates to a significant
reduction in overall gate count for simulating the t-J model in
comparison to Hubbard. These results indicate that, on NISQ
devices where gate errors and decoherence are limiting factors
on circuit design, the t-J model is a more amenable target for
near-term simulation.

VI. CONCLUDING REMARKS

In this work, we constructed a lattice-fermion formalism
for studying the Trotter depth of important condensed models.
We applied our approach to the Hubbard and t-J models,
motivated by the supposition that the reduced Hilbert space of
the t-J model due to the elimination of any doubly occupied
states would naturally lead to lower computational costs. Our
results show that the situation is significantly more nuanced
than this straightforward hypothesis.

In terms of the Pauli depth, we find that we gain no advan-
tage from the reduced Hilbert space. While it is true that the
t-J model has only three basis states for each orbital, |0〉, |↑〉,
and |↓〉, in comparison to the four basis states of the Hubbard
model, which also allows |↑ ↓〉, both cases still require two
qubits to represent their respective bases. In this case, the
t-J model is actually disadvantaged, as extra qubit overhead

is required to implement the projection operators that ensure
the system never strays out of the reduced Hilbert space. We
note, however, that this is naturally a consequence of using a
fermion-qubit mapping. If we instead applied a qutrit-based
mapping for the t-J model, the additional overhead would be
mitigated (an example of a fermion-qutrit mapping for the 2D
t-J model can be found in Ref. [49]). While the difference in
Pauli depth is not significant in the 2D case, as the Jordan-
Wigner transformed Hamiltonians for both the Hubbard and
t-J models contain terms that span the full width of the lattice,
it plays a larger role in the 1D case where these nonlocal
Jordan-Wigner strings cancel out (see Appendix F).

In terms of the bound on Trotter depth, we find the situation
to be more in-line with our initial hypothesis. If we naively
treat U and J on the same footing, the bound first appears to
favor the Hubbard model by around two orders of magnitude.
However, if we properly account for the fact that the t-J model
is a valid approximation to the Hubbard model only under
the condition U 	 t , and that J is in reality a function of U
and t , then we see that the bound significantly favors the t-J
model. Thus, the most efficient choice of model depends on
the energy scale that the simulation needs to resolve.

We provide the full form of the Jordan-Wigner transformed
Hamiltonians for the Hubbard and t-J models. In particular,
we include an explicit qubit representation of the 2D t-J
model without relying on alternative approaches, such as the
auxiliary particle scheme [50]. While this work provides a
benchmark of comparison between the Hubbard and t-J mod-
els, there remain numerous avenues for future exploration.
Chief among these is the extension to higher-order product
formulas, using the generalized bounds provided in Ref. [43].
More compact fermion-qubit mappings that reduce the Pauli
depth through the use of ancilla qubits [51–58] or via circuit
design that leads to the cancellation of Jordan-Wigner strings
[11] could also be considered. However, we note that, as the
Pauli depth for both the Hubbard and t-J models is equivalent
outside of one dimension, any compact mapping based on
reducing the Jordan-Wigner string will benefit both models
equally and will not impact that advantage in Trotter depth
that the t-J model possesses.

A more detailed accounting of the resource overhead
could also be carried out in order to provide specific gate
count estimates for each model, which will serve as a neces-
sary prerequisite to implementing simulations on real-world
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devices. Furthermore, it would be of interest to determine if
the t-J model shares a similar advantage under other simu-
lation schemes, such as hybrid quantum-classical variational
algorithms [59,60]. Finally, we note that the general nature of
the formalism developed in Sec. II makes it straightforward
to extend this approach to other lattice models with different
geometries or to orbital models for application to quantum
chemistry simulations.
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APPENDIX A: SPECTRAL NORM OF PAULI PRODUCTS

In this Appendix we prove the spectral norm of a Kro-
necker product of any number of Pauli matrices is always
unity. Let us consider the Kronecker product of N Pauli
matrices,

N∏
i=1

σα
i (A1)

where α = 0, x, y, z with σ 0 being the identity matrix. As
transposition is distributive over the Kronecker product, and
as the Pauli matrices are Hermitian, the matrix in Eq. (A1)
must be Hermitian. Thus, the spectral norm will be given by
the absolute value of its largest magnitude eigenvalue.

The eigenvalues of σ x, σ y, and σ z are each {−1, 1} while
the eigenvalues of σ 0 are {1, 1}. As the eigenvalues of the
Kronecker product of two square matrices are given by the
products of the eigenvalues of the individual matrices, we can
see that the eigenvalues of Eq. (A1) will be −1 and 1, each
with multiplicity 2N/2. Thus,∣∣∣∣∣

∣∣∣∣∣
N∏

i=1

σα
i

∣∣∣∣∣
∣∣∣∣∣ = 1 (A2)

APPENDIX B: FERMIONIC REPRESENTATION
OF THE t-J MODEL

In this Appendix we derive an expression for the 2D t-J
model entirely in terms of the fermionic creation, annihi-
lation, and number operators. Starting from the typical t-J
Hamiltonian,

HtJ = −t
∑
〈i j,kl〉

∑
s∈{↑,↓}

P(c†
i j,sckl,s + ci j,sc

†
kl,s)P

+ J
∑
〈i j,kl〉

P

[
Si j · Skl − ni jnkl

4

]
P, (B1)

we note,

Si j · Skl = Sx
i jS

x
kl + Sy

i jS
y
kl + Sz

i jS
z
kl , (B2)

and

S+
kl = Sx

kl + iSy
kl and S−

kl = Sx
kl − iSy

kl . (B3)

Thus we have,

Si j · Skl = 1
2 (S+

i j S
−
kl + S−

i j S
+
kl ) + Sz

i jS
z
kl . (B4)

Now using [41],

S+
kl = c†

kl,sckl,s̄, S−
kl = c†

kl,s̄ckl,s, Sz
kl = 1

2 (nkl,s − nkl,s̄),
(B5)

we can express Eq. (B4) as,

Si j · Skl = 1
2 (c†

i j,↑ci j,↓c†
kl,↓ckl,↑ + c†

i j,↓ci j,↑c†
kl,↑ckl,↓)

+ 1
4 (ni j,↑nkl,↑ − ni j,↑nkl,↓ − ni j,↓nkl,↑ + ni j,↓nkl,↓)

(B6)

Thus,

Si j · Skl − ni jnkl

4
= Si j · Skl − (ni j,↑ + ni j,↓)(nkl,↑ + nkl,↓)

4

= 1

2

∑
s∈{↑,↓}

(c†
i j,sci j,s̄c

†
kl,s̄ckl,s − ni j,snkl,s̄)

(B7)

The projection operators can be explicitly accounted for
by replacing the fermionic operators in Eq. (B1) with the
projected operators [38],

c†
i j,s → c†

i j,s(1 − ni j,s̄),

ci j,s → ci j,s(1 − ni j,s̄),

ni j,s → ni j,s(1 − ni j,s̄). (B8)

Thus we can rewrite Eq. (12) as,

HtJ = −t
∑
〈i j,kl〉

∑
s∈{↑,↓}

[(1 − ni j,s̄)(c†
i j,sckl,s + c†

kl,sci j,s)

× (1 − nkl,s̄)] + J

2

∑
〈i j,kl〉

∑
s∈{↑,↓}

[c†
i j,sci j,s̄c

†
kl,s̄ckl,s

− (1 − ni j,s̄)ni j,snkl,s̄(1 − nkl,s)] (B9)

Note that the projected operators in Eq. (B8) provide a lo-
cal implementation of the Gutzwiller projection through the
elimination of any terms that would ever produce a doubly
occupied site. However, the projectors in Eq. (B8) will not
protect against an initial state of the system that contains
doubly occupied sites. In other words, the implicit identity
operators that act on every site pq �= i j, kl contained in each
term in Eq. (B9) are not projected.

APPENDIX C: ONE-NORM BOUND ON TROTTER DEPTH

In this Appendix we determine a looser bound
on the Trotter depth for the Hubbard and t-J models by
applying the operator norm scaling derived in Ref. [43]. For
the case of the one-norm, the bound for a first-order product
formula is given by,

r1−norm = O

⎛
⎝(∑�

γ ||Hγ ||τ)2
ε

⎞
⎠. (C1)
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FIG. 9. Ratio of the bound on Trotter depth for the 2D Hubbard model arising from the one-norm to that of the commutator scaling as a
function of (a) t with U = 1, N ≡ NxNy = 36, (b) U with t = 1, N = 36, and (c) N with U = t = 1.

As in the calculation of the commutator bound, we begin by
decomposing the full Hamiltonian into terms that consist only
of products of Pauli matrices,

H =
∑

i j

∑
δ

H δ
i j . (C2)

For the purposes of Eq. (C1), Hγ = H δ
i j . Thus we have,

r1−norm = τ 2

ε

⎛
⎝∑

i j

∑
δ

∣∣∣∣H δ
i j

∣∣∣∣
⎞
⎠

2

= τ 2

ε
N2

(∑
δ

∣∣∣∣H δ
i j

∣∣∣∣)2

,

(C3)
where N ≡ NxNy is the total number of sites in the lattice.
Since each H δ

i j consists of a product of Pauli matrices, along
with some prefactor, its norm will simply be the absolute value
of the prefactor.

For the 2D Hubbard model there are 12 distinct H δ
i j terms,

listed in Appendix E. Eight of these terms have a prefactor of
t/2 and four have a prefactor of U/4. However, one of the U/4
terms is simply an identity term and can be disregarded. Thus
for the Hubbard model we have,

rH
1−norm = τ 2

ε
N2

(
4t + 3

4
U

)2

. (C4)

For the 2D t-J model there are 64 distinct H δ
i j terms, also

tabulated in Appendix E. Half of these terms have a prefactor
of t/16 and the other half have a prefactor of J/16. However,
two of the J/16 terms are identity terms and can be disre-
garded. Thus for the t-J model we have,

rtJ
1−norm = τ 2

ε
N2

(
2t + 15

8
J

)2

. (C5)

In order to compare the bounds given by the one-norm
scaling to those given by the commutator scaling, we consider
the ratio,

� ≡ r1−norm/rcomm. (C6)

In Figs. 9 and 10 we plot this ratio for the 2D Hubbard and t-J
models, respectively. We see that, at fixed N , the commutator
bound is significantly tighter for both models. Notably, the
commutator bound grows linearly with N while the one-norm
bound grows quadratically with N . Comparing Eqs. (35) and
(C4) we see that for any fixed U and t there is no lattice size,
N , where the one-norm bound will be tighter. However, this

is not true for the case of the t-J model. Comparing Eqs. (41)
and (C5) we see that at small lattice sizes the one-norm bound
will be tighter due to the large polynomial of t and J in the
commutator bound. This is illustrated in Fig. 10(c) where at
small N with fixed t and J the ratio of the bounds is less than
one, indicating that the commutator bound is larger. Further-
more, we also see that the ratio of the bounds is monotonic as
a function of t and J for the t-J model, but that the Hubbard
model displays a clear minimum as a function of both t and U .
While a minimum in the ratio as a function of N also occurs
between N = 1 and N = 2 for both models, this does have
physical significance, as in practice N is a discrete quantity.

APPENDIX D: PERIODIC BOUNDARY CONDITIONS

In this Appendix we determine the Trotter depth for the
2D Hubbard and t-J models for the case of periodic boundary
conditions. We begin by simplifying Eq. (7) to include only
nearest-neighbor hopping, as is the case in both the Hubbard
and t-J models,

rcom = τ 2

ε

[
NxNyA1,1

1,1 + 2Ny(Nx − 1)A1,1
1,2 + 2Nx(Ny − 1)A1,1

2,1

+ 2(Nx − 1)(Ny − 1)A1,1
2,2

+ 2(Nx − 1)(Ny − 1)A2,1
1,2 + b.t.

]
, (D1)

where b.t. denotes the contribution from the boundary terms.
In Fig. 11 we illustrate the boundary terms that arise for a
rectangular lattice of dimension Nx by Ny. Let us first consider
the terms shown in Fig. 11(a). We can see that we have Nx

terms that take the form A
Ny, j
1, j and A1, j

Ny, j as well as Ny terms

that take the form Ai,Nx
i,1 and Ai,1

i,Nx
. Now we consider the terms

shown in Fig. 11(b). We can see that we have Nx terms that
take the form A

Ny, j+1
1, j and A1, j

Ny, j+1 as well as Ny − 1 terms that

take the form Ai+1,Nx
i,1 and Ai,1

i+1,Nx
. Thus in total we have,

b.t. = Nx
(
A

Ny,1
1,1 + A1,1

Ny,1

)+ Ny
(
A1,Nx

1,1 +A1,1
1,Nx

)+Nx
(
A

Ny,2
1,1 +A1,1

Ny,2

)
+ (Ny − 1)

(
A2,Nx

1,1 + A1,1
2,Nx

)
= 2NxA

Ny,1
1,1 + 2NyA1,Nx

1,1 + 2NxA
Ny,2
1,1 + 2(Ny − 1)A2,Nx

1,1

(D2)
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FIG. 10. Ratio of the bound on Trotter depth for the 2D t-J model arising from the one-norm to that of the commutator scaling as a function
of (a) t with J = 1, N ≡ NxNy = 36, (b) J with t = 1, N = 36, and (c) N with J = t = 1.

where we have simplified using the property Ai1, j1
i2, j2

= Ai2, j2
i1, j1

.

Furthermore, we note that A
Ny, j
1, j = Ai, j

i+1, j , Ai,Nx
i,1 = Ai, j

i, j+1,

A
Ny, j+1
1, j = Ai, j+1

i+1, j , and Ai+1,Nx
i,1 = Ai+1, j

i, j+1.
Combining all of this, we arrive at,

b.t. = 2NxA1,1
2,1 + 2NyA1,Nx

1,1 + (2Nx + 2Ny − 2)A2,1
1,2. (D3)

Plugging this expression for the boundary terms into (D1) we
find,

rPBC
com = τ 2

ε
NxNy

(
A1,1

1,1 + 2A1,1
1,2 + 2A1,1

2,1 + 2A1,1
2,2 + 2A2,1

1,2

)
.

(D4)

Thus, comparing Eqs. (29) and (D4) we see that the only
difference in the Trotter depth between open and periodic
boundary conditions is to change the factors of Nx − 1 and
Ny − 1 to Nx and Ny in the multisite terms.

We can now replace each Ai1, j1
i2, j2

with the functional forms
found in Sec. V. The full expressions for the commutator
Trotter bounds with periodic boundary conditions are thus,

rH,PBC
com = τ 2

ε
NxNy[(4t2 + 8tU ) + 2(4t2 + 2tU )

+ 2(4t2 + 2tU ) + 4t2] (D5)

for the Hubbard model and,

rtJ,PBC
com = τ 2

ε
NxNy

[(
12t2 + 16|tJ| + 3

2
J2

)

+ 2

(
8t2 + 8|tJ| + 3

2
J2

)
+ 2

(
8t2 + 8|tJ| + 3

2
J2

)

+ 2

(
4t2 + 4|tJ| + 3

4
J2

)]
(D6)

for the t-J model.

APPENDIX E: DECOMPOSITION OF SINGLE-SITE
HUBBARD AND t-J HAMILTONIANS

In this Appendix we provide explicit decompositions of
the Hubbard and t-J Hamiltonians into terms that consist of
solely products of Pauli operators. For the Hubbard model
each single-site term, HH

i, j , in Eq. (26) can be decomposed as
listed in Table I. Similarly, for the t-J model each single-site
term, HtJ

i, j , in Eq. (27) can be decomposed as listed in Table II.

FIG. 11. Illustration of the nonzero boundary terms that must be accounted for the case of nearest-neighbor hopping under periodic
boundary conditions on a Nx by Ny rectangular lattice. In (a) we illustrate terms of the form Ai, j

i, j+1 and Ai, j
i+1, j and in (b) we illustrate terms of

the form Ai+1, j
i, j+1.
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TABLE I. Decomposition of each single-site term in the 2D Jordan-Wigner transformed Hubbard Hamiltonian, Eq. (26), into terms that
consist only of products of Pauli operators. The terms in each column share the common factor listed in the top row of the column.

H δ
i, j for 2D Hubbard

× t
2 (−1)Nx

∏Nx
β=2 j+1 σ z

i,β

∏2 j−2
β=1 σ z

i+1,β × t/2 ×U/4

H 1
i, j = σ x

i,2 j−1σ
x
i+1,2 j−1σ

z
i,2 j H 5

i, j = σ x
i,2 jσ

x
i,2 j+2σ

z
i,2 j+1 H 9

i, j = σ 0

H 2
i, j = σ

y
i,2 j−1σ

y
i+1,2 j−1σ

z
i,2 j H 6

i, j = σ
y
i,2 j+2σ

y
i,2 jσ

z
i,2 j+1 H 10

i, j = σ z
i,2 j−1

H 3
i, j = σ x

i,2 jσ
x
i+1,2 jσ

z
i+1,2 j−1 H 7

i, j = σ x
i,2 j−1σ

x
i,2 j+1σ

z
i,2 j H 11

i, j = σ z
i,2 j

H 4
i, j = σ

y
i,2 jσ

y
i+1,2 jσ

z
i+1,2 j−1 H 8

i, j = σ
y
i,2 j+1σ

y
i,2 j−1σ

z
i,2 j H 12

i, j = σ z
i,2 j−1σ

z
i,2 j

APPENDIX F: TROTTER DEPTH FOR 1D HUBBARD AND t-J MODELS

In this Appendix we determine the functional form of the Trotter depth for the 1D Hubbard and t-J models. For reference, in
1D the Hamiltonian for the Hubbard model is,

HH = −t
∑

j

(c†
2 j−1c2 j+1 + c†

2 j+1c2 j−1 + c†
2 jc2 j+2 + c†

2 j+2c2 j ) + U
∑

j

n2 j−1n2 j, (F1)

Similarly, the Hamiltonian for the 1D t-J model is

HtJ = −t
∑

j

[(1 − n2 j )(c
†
2 j−1c2 j+1 + c2 j−1c†

2 j+1)(1 − n2 j+2) + (1 − n2 j−1)(c†
2 jc2 j+2 + c2 jc

†
2 j+2)(1 − n2 j+1)]

+ J

2

∑
j

[c†
2 j−1c2 jc

†
2 j+2c2 j+1 + c†

2 jc2 j−1c†
2 j+1c2 j+2 − (1 − n2 j )n2 j−1n2 j+2(1 − n2 j+1)

− (1 − n2 j−1)n2 jn2 j+1(1 − n2 j+2)]. (F2)

Note that we have expressed both these Hamiltonians in spinless form, which can be derived in much the same manner as in the
2D case, by mapping a single spinful chain to two spinless chains.

TABLE II. Decomposition of each single-site term in the Jordan-Wigner transformed 2D t-J model Hamiltonian, Eq. (27), into terms that
consist only of products of Pauli operators. The terms in each column share the common factor listed in the top row of the column.

H δ
i, j for 2D t-J

× t
8 (−1)Nx

∏Nx
β=2 j+1 σ z

i,β

∏2 j−2
β=1 σ z

i+1,β × t/8 × J/16 × J/16

H 1
i, j = −σ x

i,2 j−1σ
x
i+1,2 j−1 H 17

i, j = −σ x
i,2 j−1σ

x
i,2 j+1 H 33

i, j = σ x
i,2 j−1σ

x
i,2 jσ

x
i+1,2 j−1σ

x
i+1,2 j H 49

i, j = −σ 0

H 2
i, j = −σ

y
i,2 j−1σ

y
i+1,2 j−1 H 18

i, j = −σ
y
i,2 j−1σ

y
i,2 j+1 H 34

i, j = σ x
i,2 j−1σ

x
i,2 jσ

y
i+1,2 j−1σ

y
i+1,2 j H 50

i, j = σ z
i,2 j−1σ

z
i,2 j

H 3
i, j = σ x

i,2 j−1σ
x
i+1,2 j−1σ

z
i+1,2 j H 19

i, j = σ x
i,2 j−1σ

x
i,2 j+1σ

z
i,2 j H 35

i, j = σ x
i,2 j−1σ

x
i,2 jσ

x
i,2 j+1σ

x
i,2 j+2 H 51

i, j = σ z
i+1,2 j−1σ

z
i+1,2 j

H 4
i, j = σ

y
i,2 j−1σ

y
i+1,2 j−1σ

z
i+1,2 j H 20

i, j = σ
y
i,2 j−1σ

y
i,2 j+1σ

z
i,2 j H 36

i, j = σ x
i,2 j−1σ

x
i,2 jσ

y
i,2 j+1σ

y
i,2 j+2 H 52

i, j = σ z
i,2 j+1σ

z
i,2 j+2

H 5
i, j = σ x

i,2 j−1σ
x
i+1,2 j−1σ

z
i,2 j H 21

i, j = σ x
i,2 j−1σ

x
i,2 j+1σ

z
i,2 j+2 H 37

i, j = σ x
i,2 j−1σ

y
i,2 jσ

x
i+1,2 j−1σ

y
i+1,2 j H 53

i, j = σ z
i,2 jσ

z
i+1,2 j

H 6
i, j = σ

y
i,2 j−1σ

y
i+1,2 j−1σ

z
i,2 j H 22

i, j = σ
y
i,2 j−1σ

y
i,2 j+1σ

z
i,2 j+2 H 38

i, j = −σ x
i,2 j−1σ

y
i,2 jσ

y
i+1,2 j−1σ

x
i+1,2 j H 54

i, j = −σ z
i,2 jσ

z
i+1,2 j−1

H 7
i, j = −σ x

i,2 j−1σ
x
i+1,2 j−1σ

z
i,2 jσ

z
i+1,2 j H 23

i, j = −σ x
i,2 j−1σ

x
i,2 j+1σ

z
i,2 jσ

z
i,2 j+2 H 39

i, j = σ x
i,2 j−1σ

y
i,2 jσ

x
i,2 j+1σ

y
i,2 j+2 H 55

i, j = σ z
i,2 jσ

z
i,2 j+2

H 8
i, j = −σ

y
i,2 j−1σ

y
i+1,2 j−1σ

z
i,2 jσ

z
i+1,2 j H 24

i, j = −σ
y
i,2 j−1σ

y
i,2 j+1σ

z
i,2 jσ

z
i,2 j+2 H 40

i, j = −σ x
i,2 j−1σ

y
i,2 jσ

y
i,2 j+1σ

x
i,2 j+2 H 56

i, j = −σ z
i,2 jσ

z
i,2 j+1

H 9
i, j = −σ x

i,2 jσ
x
i+1,2 j H 25

i, j = −σ x
i,2 jσ

x
i,2 j+2 H 41

i, j = −σ
y
i,2 j−1σ

x
i,2 jσ

x
i+1,2 j−1σ

y
i+1,2 j H 57

i, j = −σ z
i,2 j−1σ

z
i+1,2 j

H 10
i, j = −σ

y
i,2 jσ

y
i+1,2 j H 26

i, j = −σ
y
i,2 jσ

y
i,2 j+2 H 42

i, j = σ
y
i,2 j−1σ

x
i,2 jσ

y
i+1,2 j−1σ

x
i+1,2 j H 58

i, j = σ z
i,2 j−1σ

z
i+1,2 j−1

H 11
i, j = σ x

i,2 jσ
x
i+1,2 jσ

z
i+1,2 j−1 H 27

i, j = σ x
i,2 jσ

x
i,2 j+2σ

z
i,2 j−1 H 43

i, j = −σ
y
i,2 j−1σ

x
i,2 jσ

x
i,2 j+1σ

y
i,2 j+2 H 59

i, j = −σ z
i,2 j−1σ

z
i,2 j+2

H 12
i, j = σ

y
i,2 jσ

y
i+1,2 jσ

z
i+1,2 j−1 H 28

i, j = σ
y
i,2 jσ

y
i,2 j+2σ

z
i,2 j−1 H 44

i, j = σ
y
i,2 j−1σ

x
i,2 jσ

y
i,2 j+1σ

x
i,2 j+2 H 60

i, j = σ z
i,2 j−1σ

z
i,2 j+1

H 13
i, j = σ x

i,2 jσ
x
i+1,2 jσ

z
i,2 j−1 H 29

i, j = σ x
i,2 jσ

x
i,2 j+2σ

z
i,2 j+1 H 45

i, j = σ
y
i,2 j−1σ

y
i,2 jσ

x
i+1,2 j−1σ

x
i+1,2 j H 61

i, j = σ z
i,2 j−1σ

z
i,2 j

H 14
i, j = σ

y
i,2 jσ

y
i+1,2 jσ

z
i,2 j−1 H 30

i, j = σ
y
i,2 jσ

y
i,2 j+2σ

z
i,2 j+1 H 46

i, j = σ
y
i,2 j−1σ

y
i,2 jσ

y
i+1,2 j−1σ

y
i+1,2 j H 62

i, j = −σ 0

H 15
i, j = −σ x

i,2 jσ
x
i+1,2 jσ

z
i,2 j−1σ

z
i+1,2 j−1 H 31

i, j = −σ x
i,2 jσ

x
i,2 j+2σ

z
i,2 j−1σ

z
i,2 j+1 H 47

i, j = σ
y
i,2 j−1σ

y
i,2 jσ

x
i,2 j+1σ

x
i,2 j+2 H 63

i, j = −σ z
i,2 j−1σ

z
i,2 jσ

z
i+1,2 j−1σ

z
i+1,2 j

H 16
i, j = −σ

y
i,2 jσ

y
i+1,2 jσ

z
i,2 j−1σ

z
i+1,2 j−1 H 32

i, j = −σ
y
i,2 jσ

y
i,2 j+2σ

z
i,2 j−1σ

z
i,2 j+1 H 48

i, j = σ
y
i,2 j−1σ

y
i,2 jσ

y
i,2 j+1σ

y
i,2 j+2 H 64

i, j = −σ z
i,2 j−1σ

z
i,2 jσ

z
i,2 j+1σ

z
i,2 j+2
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Applying the standard Jordan-Wigner transformation to the above Hamiltonians we arrive at,

HH = t

2

N∑
j=1

[(
σ x

2 j−1σ
x
2 j+1 + σ

y
2 j−1σ

y
2 j+1

)
σ z

2 j + (σ x
2 jσ

x
2 j+2 + σ

y
2 jσ

y
2 j+2

)
σ z

2 j+1

]+ U

4

N∑
j=1

[(
σ 0

2 j−1 + σ z
2 j−1

)(
σ 0

2 j + σ z
2 j

)]
(F3)

For the Hubbard model. Similarly, for the tJ model we find,

HtJ = − t

4

N∑
j=1

[(
I2 j − σ z

2 j

)
(σ+

2 j−1σ
−
2 j+1 + σ+

2 j+1σ
−
2 j−1)

(
I2 j+2 − σ z

2 j+2

)+ (I2 j−1 − σ z
2 j−1

)
(σ+

2 jσ
−
2 j+2 + σ+

2 j+2σ
−
2 j )
(
I2 j+1 − σ z

2 j+1

)]

+ J

32

N∑
j=1

[
16σ+

2 j−1σ
−
2 jσ

+
2 j+2σ

−
2 j+1 + 16σ+

2 jσ
−
2 j−1σ

+
2 j+1σ

−
2 j+2 − (σ 0

2 j − σ z
2 j

)(
σ 0

2 j−1 + σ z
2 j−1

)(
σ 0

2 j+2 + σ z
2 j+2

)(
σ 0

2 j+1 − σ z
2 j+1

)
− (σ 0

2 j−1 − σ z
2 j−1

)(
σ 0

2 j + σ z
2 j

)(
σ 0

2 j+1 + σ z
2 j+1

)(
σ 0

2 j+2 − σ z
2 j+2

)]
. (F4)

Note that, unlike the 2D case, for the 1D models we find that the Jordan-Wigner strings cancel out, leading to significantly
reduced Pauli depth. In this case, the presence of the projection operators in the t-J model plays a more significant role, leading
to a maximum Pauli depth of four for the t-J model in comparison to three for Hubbard.

Taking the case Ny = 1 in Eq. (29) we find the general form,

rcom,1D = τ 2

ε

⎧⎨
⎩NA1,1 + 2

N−1∑
p=1

[(N − p)A1,1+p]

⎫⎬
⎭. (F5)

Noting that for both the 1D Hubbard and t-J models Aj, j+p>1 = 0, this simplifies to,

rcom,1D = τ 2

ε
[NA1,1 + 2(N − 1)A1,2]. (F6)

In the case of the 1D Hubbard model we have A1,1 = 4|tU | and A1,2 = 2t2 + 2|tU |. Thus,

rH
com,1D = τ 2

ε
[4N |tU | + 2(N − 1)(2t2 + 2|tU |)]. (F7)

In the case of the 1D t-J model we have A1,1 = 2t2 + 4|tJ| and A1,2 = 4t2 + 4|tJ| + 3J2/4. Thus,

rtJ
com,1D = τ 2

ε

[
N (2t2 + 4|tJ|) + 2(N − 1)

(
4t2 + 4|tJ| + 3

4
J2

)]
. (F8)
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